
Real-Time Workshop® 7
User’s Guide

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.
Real-Time Workshop® User’s Guide
© COPYRIGHT 1994–2008 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
May 1994 First printing Version 1
January 1998 Second printing Version 2.1
January 1999 Third printing Version 3.11 (Release 11)
September 2000 Fourth printing Version 4 (Release 12)
June 2001 Online only Revised for Version 4.1 (Release 12.1)
July 2002 Online only Revised for Version 5.0 (Release 13)
June 2004 Online only Revised for Version 6.0 (Release 14)
October 2004 Online only Revised for Version 6.1 (Release 14SP1)
March 2005 Online only Revised for Version 6.2 (Release 14SP2)
September 2005 Online only Revised for Version 6.3 (Release 14SP3)
March 2006 Online only Revised for Version 6.4 (Release 2006a)
September 2006 Online only Revised for Version 6.5 (Release 2006b)
March 2007 Online only Revised for Version 6.6 (Release 2007a)
September 2007 Online only Revised for Version 7.0 (Release 2007b)
March 2008 Online only Revised for Version 7.1 (Release 2008a)
October 2008 Online only Revised for Version 7.2 (Release 2008b)

Contents

Introduction to Real-Time Workshop
Technology

1
What You Can Accomplish Using Real-Time Workshop
Technology . 1-2

How the Technology Can Fit Into Your Development
Process . 1-5
Tools for Algorithm Development . 1-5
Target Environments . 1-9
Applications . 1-13

How You Can Apply the Technology to the V-Model for
System Development . 1-16
What Is the V-Model? . 1-16
Types of Simulation and Prototyping 1-18
Types of In-the-Loop Testing for Verification and
Validation . 1-19

Documenting and Validating Requirements 1-21
Documenting Requirements . 1-21
Validating Requirements with Traceability 1-21
Validating Requirements with Host-Based Simulation . . . 1-23
Refining Concept Models with Standalone Rapid
Simulations . 1-24

Developing a Model Design Specification 1-28
Do You Have the Correct Products Installed for Modeling
Your Domain? . 1-28

Documenting Model Designs . 1-29
Integrating Component Models for System Simulation . . . 1-30
Integrating Component Models Into a System for Real-Time
Rapid Prototyping . 1-34

Developing a Detailed Software Design 1-38

v

Deciding on Data Representation and Storage 1-38
Checking Models Against Best Practices 1-41
Optimizing a Design for Specific Hardware with On-Target
Rapid Prototyping . 1-43

Developing the Application Code 1-48
Developing Code for Embedded Systems 1-48
Developing Encrypted Models to Protect Intellectual
Property . 1-53

Testing the Generated Code in a Software Environment . . 1-54

Integrating Software . 1-57
Verifying Component Production Code in the Target
Environment . 1-57

Verifying Component by Building a Complete Real-Time
Target Environment . 1-61

Verifying Software Integration . 1-64

Integrating and Calibrating System Components 1-67
Verifying System Integration . 1-67
Calibrating the ECU . 1-70

Code Generation and the Build Process
2

Choosing and Configuring Your Target 2-2
Introduction . 2-2
Selecting a System Target File . 2-3
Selecting a System Target File Programmatically 2-4
Available Targets . 2-5
Creating Custom Targets . 2-10
Template Makefiles and Make Options 2-10

Choosing and Configuring a Compiler 2-18
Compilers and the Build Process . 2-18
The Real-Time Workshop Product and ANSI23 C/C++
Compliance . 2-19

23. ANSI® is a registered trademark of the American National Standards
Institute, Inc.

vi Contents

Support for C and C++ Code Generation 2-20
Support for International (Non-US-ASCII) Characters . . . 2-21
C++ Target Language Considerations 2-24
Choosing and Configuring Your Compiler on a Microsoft
Windows Platform . 2-24

Choosing and Configuring Your Compiler on The Open
Group UNIX Platforms . 2-25

Including S-Function Source Code . 2-25

Adjusting Simulation Configuration Parameters for
Code Generation . 2-27
Introduction . 2-27
Configuring the Solver . 2-28
Configuring a Model for Data Logging 2-29
Configuring Optimizations . 2-32
Configuring Diagnostics . 2-33
Describing Hardware Properties . 2-35
Configuring Referenced Models . 2-48
Interactions of the Simulink and Real-Time Workshop
Products to Consider . 2-49

Configuring Real-Time Workshop Code Generation
Parameters . 2-58
Introduction . 2-58
Opening the Real-Time Workshop Pane 2-59
Selecting a Target Configuration . 2-60
Configuring the Target Language for Generated Code 2-61
Configuring the Build Process . 2-61
Configuring Report Generation . 2-64
Configuring Code Comments . 2-65
Configuring Generated Identifiers . 2-66
Configuring Custom Code . 2-70
Troubleshooting the Build Process . 2-72
Configuring Model Interfaces . 2-73
Selecting and Viewing Target Function Libraries 2-78

Build Process . 2-87
Build Process Steps . 2-87
Model Compilation . 2-88
Code Generation . 2-88
Customized Makefile Generation . 2-89
Executable Program Generation . 2-90
Files and Directories Created by the Build Process 2-92

vii

Configuring Generated Code with TLC 2-100
Introduction . 2-100
Assigning Target Language Compiler Variables 2-100
Setting Target Language Compiler Options 2-102

Interacting with the Build Process 2-104
Introduction . 2-104
Initiating the Build Process . 2-104
Construction of Symbols . 2-105
Generated Source Files and File Dependencies 2-107
Reloading Code from the Model Explorer 2-126
Rebuilding Generated Code . 2-127
Profiling Generated Code . 2-128

Customizing the Build Process . 2-130
Controlling the Compiling and Linking Phases of the Build
Process . 2-130

Cross-Compiling Code Generated on a Microsoft Windows
System . 2-131

Controlling the Location and Naming of Libraries During
the Build Process . 2-134

Recompiling Precompiled Libraries 2-139
Customizing Post Code Generation Build Processing 2-139

Validating Generated Code . 2-145
Viewing Generated Code . 2-145
Tracing Generated Code Back to Your Simulink Model . . . 2-147

Integrating Legacy and Custom Code 2-150
Introduction . 2-150
Block-Based Integration . 2-150
Model or Target-Based Integration 2-152

Relocating Code to Another Development
Environment . 2-155
Introduction . 2-155
Deciding on a Structure for the Zip File 2-155
Deciding on a Name for the Zip File 2-156
Packaging Model Code Files in a Zip File 2-157
Inspecting the Generated Zip File . 2-158
Relocating and Unpacking the Zip File 2-158
Code Packaging Example . 2-158

viii Contents

packNGo Function Limitations . 2-159

Generated Code Formats
3

Introduction . 3-2

Targets and Code Formats . 3-3
Introduction . 3-3
Backwards Compatibility of Code Formats 3-4
How Symbols Are Formatted in Generated Code 3-7

Choosing a Code Format for Your Application 3-10

Real-Time Code Format . 3-14
Introduction . 3-14
Unsupported Blocks . 3-14
System Target Files . 3-15
Template Makefiles . 3-15

Real-Time malloc Code Format . 3-16
Introduction . 3-16
Unsupported Blocks . 3-16
System Target Files . 3-17
Template Makefiles . 3-17

S-Function Code Format . 3-18

Embedded Code Format . 3-18
Introduction . 3-18
Using the Real-Time Model Data Structure 3-19
Making GRT-Based Targets ERT-Compatible 3-21

ix

Building Subsystems and Working with
Referenced Models

4
Nonvirtual Subsystem Code Generation 4-2
Introduction . 4-2
Nonvirtual Subsystem Code Generation Options 4-3
Modularity of Subsystem Code . 4-14
Code Reuse Limitations . 4-15
Determining Why Subsystem Code Is Not Reused 4-16

Generating Code and Executables from Subsystems . . 4-23

Generating Code for Model Referencing 4-26
Introduction . 4-26
Overview of Referenced Model Code Generation 4-26
Project Directory Structure for Model Reference Targets . . 4-28
Building Model Reference Targets . 4-29
Real-Time Workshop Model Referencing Requirements . . 4-30
Storage Classes for Signals Used with Model Blocks 4-37
Inherited Sample Time for Referenced Models 4-41
Reusable Code and Referenced Models 4-42
Customizing the Library File Suffix, Including the File
Type Extension . 4-46

Real-Time Workshop Model Referencing Limitations 4-46

Sharing Utility Functions . 4-51
Introduction . 4-51
Controlling Shared Utility Generation 4-51
rtwtypes.h and Shared Utilities . 4-52
Incremental Shared Utility Generation and Compilation . . 4-53
Shared Utility Checksum . 4-53
Shared Fixed-Point Utilities . 4-55

Supporting Shared Utility Directories in the Build
Process . 4-57
Modifying Template Makefiles to Support Shared
Utilities . 4-58

x Contents

Working with Data

5
Parameter Storage, Interfacing, and Tuning 5-2
Introduction . 5-2
Nontunable Parameter Storage . 5-3
Tunable Parameter Storage . 5-5
Tunable Parameter Storage Classes 5-7
Using the Model Parameter Configuration Dialog Box . . . 5-10
Tunable Expressions . 5-14
Linear Block Parameter Tunability 5-18
Parameter Configuration Quick Reference Diagram 5-19
Generated Code for Parameter Data Types 5-20
Tunable Workspace Parameter Data Type
Considerations . 5-26

Parameter Tuning by Using MATLAB Commands 5-28

Signal Storage, Optimization, and Interfacing 5-31
Introduction . 5-31
Signal Storage Concepts . 5-32
Signals with Auto Storage Class . 5-34
Signals with Test Points . 5-40
Interfacing Signals to External Code 5-40
Symbolic Naming Conventions for Signals in Generated
Code . 5-42

Summary of Signal Storage Class Options 5-43

Parameter Tuning and Signal Monitoring 5-45
Introduction . 5-45
Using the C API to Tune Parameters and Monitor
Signals . 5-45

Using the Target Language Compiler API to Tune
Parameters and Monitor Signals 5-45

Simulink Data Objects and Code Generation 5-46
Introduction . 5-46
Parameter Objects . 5-47
Parameter Object Configuration Quick Reference
Diagram . 5-54

Signal Objects . 5-55
Using Signal Objects to Initialize Signals and Discrete
States . 5-60

xi

Resolving Conflicts in Configuration of Parameter and
Signal Objects . 5-69

Customizing Code for Parameter and Signal Objects 5-71
Using Objects to Export ASAP2 Files 5-71

Enumerated Data Types in Generated Code 5-72
About Enumerated Data Types . 5-72
Default Code for an Enumerated Data Type 5-72
Enumerated Type Safe Casting . 5-73
Overriding Default Methods (Optional) 5-74
Enumerated Type Limitations . 5-77

Block State Storage and Interfacing 5-78
Introduction . 5-78
Block State Storage . 5-78
Block State Storage Classes . 5-79
Using the State Properties Dialog Box to Interface States to
External Code . 5-80

Symbolic Names for Block States . 5-82
Block States and Simulink Signal Objects 5-85
Summary of State Storage Class Options 5-86

Storage Classes for Data Store Memory Blocks 5-88
Data Store Memory and Simulink Signal Objects 5-90

External Mode
6

Introduction . 6-2

Using the External Mode User Interface 6-4
External Mode Interface Options . 6-4
External Mode Related Menu and Toolbar Items 6-7
External Mode Control Panel . 6-12
Target Interfacing . 6-14
External Signal Uploading and Triggering 6-16
Data Archiving . 6-21
Parameter Downloading . 6-23

xii Contents

External Mode Compatible Blocks and Subsystems . . . 6-26
Compatible Blocks . 6-26
Signal Viewing Subsystems . 6-27

External Mode Communications Overview 6-29
Introduction . 6-29
Download Mechanism . 6-29
Inlined and Tunable Parameters . 6-31

Client/Server Implementations . 6-33
Introduction . 6-33
Using the TCP/IP Implementation 6-33
Using the Serial Implementation . 6-36
Running the External Program . 6-39
Implementing an External Mode Protocol Layer 6-41

Using External Mode Programmatically 6-42

External Mode Limitations . 6-48
Limitations on Changing Parameters 6-48
Limitation on Mixing 32-bit and 64-bit Architectures 6-49
Limitations on Uploading Data . 6-49

Program Architecture

7
Introduction . 7-2

Model Execution . 7-4
Introduction . 7-4
Models for Non-Real-Time Single-Tasking Systems 7-6
Models for Non-Real-Time Multitasking Systems 7-7
Models for Real-Time Single-Tasking Systems 7-8
Models for Real-Time Multitasking Systems 7-9
Models for Multitasking Systems that Use Real-Time
Tasking Primitives . 7-12

Program Timing . 7-13
Program Execution . 7-14

xiii

External Mode Communication . 7-15
Data Logging in Single-Tasking and Multitasking Model
Execution . 7-15

Rapid Prototyping and Embedded Model Execution
Differences . 7-16

Rapid Prototyping Model Functions 7-17
Embedded Model Functions . 7-23

Rapid Prototyping Program Framework 7-24
Introduction . 7-24
Rapid Prototyping Program Architecture 7-24
Rapid Prototyping System-Dependent Components 7-25
Rapid Prototyping System-Independent Components 7-27
Rapid Prototyping Application Components 7-30

Embedded Program Framework . 7-37

Models with Multiple Sample Rates

8
Introduction . 8-2

Single-Tasking and Multitasking Execution Modes . . . 8-3
Introduction . 8-3
Executing Multitasking Models . 8-5
Multitasking and Pseudomultitasking Modes 8-6
Building a Program for Multitasking Execution 8-9
Single-Tasking Mode . 8-9
Building a Program for Single-Tasking Execution 8-10
Model Execution and Rate Transitions 8-10
Simulating Models with the Simulink Product 8-11
Executing Models in Real Time . 8-11
Single-Tasking Versus Multitasking Operation 8-12

Sample Rate Transitions . 8-13
Introduction . 8-13
Data Transfer Problems . 8-15
Data Transfer Assumptions . 8-16
Rate Transition Block Options . 8-16

xiv Contents

Faster to Slower Transitions in a Simulink Model 8-21
Faster to Slower Transitions in Real Time 8-21
Slower to Faster Transitions in a Simulink Model 8-23
Slower to Faster Transitions in Real Time 8-24

Single-Tasking and Multitasking Execution of a Model:
an Example . 8-27
Introduction . 8-27
Single-Tasking Execution . 8-28
Multitasking Execution . 8-30

Optimizing a Model for Code Generation

9
Optimization Parameters Overview 9-2

Optimizing Models . 9-5
Getting Advice About Optimizing Models for Code
Generation . 9-5

Demos Illustrating Optimizations . 9-6
Other Optimization Tools and Techniques 9-6

Minimizing Computations and Storage for Intermediate
Results . 9-9
Introduction . 9-9
Expression Folding Example . 9-10
Using and Configuring Expression Folding 9-11

Block Diagram Performance Tuning 9-17
Introduction . 9-17
Lookup Tables and Polynomials . 9-17
Reducing the Number of Blocks in a Model 9-30
Optimizing Code for Switch Blocks 9-34
Optimizing Data Type Usage . 9-35
Additional Integer and Fixed-Point Optimizations 9-39

Optimizing Signals . 9-41
Implementing Logic Signals as Boolean Data 9-41

xv

Reducing Memory Requirements for Signals 9-41
Declaring Signals as Local Function Data 9-42
Reusing Memory Allocated for Signals 9-42
Inlining Invariant Signals . 9-43

Inlining Parameters . 9-45
Referenced Models . 9-46

Configuring a Loop Unrolling Threshold 9-47

Optimizing Code Generated for Vector Assignments . . 9-49
Overview . 9-49
Example: Using memcpy for Vector Assignments 9-50

Controlling Memory Allocation for Time Counters 9-53

Optimizing Code Resulting from Floating-Point to
Integer Conversions . 9-54
Removing Code That Wraps Out-of-Range Values 9-54
Removing Code That Maps NaN Values to Integer Zero . . 9-55

Optimization Dependencies . 9-56

Writing S-Functions for Real-Time Workshop
Code Generation

10
Introduction . 10-2
About S-Functions . 10-2
Additional Information . 10-3
Classes of Problems Solved by S-Functions 10-3
Types of S-Functions . 10-4
Basic Files Required for Implementation 10-7
Guidelines for Writing S-Functions for Use with Real-Time
Workshop Software . 10-8

Writing Noninlined S-Functions . 10-9
About Noninlined S-Functions . 10-9

xvi Contents

Guidelines for Writing Noninlined S-Functions 10-9
Noninlined S-Function Parameter Type Limitations 10-10

Writing Wrapper S-Functions . 10-12
About Wrapper S-Functions . 10-12
MEX S-Function Wrapper . 10-12
TLC S-Function Wrapper . 10-17
The Inlined Code . 10-22

Writing Fully Inlined S-Functions 10-23
Multiport S-Function Example . 10-23

Automating the Generation of Files for Fully Inlined
S-Functions Using Legacy Code Tool 10-25
Legacy Code Tool and Code Generation 10-25
Generating Inlined S-Function Files for Code Generation
Support . 10-26

ApplyingModel Code Style Settings to Legacy Functions . . 10-27
Addressing Dependencies on Files in Different
Locations . 10-28

Deploying Generated S-Functions for Simulation and Code
Generation . 10-29

Writing Fully Inlined S-Functions with the mdlRTW
Routine . 10-30
About S-Functions and mdlRTW . 10-30
S-Function RTWdata . 10-31
The Direct-Index Lookup Table Algorithm 10-32
The Direct-Index Lookup Table Example 10-33

Guidelines for Writing Inlined S-Functions 10-56

Writing S-Functions That Support Expression
Folding . 10-57
Introduction . 10-57
Categories of Output Expressions . 10-58
Acceptance or Denial of Requests for Input Expressions . . 10-63
Utilizing Expression Folding in Your TLC Block
Implementation . 10-67

xvii

Writing S-Functions That Specify Port Scope and
Reusability . 10-73

Writing S-Functions That Specify Sample Time
Inheritance Rules . 10-79

Writing S-Functions That Support Code Reuse 10-81

Writing S-Functions for Multirate Multitasking
Environments . 10-82
Introduction . 10-82
Rate Grouping Support in S-Functions 10-82
Creating Multitasking-Safe, Multirate, Port-Based Sample
Time S-Functions . 10-83

Integrating C and C++ Code . 10-90

Build Support for S-Functions . 10-92
Introduction . 10-92
Implicit Build Support . 10-93
Specifying Additional Source Files for an S-Function 10-93
Using TLC Library Functions . 10-95
Using the rtwmakecfg.m API to Customize Generated
Makefiles . 10-95

S-Function Target

11
Introduction . 11-2
S-Function Target Overview . 11-2
Intellectual Property Protection for S-Function in
Simulation . 11-3

Required Files for S-Function Deployment 11-3
Sample Time Propagation in Generated S-Functions 11-4
Choice of Solver Type . 11-4

Creating an S-Function Block from a Subsystem 11-5

xviii Contents

Tunable Parameters in Generated S-Functions 11-11

Automated S-Function Generation 11-14

System Target File and Template Makefiles 11-19
Introduction . 11-19
System Target File . 11-19
Template Makefiles . 11-19

Checksums and the S-Function Target 11-20

S-Function Target Limitations . 11-21
Run-Time Parameters and S-Function Compatibility
Diagnostics . 11-21

Goto and From Block Limitations . 11-21
Building and Updating Limitations 11-23
Unsupported Blocks . 11-23

Running Rapid Simulations

12
Introduction . 12-2
About Rapid Simulation . 12-2
Rapid Simulation Performance . 12-2

General Rapid Simulation Workflow 12-4

Identifying Your Rapid Simulation Requirements 12-6

Configuring Inport Blocks to Provide Rapid Simulation
Source Data . 12-8

Configuring and Building a Model for Rapid
Simulation . 12-9

Setting Up Rapid Simulation Input Data 12-12

xix

Introduction . 12-12
Creating a MAT-File That Includes a Model’s Parameter
Structure . 12-13

Creating a MAT-File for a From File Block 12-17
Creating a MAT-File for an Inport Block 12-17

Programming Scripts for Batch and Monte Carlo
Simulations . 12-23

Running Rapid Simulations . 12-24
Introduction . 12-24
Requirements for Running Rapid Simulations 12-26
Setting a Clock Time Limit for a Rapid Simulation 12-26
Overriding a Model’s Simulation Stop Time 12-27
Reading the Parameter Vector into a Rapid Simulation . . 12-27
Specifying New Signal Data File for a From File Block . . . 12-28
Specifying Signal Data File for an Inport Block 12-31
Changing Block Parameters for an RSim Simulation 12-34
Specifying a New Output Filename for a Simulation 12-36
Specifying New Output Filenames for To File Blocks 12-36

Rapid Simulation Target Limitations 12-37

Targeting the Wind River Systems Tornado
Environment for Real-Time Applications

13
Resources for Wind River Systems Tornado
Applications . 13-2
Introduction . 13-2
The Tornado Environment . 13-2
The Tornado Target . 13-3
Block Library for Wind River Systems VxWorks 13-3

Wind River Systems Tornado Application
Architecture . 13-4
Hardware Architecture . 13-4
Software Architecture . 13-5
Module Architecture . 13-6

xx Contents

Host Processes . 13-6
Wind River Systems VxWorks Tasks 13-7

Installing the Wind River Systems Tornado
Software . 13-10
Introduction . 13-10
Installing and Configuring the Tornado Environment 13-10
Connecting to the Wind River Systems VxWorks Target . . 13-10
Verifying the Tornado Installation 13-11

Implementing a Wind River Systems Tornado
Application . 13-12
Designing the Simulink Model . 13-12
Adding Device Driver Blocks . 13-12
Specifying Code Generation Options 13-13
Configuring the Template Makefile 13-19

Building the Application . 13-22

Automatic Download and Execution 13-22

Manual Download and Execution 13-24
Introduction . 13-24
Resetting Wind River Systems VxWorks System 13-24
Downloading Files . 13-24
Starting the Program . 13-25

Inserting Custom Code Into Generated Code

14
Custom Code Library . 14-2

Example: Using a Custom Code Block 14-6

Custom Code in Subsystems . 14-9

xxi

Preventing User Source Code from Being Deleted from
Build Directories . 14-10

Timing Services

15
Absolute and Elapsed Time Computation 15-2
Introduction . 15-2
Timers for Periodic and Asynchronous Tasks 15-3
Allocation of Timers . 15-3
Integer Timers in Generated Code . 15-3
Elapsed Time Counters in Triggered Subsystems 15-4

APIs for Accessing Timers . 15-5
Introduction . 15-5
C API for S-Functions . 15-5
TLC API for Code Generation . 15-8

Elapsed Timer Code Generation Example 15-10

Asynchronous Support

16
Introduction . 16-2
About Asynchronous Support . 16-2
Overview of Block Library for Wind River Systems VxWorks
Real-Time Operating System . 16-2

Accessing the VxWorks Block Library 16-4
Generating Code with the VxWorks Library Blocks 16-4
Demos and Additional Information 16-4

Handling Interrupts . 16-6
Generating Interrupt Service Routines 16-6
Spawning a Wind River Systems VxWorks Task 16-14

xxii Contents

Rate Transitions and Asynchronous Blocks 16-22
Introduction . 16-22
Handling Rate Transitions for Asynchronous Tasks 16-24
Handling Multiple Asynchronous Interrupts 16-25

Using Timers in Asynchronous Tasks 16-28

Creating a Customized Asynchronous Library 16-31
Introduction . 16-31
Async Interrupt Block Implementation 16-32
Task Sync Block Implementation . 16-36
asynclib.tlc Support Library . 16-37

Asynchronous Support Limitations 16-40

Data Exchange APIs

17
C API for Interfacing with Signals and Parameters . . . 17-2
Introduction . 17-2
Generating C API Files . 17-3
Description of C API Files . 17-5
Using the C API in an Application . 17-18
C API Limitations . 17-29
Generating C API and ASAP2 Files 17-30
Target Language Compiler API for Signals and
Parameters . 17-30

Creating an External Mode Communication
Channel . 17-32
Introduction . 17-32
Design of External Mode . 17-32
External Mode Communications Overview 17-35
External Mode Source Files . 17-37
Implementing a Custom Transport Layer 17-41

Combining Multiple Models . 17-49
Using GRT Malloc to Combine Models 17-50

xxiii

Working with Embedded MATLAB Coder

18
About Embedded MATLAB Coder 18-2
Converts M-code to C Code . 18-2
Running a Demo of Embedded MATLAB Coder 18-3
How Embedded MATLAB Coder Resolves Function
Calls . 18-4

Workflows for Converting M-Code to C Code 18-5
Workflow for Converting M-Code to Embeddable C Code . . 18-5
Workflow for Converting M-Code to a C MEX Function . . . 18-6

Installing Prerequisite Products for Embedded
MATLAB Coder . 18-7

Setting Up the C Compiler . 18-8
How to Set Up Your C Compiler . 18-8
Supported Compilers for Generating MEX Functions 18-8
Supported Compilers for Generating C Code 18-8

File Paths and Naming Conventions 18-10
Compile Path Search Order . 18-10
Can I Add Files to the Embedded MATLAB Path? 18-10
When to Use the Embedded MATLAB Path 18-10
Adding Directories to Search Paths 18-11
Naming Conventions . 18-11

Making M-Code Compliant with the Embedded
MATLAB Subset . 18-13
Debugging Strategies . 18-13
Detecting Embedded MATLAB Syntax Violations at
Compile Time . 18-15

Configuring Your Environment for Code Generation . . 18-16
Types of Configuration Objects . 18-16
Working with Configuration Objects 18-17
Creating Configuration Objects . 18-18
Modifying Configuration Objects . 18-19
Saving Configuration Objects . 18-20

xxiv Contents

Specifying Properties of Primary Function Inputs 18-22
Why You Must Specify Input Properties 18-22
Properties to Specify . 18-22
Rules for Specifying Properties of Primary Inputs 18-26
Methods for Defining Properties of Primary Inputs 18-26
Defining Input Properties by Example at the Command
Line . 18-27

Defining Input Properties Programmatically in the
M-File . 18-30

Choosing Your Target . 18-40
Types of Targets . 18-40
Specifying the Target to the Compiler 18-41
Relationship of Targets and Configuration Objects 18-41
Location of Generated Files . 18-42
Specifying main Functions for C Executables 18-42

Compiling Your M-File . 18-44
Before Compiling Your M-Code . 18-44
Running Embedded MATLAB Coder 18-44
Specifying Compiler Options . 18-45
Specifying Custom Files to Build . 18-45

How emlc Generates Code . 18-46
Partitioning Generated Files for Readability 18-46
How emlc Partitions M-functions in Generated Code 18-46
Generated Files and Locations . 18-49
File Partitioning and Inlining . 18-51

Working with Compilation Reports 18-53
About Compilation Reports . 18-53
Generating Compilation Reports . 18-53
Names and Locations of Compilation Reports 18-53
Description of Compilation Reports 18-54
Examples of Reports . 18-56

Calling Generated C Functions . 18-60
Calling C Functions from the Embedded MATLAB
Subset . 18-60

Calling Initialize and Terminate Functions 18-61
Calling C Functions with Multiple Outputs 18-65
Calling C Functions that Return Arrays 18-65

xxv

Integrating Custom C Code with Generated Code 18-66
About Custom C Code Integration with Embedded
MATLAB Coder . 18-66

Specifying Custom C Files on the Command Line 18-66
Specifying Custom C Files with Configuration Objects . . . 18-66

Limitations on the Use of Absolute Time
A

About Absolute Time Limitations A-2

Logging Absolute Time . A-3

Absolute Time in Stateflow Charts A-4

Blocks that Depend on Absolute Time A-5

Generating ASAP2 Files

B
Overview . B-2

Targets Supporting ASAP2 . B-3

Defining ASAP2 Information . B-4
Memory Address Attribute . B-5

Generating an ASAP2 File . B-7
Introduction . B-7
Using Generic Real-Time Target or Embedded Coder
Target . B-7

Using the ASAM-ASAP2 Data Definition Target B-10

Customizing an ASAP2 File . B-12

xxvi Contents

Introduction . B-12
ASAP2 File Structure on the MATLAB Path B-12
Customizing the Contents of the ASAP2 File B-13
ASAP2 Templates . B-14

Structure of the ASAP2 File . B-19

Generating ASAP2 and C API Files B-21

Troubleshooting

C
Troubleshooting Compiler Configurations C-2
Compiler Version Mismatch Errors C-2
Generated Executable Image Produces Incorrect
Results . C-2

Compile-Time Errors . C-3

Examples

D
Models . D-2

Model Code Packaging . D-2

Model Reference . D-2

Data Management . D-2

Optimizations . D-3

S-Functions . D-3

xxvii

Custom Code . D-3

Timing Services . D-3

Interfaces . D-3

Index

xxviii Contents

1

Introduction to Real-Time
Workshop Technology

• “What You Can Accomplish Using Real-Time Workshop Technology” on
page 1-2

• “How the Technology Can Fit Into Your Development Process” on page 1-5

• “How You Can Apply the Technology to the V-Model for System
Development” on page 1-16

• “Documenting and Validating Requirements” on page 1-21

• “Developing a Model Design Specification” on page 1-28

• “Developing a Detailed Software Design” on page 1-38

• “Developing the Application Code” on page 1-48

• “Integrating Software” on page 1-57

• “Integrating and Calibrating System Components” on page 1-67

1 Introduction to Real-Time Workshop® Technology

What You Can Accomplish Using Real-Time Workshop
Technology

Real-Time Workshop® technology generates C or C++ source code and
executables for algorithms that you model graphically in the Simulink®
environment or programmatically with the Embedded MATLAB™ language
subset. You can generate code for any Simulink blocks and MATLAB®
functions that are useful for real-time or embedded applications. The
generated source code and executables for floating-point algorithms match
the functional behavior of Simulink simulations and Embedded MATLAB
code execution to high degrees of fidelity. Using the Simulink® Fixed Point™
product, you can generate fixed-point code that provides a bit-wise accurate
match to model simulation results. Such broad support and high degrees
of accuracy are possible because Real-Time Workshop technology is tightly
integrated with the MATLAB and Simulink execution and simulation
engines. In fact, the built-in accelerated simulation modes in Simulink use
Real-Time Workshop technology.

You apply Real-Time Workshop technology explicitly with the Real-Time
Workshop and Real-Time Workshop® Embedded Coder™ products. Using the
Real-Time Workshop product, you can

• Generate source code and executables for discrete-time, continuous-time
(fixed-step), and hybrid systems modeled in Simulink

• Use the generated code for real-time and non-real-time applications,
including simulation acceleration, rapid prototyping, and
hardware-in-the-loop (HIL) testing

• Tune and monitor the generated code by using Simulink blocks and built-in
analysis capabilities, or run and interact with the code completely outside
the MATLAB and Simulink environment

• Generate code for finite state machines modeled in Stateflow® event-based
modeling software, using the optional Stateflow® Coder™ product

• Produce source code for many Simulink products and blocksets provided
by The MathWorks™ and third-party vendors.

The Real-Time Workshop Embedded Coder product extends the Real-Time
Workshop product with features that are important for embedded software

1-2

http://www.mathworks.com/products/simulink/
http://www.mathworks.com/products/featured/embeddedmatlab/
http://www.mathworks.com/products/featured/embeddedmatlab/
http://www.mathworks.com/products/simfixed/
http://www.mathworks.com/products/stateflow/
http://www.mathworks.com/products/sfcoder/

What You Can Accomplish Using Real-Time Workshop® Technology

development. Using the Real-Time Workshop Embedded Coder add-on
product, you gain access to all aspects of Real-Time Workshop technology
and can generate code that has the clarity and efficiency of professional
handwritten code. For example, you can

• Generate code that is compact and fast, which is essential for real-time
simulators, on-target rapid prototyping boards, microprocessors used in
mass production, and embedded systems

• Customize the appearance of the generated code

• Optimize the generated code for a specific target environment

• Integrate existing (legacy) applications, functions, and data

• Enable tracing, reporting, and testing options that facilitate code
verification activities

The following table compares typical applications and key capabilities for
these two code generation products.

1-3

1 Introduction to Real-Time Workshop® Technology

Product Typical Applications Key Capabilities

Real-Time Workshop Simulation acceleration

Simulink model encryption

Rapid prototyping

HIL testing

Generate code for discrete-time,
continuous-time (fixed-step),
and hybrid systems modeled in
Simulink

Tune and monitor the execution of
generated code by using Simulink
blocks and built-in analysis
capabilities or by running and
interacting with the code outside
the MATLAB and Simulink
environment

Generate code for finite state
machines modeled in Stateflow
event-based modeling software,
using the optional Stateflow Coder
product

Generate code for many
MathWorks™ and third-party
Simulink products and blocksets

Integrate existing applications,
functions, and data

Real-Time Workshop
Embedded Coder

All applications listed for the
Real-Time Workshop product

Embedded systems

On-target rapid prototyping
boards

Microprocessors used in mass
production

All capabilities listed for the
Real-Time Workshop product

Generate code that has the clarity
and efficiency of professional
handwritten code

Customize the appearance and
performance of the code for specific
target environments

Enable tracing, reporting, and
testing options that facilitate code
verification activities

1-4

http://www.mathworks.com/products/rtw/
http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/rtwembedded/

How the Technology Can Fit Into Your Development Process

How the Technology Can Fit Into Your Development
Process

In this section...

“Tools for Algorithm Development” on page 1-5
“Target Environments” on page 1-9
“Applications” on page 1-13

Tools for Algorithm Development
You can use Real-Time Workshop technology to generate standalone C or C++
source code for algorithms that you develop the following ways:

• With MATLAB code, using the Embedded MATLAB language subset

• As Simulink models

• With MATLAB code that you incorporate into Simulink models

The Embedded MATLAB language subset supports MATLAB operators
and functions for floating-point and fixed-point math. Simulink support for
dynamic system simulation, conditional execution of system semantics, and
large model hierarchies provides an environment for modeling periodic and
event-driven algorithms commonly found in embedded systems. Real-Time
Workshop technology generates code for most Simulink blocks and many
MathWorks products.

If you are familiar with C language constructs and want to learn about how
to map commonly used C constructs to code generated from model design
patterns that include Simulink blocks, Stateflow charts, and Embedded
MATLAB functions, see Technical Solution 1-6AWSQ9 on the MathWorks
Web site.

The following table lists products that the Real-Time Workshop and
Real-Time Workshop Embedded Coder software support.

1-5

http://www.mathworks.com/products/featured/embeddedmatlab/functions.html
http://www.mathworks.com/products/featured/embeddedmatlab/functions.html
http://www.mathworks.com/support/solutions/data/1-6AWSQ9.html?product=SL

1 Introduction to Real-Time Workshop® Technology

Products Supported by Real-Time
Workshop and Real-Time Workshop
Embedded Coder

Notes

Aerospace Blockset™ —

Communications Blockset™ —

Control System Toolbox™ —

Gauges Blockset™ —

Fuzzy Logic Toolbox™ —

Embedded IDE Link™ VS —

Embedded IDE Link CC —

Embedded IDE Link MU —

Embedded IDE Link TS —

MATLAB Details: Supports Embedded MATLAB
Model Predictive Control Toolbox™ —

Model-Based Calibration Toolbox™ —

PolySpace™ Model Link™ SL Not supported by Real-Time Workshop
Real-Time Windows Target™ —

Signal Processing Blockset™ Details: “Simulink Block Data Type Support
for Signal Processing Blockset” Table (enter the
MATLAB showsignalblockdatatypetable
command)

SimDriveline™ —

SimElectronics™ —

SimHydraulics® —

SimMechanics™ —

SimPowerSystems™ Not supported by Real-Time Workshop
Embedded Coder

Simscape™ —

1-6

How the Technology Can Fit Into Your Development Process

Products Supported by Real-Time
Workshop and Real-Time Workshop
Embedded Coder

Notes

Simulink Details: “Simulink Block Support” Table in the
Real-Time Workshop documentation

Simulink Fixed Point —

Simulink® Parameter Estimation™ —

Simulink® Report Generator™ —

Simulink® Verification and Validation™ —

Stateflow and Stateflow Coder —

System Identification Toolbox™ Exceptions: ;

• Nonlinear IDNLGREY Model, IDDATA
Source, IDDATA Sink, and estimator blocks

• Nonlinear ARX models that contain custom
regressors

• neuralnet nonlinearities

• customnet nonlinearities
Target Support Package™ FM5 —

Target Support Package IC1 —

Target Support Package TC2 —

Target Support Package TC6 —

Video and Image Processing Blockset™ —
Virtual Reality Toolbox™ —

xPC Target™ —

xPC Target Embedded Option™ —

Use of both Embedded MATLAB code and Simulink models is typical for
Model-Based Design projects where you start developing an algorithm
through research and development or advanced production, using MATLAB,

1-7

1 Introduction to Real-Time Workshop® Technology

and then use Simulink for system deployment and verification. Benefits of
this approach include:

• Richer system simulation environment

• Ability to verify the Embedded MATLAB code

• Real-Time Workshop and Real-Time Workshop Embedded Coder C/C++
code generation for the model and embedded M-code

The following table summarizes how to generate C or C++ code for each of the
three approaches and identifies where you can find more information.

If you develop
algorithms using...

You generate code by... For more information, see...

Embedded MATLAB
language subset

Entering the Real-Time
Workshop function emlc in the
MATLAB Command Window.

“Working with the Embedded
MATLAB Subset”

Chapter 18, “Working with
Embedded MATLAB Coder”

Simulink Configuring and initiating code
generation for your model or
subsystem with the Simulink
Configuration Parameters
dialog.

“Workflow for Developing
Applications Using Real-Time
Workshop Software” in Getting
Started with Real-Time
Workshop

Embedded MATLAB
language subset and
Simulink

Including Embedded MATLAB
code in Simulink models or
subsystems by using the
Embedded MATLAB Function
block.

To use this block, you can do
one of the following:

• Copy your M-code into the
block.

• Call your M-code from the
block by referencing the
appropriate M-files on the
MATLAB path.

“Working with the Embedded
MATLAB Subset” in
the Embedded MATLAB
documentation

1-8

How the Technology Can Fit Into Your Development Process

The following figure shows the three design and deployment environment
options. Although not shown in the figure, other products that support code
generation, such as Stateflow software, are available.

MATLAB® Simulink®

Other MATLAB
code

Embedded MATLAB™

language subset
Embedded MATLAB™

Function block

Real-Time Workshop® technology

C or C++

Compiler or
IDE toolchain

Executable
(runs in target environment)

Other Simulink
blocks

Target Environments
In addition to generating source code for a model or subsystem, Real-Time
Workshop technology generates make or project files you need to build an
executable for a specific target environment. The generated make or project
files are optional. That is, if you prefer, you can build an executable for the
generated source files by using an existing target build environment, such
as a third-party integrated development environment (IDE). Applications
of code generated with Real-Time Workshop technology range from calling

1-9

1 Introduction to Real-Time Workshop® Technology

a few exported C or C++ functions on a host computer to generating a
complete executable using a custom build process, for custom hardware, in an
environment completely separate from the host computer running MATLAB
and Simulink.

Real-Time Workshop technology provides built-in system target files that
generate, build, and execute code for specific target environments. These
system target files offer varying degrees of support for interacting with the
generated code to log data, tune parameters, and experiment with or without
Simulink as the external interface to your generated code.

Before you select a system target file, you need to identify the target
environment on which you expect to execute your generated code. The three
most common target environments include:

Target
Environment

Description

Host computer The same computer that runs MATLAB and Simulink. Typically, a host
computer is a PC or UNIX®1 environment that uses a non-real-time
operating system, such as Microsoft®Windows® or Linux®2. Non-real-time
(general purpose) operating systems are nondeterministic. For example,
they might suspend code execution to run an operating system service
and then, after providing the service, continue code execution. Thus, the
executable for your generated code might run faster or slower than the
sample rates you specified in your model.

1. UNIX® is a registered trademark of The Open Group in the United States and other
countries.

2. Linux® is a registered trademark of Linus Torvalds.

1-10

How the Technology Can Fit Into Your Development Process

Target
Environment

Description

Real-time
simulator

A different computer than the host computer. A real-time simulator can
be a PC or UNIX environment that uses a real-time operating system
(RTOS), such as:

• xPC Target system

• A real-time Linux system

• A Versa Module Eurocard (VME) chassis with PowerPC® processors
running a commercial RTOS, such as VxWorks® from Wind River®
Systems

The generated code runs in real time and behaves deterministically.
Although, the exact nature of execution varies based on the particular
behavior of the system hardware and RTOS.

Typically, a real-time simulator connects to a host computer for data
logging, interactive parameter tuning, and Monte Carlo batch execution
studies.

Embedded
microprocessor

A computer that you eventually disconnect from a host computer and
run standalone as part of an electronics-based product. Embedded
microprocessors range in price and performance, from high-end digital
signal processors (DSPs) used to process communication signals to
inexpensive 8-bit fixed-point microcontrollers used in mass production (for
example, electronic parts produced in the millions of units). Embedded
microprocessors can:

• Use a full-featured RTOS

• Be driven by basic interrupts

• Use rate monotonic scheduling provided with Real-Time Workshop
technology

A target environment can:

• Have single- or multiple-core CPUs

• Be standalone or communicate as part of a computer network

1-11

http://en.wikipedia.org/wiki/RTOS
http://en.wikipedia.org/wiki/RTOS
http://www.mathworks.com/products/xpctarget/
http://en.wikipedia.org/wiki/Rate-monotonic_scheduling

1 Introduction to Real-Time Workshop® Technology

In addition, you can deploy different parts of a Simulink model on different
target environments. For example, it is common to separate the component
(algorithm or controller) portion of a model from the environment (or plant).
Using Simulink to model an entire system (plant and controller) is often
referred to as closed-loop simulation and can provide many benefits such as
early verification of component correctness.

The following figure shows example target environments for code generated
for a model.

Co
de

ge
ne

ra
tio

n

Algorithm model

Host
executable

System model

Host computer(s)

Embedded
microprocessor

Real-time
simulator

Environment model

Co
de

ge
ne

ra
tio

n

Co
de

ge
ne

ra
tio

n

1-12

How the Technology Can Fit Into Your Development Process

Applications
The following table lists several ways you can apply Real-Time Workshop
technology in the context of the different target environments.

Application Description

Host Computer
Accelerated simulation You apply techniques to speed up

the execution of model simulation
in the context of the MATLAB
and Simulink environment.
Accelerated simulations are
especially useful when run time
is long compared to the time
associated with compilation and
checking whether the target is up
to date.

Rapid simulation You execute code generated for a
model in non-real time on the host
computer, but outside the context
of the MATLAB and Simulink
environment.

System simulation You integrate components into
a larger system. You provide
generated source code and
related dependencies for building
in another environment or a
host-based shared library to which
other code can dynamically link.

Model encryption You generate a Simulink shareable
object library for a model or
subsystem for use by a third-party
vendor in another Simulink
simulation environment.

Real-Time Simulator

1-13

1 Introduction to Real-Time Workshop® Technology

Application Description

Rapid prototyping You generate, deploy, and tune
code on a real-time simulator
connected to the system hardware
(for example, physical plant or
vehicle) being controlled. This
design step is also crucial for
validating whether a component
can adequately control the physical
system.

System simulation You integrate generated source
code and dependencies for
components into a larger
system that is built in another
environment. You can use shared
library files to encrypt components
for intellectual property protection.

On-target rapid prototyping You generate code for a detailed
design that you can run in real time
on an embedded microprocessor
while tuning parameters and
monitoring real-time data. This
design step allows you to assess,
interact with, and optimize code,
using embedded compilers and
hardware.

Embedded Microprocessor
Production code generation From a model, you generate

code that is optimized for speed,
memory usage, simplicity, and
if necessary, compliance with
industry standards and guidelines.

1-14

How the Technology Can Fit Into Your Development Process

Application Description

Software-in-the-loop (SIL) testing You execute generated code with
your plant model within Simulink
to verify successful conversion
of the model to code. You might
change the code to emulate target
word size behavior and verify
numerical results expected when
the code runs on an embedded
microprocessor, or use actual target
word sizes and just test production
code behavior.

Processor-in-the-loop (PIL) testing You test an object code component
with a plant or environment
model in an open- or closed-loop
simulation to verify successful
model-to-code conversion,
cross-compilation, and software
integration.

Hardware-in-the-loop (HIL) testing You verify an embedded system
or embedded computing unit
(ECU), using a real-time target
environment.

1-15

1 Introduction to Real-Time Workshop® Technology

How You Can Apply the Technology to the V-Model for
System Development

In this section...

“What Is the V-Model?” on page 1-16
“Types of Simulation and Prototyping” on page 1-18
“Types of In-the-Loop Testing for Verification and Validation” on page 1-19

What Is the V-Model?
The V-model is a representation of system development that highlights
verification and validation steps in the system development process. As the
following figure shows, the left side of the V identifies steps that lead to code
generation, including requirements analysis, system specification, detailed
software design, and coding. The right side focuses on the verification and
validation of steps cited on the left side, including software integration and
system integration.

1-16

How You Can Apply the Technology to the V-Model for System Development

System Specification

Coding

Software Detailed
Design

System Integration
and Calibration

 Hardware-in-the-loop
(HIL) testing

 Processor-in-the-loop
(PIL) testing

Simulation

Rapid simulation

System simulation (export)

Rapid prototyping

 Software-in-the-loop
(SIL) testing

On-target rapid prototyping

Production code generation

Model encryption (export)

Verification and validation

Software Integration

Depending on your application and role in the process, you might focus on one
or more of the steps called out in the V or repeat steps at several stages of
the V. Real-Time Workshop technology and related products provide tooling
you can apply at each step.

The following sections compare

• Types of simulation and prototyping

• Types of in-the-loop testing for verification and validation

For details on applications of Real-Time Workshop technology for steps
identified in the figure, see the following topics in the Real-Time Workshop
documentation:

1-17

1 Introduction to Real-Time Workshop® Technology

• “Documenting and Validating Requirements” on page 1-21

• “Developing a Model Design Specification” on page 1-28

• “Developing a Detailed Software Design” on page 1-38

• “Developing the Application Code” on page 1-48

• “Integrating Software” on page 1-57

• “Integrating and Calibrating System Components” on page 1-67

Types of Simulation and Prototyping
The following table compares the types of simulation and prototyping
identified on the left side of the V-model diagram.

Host-Based
Simulation

Standalone
Rapid
Simulations

Rapid
Prototyping

On-Target Rapid
Prototyping

Purpose Test and validate
functionality of
concept model

Refine, test,
and validate
functionality of
concept model in
non-real time

Test new ideas
and research

Refine and
calibrate
designs during
development
process

Execution
hardware

Host computer Host computer

Standalone
executable
runs outside
of MATLAB
and Simulink
environment

PC or nontarget
hardware

Embedded
computing
unit (ECU) or
near-production
hardware

1-18

How You Can Apply the Technology to the V-Model for System Development

Host-Based
Simulation

Standalone
Rapid
Simulations

Rapid
Prototyping

On-Target Rapid
Prototyping

Code
efficiency
and I/O
latency

Not applicable Not applicable Less emphasis
on code efficiency
and I/O latency

More emphasis on
code efficiency and
I/O latency

Ease of use
and cost

Can simulate
component
(algorithm or
controller) and
environment (or
plant)

Normal mode
simulation in
Simulink enables
you to access,
display, and
tune data and
parameters while
experimenting

Can accelerate
Simulink
simulations with
Accelerated and
Rapid Accelerated
modes

Easy to simulate
models of hybrid
dynamic systems
that include
components and
environment
models

Ideal for batch
or Monte Carlo
simulations

Can repeat
simulations with
varying data sets,
interactively or
programmatically
with scripts,
without rebuilding
the model

Can be connected
to Simulink
to monitor
signals and tune
parameters

Might require
custom real-time
simulators and
hardware

Might be done
with inexpensive
off-the-shelf PC
hardware and I/O
cards

Might use existing
hardware, thus
less expensive and
more convenient

Types of In-the-Loop Testing for Verification and
Validation
The following table compares the types of in-the-loop testing for verification
and validation identified on the right side of the V-model diagram.

1-19

1 Introduction to Real-Time Workshop® Technology

SIL Testing PIL Testing
on Embedded
Hardware

PIL Testing on
Instruction Set
Simulator

HIL Testing

Purpose Verify component
source code

Verify component
object code

Verify component
object code

Verify system
functionality

Fidelity and
accuracy

Two options:

Same source
code as target,
but might
have numerical
differences

Changes source
code to emulate
word sizes, but is
bit accurate for
fixed-point math

Same object code

Bit accurate for
fixed-point math

Cycle accurate
since code runs on
hardware

Same object code

Bit accurate for
fixed-point math

Might not be cycle
accurate

Same executable
code

Bit accurate for
fixed-point math

Cycle accurate

Use real and
emulated system
I/O

Execution
platforms

Host Target Host Target

Ease of use
and cost

Desktop
convenience

Executes just in
Simulink

No cost for
hardware

Executes on desk
or test bench

Uses hardware —
process board and
cables

Desktop
convenience

Executes just on
host computer
with Simulink
and integrated
development
environment
(IDE)

No cost for
hardware

Executes on test
bench or in lab

Uses hardware
— processor,
embedded
computer unit
(ECU), I/O devices,
and cables

Real time
capability

Not real time Not real time
(between samples)

Not real time
(between
samples)

Hard real time

1-20

Documenting and Validating Requirements

Documenting and Validating Requirements

In this section...

“Documenting Requirements” on page 1-21
“Validating Requirements with Traceability” on page 1-21
“Validating Requirements with Host-Based Simulation” on page 1-23
“Refining Concept Models with Standalone Rapid Simulations” on page 1-24

Documenting Requirements
Requirements impact the code generation process by dictating what the
system is to do.

Prerequisites and Goals

Prerequisite Goal

Problem to solve Capture the functional requirements for the
solution in writing so they can be reviewed and
validated

Mapping of Engineering Tasks to Related Product Information

Engineering Tasks Related Product Information

Capture the requirements in a document,
spreadsheet, data base, or requirements
management tool

Simulink Report Generator documentation

Third-party vendor tools such as Microsoft
Word,Microsoft® Excel®, raw HTML, or Telelogic®
DOORS®

Validating Requirements with Traceability
Interactive traceability and traceability reports provide a way to validate
whether generated code meets documented requirements.

1-21

1 Introduction to Real-Time Workshop® Technology

Prerequisites and Goals

Prerequisite Goals

Requirements are documented Trace generated code back to documented requirements

Generate traceability reports

Mapping of Engineering Tasks to Related Product Information

Engineering Tasks Related Product Information Demo

Associate requirements
documents with objects in
concept models

Generate a report on
requirements associated
with a model

Simulink Verification and
Validation

“Managing Model Requirements”
in the Simulink Verification and
Validation documentation

Bidirectional tracing in Microsoft
Word, Microsoft Excel, HTML,
and Telelogic DOORS

slvnvdemo_fuelsys_docreq

Include requirements tags in
generated code

Simulink Verification and
Validation

“Including Requirements with
Generated Code” in the Simulink
Verification and Validation
documentation

rtwdemo_requirements

Trace model blocks and
subsystems to generated code
and vice versa

Real-Time Workshop Embedded
Coder

“Using Code-to-Model
Traceability” in the Real-Time
Workshop Embedded Coder
documentation

“Using Model-to-Code
Traceability” in the Real-Time
Workshop Embedded Coder
documentation

rtwdemo_hyperlinks

1-22

http://www.mathworks.com/products/simverification/
http://www.mathworks.com/products/simverification/
http://www.mathworks.com/products/simverification/
http://www.mathworks.com/products/simverification/
http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/rtwembedded/

Documenting and Validating Requirements

Validating Requirements with Host-Based Simulation
Using Simulink, you can create, simulate, analyze, and maintain models for
components (algorithms and controllers) and the operating environments (or
plants) that they control, throughout a product life cycle.

As your models and simulation scenarios increase in size and complexity, you
can adjust Simulink simulation modes to improve simulation performance.
Normal simulations run in an interpretive mode that allows you to
access, display, and tune data and parameters. This mode is useful for
experimentation and initial model development. If normal mode simulations
are not fast enough, you can improve simulation performance by using
alternative modes, Accelerator mode and Rapid Accelerator mode, which
leverage Real-Time Workshop technology by replacing the interpreted code
with compiled target code.

Note Code generated by the Accelerator and Rapid Accelerator modes is
suitable only for speeding model simulation. You must use the Real-Time
Workshop product to generate code for other purposes.

Prerequisites and Goals

Prerequisites Goals

Requirements are documented

Concept model exists

Based on documented requirements:

• Validate functionality of the model in
non-real time

• Refine the concept model for an algorithm

• Test the concept model

Mapping of Engineering Tasks to Related Product Information

Engineering Tasks Related Product Information

Run host-based simulations “Accelerating Models”

1-23

1 Introduction to Real-Time Workshop® Technology

Refining Concept Models with Standalone Rapid
Simulations
Standalone rapid simulations run in non-real time outside of the MATLAB
and Simulink environment on your host computer, using standalone source
code and executables generated by Real-Time Workshop technology. You
develop the executables by using the Real-Time Workshop rapid simulation
(RSim) system target file.

Prerequisites and Goals

Prerequisites Goals

Functional requirements

Concept model

Based on requirements:

• Refine the concept model for an algorithm

• Validate functionality of the model in
non-real time

• Test the concept model

Approaches for Applying Real-Time Workshop Technology
As the following figure shows, you can:

1 Generate an RSim host executable that runs outside the context of
MATLAB and Simulink.

2 Use the Simulink external mode feature to establish a communications
link between an RSim host executable and a system model running in
the Simulink environment.

3 Use the communications link interactively to monitor signals, tune
parameters, and log data.

1-24

Documenting and Validating Requirements

Algorithm model

Run control,

tuning, and

logging

Host
executable

System model

Environment model

Co
de

ge
ne

ra
tio

n

Ex
te

rn
al

 m
od

e

The following figure shows a single host configuration setup for multiple
batch runs.

Algorithm model

Host
executable

Test inputs
(.mat)

System model

Environment model
Co

de
ge

ne
ra

tio
n

Test results
(.mat)

If you have software licenses for the SystemTest™ and Parallel Computing
Toolbox™ products, you can create an automated parallel processing
computer environment that runs vast amounts of Monte Carlo tests, as the
following figure shows. You specify the tests with the SystemTest product on
a cluster of computers managed by the Parallel Computing Toolbox product
on behalf of the host computer running the RSim executable.

1-25

1 Introduction to Real-Time Workshop® Technology

Compute Cluster
MATLAB® Distributed Computing Server™

MATLAB

Parallel
Computing
Toolbox™

Simulink

Real-Time Workshop

RSim

Worker

Worker

Worker

Scheduler

task

result

task

result

task
result

Client Host

Test results
(.mat)

Test inputs
(.mat)

1-26

Documenting and Validating Requirements

Mapping of Engineering Tasks to Related Product Information

Engineering Tasks Related Product
Information

Demos

Run standalone rapid
simulations

Run batch or Monte-Carlo
simulations

Repeat simulations
with varying data
sets, interactively or
programmatically with
scripts, without rebuilding
the model

Tune parameters and monitor
signals interactively

Simulate models for hybrid
dynamic systems that
include components and
an environment or plant that
requires variable-step solvers
and zero-crossing detection

Chapter 12, “Running
Rapid Simulations” in
the Real-Time Workshop
documentation

Chapter 6, “External Mode”
in the Real-Time Workshop
documentation

rtwdemo_rsim_param_survey_script

rtwdemo_rsim_batch_script

rtwdemo_rsim_param_tuning

Distribute simulation runs
across multiple computers

SystemTest

SystemTest documentation

MATLAB® Distributed
Computing Server™
documentation

Parallel Computing Toolbox
documentation

1-27

http://www.mathworks.com/products/systemtest/

1 Introduction to Real-Time Workshop® Technology

Developing a Model Design Specification

In this section...

“Do You Have the Correct Products Installed for Modeling Your Domain?”
on page 1-28
“Documenting Model Designs” on page 1-29
“Integrating Component Models for System Simulation” on page 1-30
“Integrating Component Models Into a System for Real-Time Rapid
Prototyping” on page 1-34

Do You Have the Correct Products Installed for
Modeling Your Domain?
When developing a system, it is important to use the correct combination of
products to model each system component based on the domain to which it
applies.

Prerequisites and Goals

Prerequisites Goal

Functional requirements

Concept model

Refine the concept model for a component or
system to match the project domain

Mapping of Engineering Tasks to Related Product Information

Engineering Tasks Related Product Information Demos

Specify algorithms as
MATLAB code

Embedded MATLAB
documentation

rtwdemo_emlcbasicdemo

Specify algorithms graphically
as Simulinkmodels for controls
design

“Creating a Model” in the
Simulink documentation

rtwdemo_f14

Call Embedded MATLAB
functions in Simulink

“MATLAB Function Blocks” in
the Simulink documentation

rtwdemo_eml_aero_radar

1-28

Developing a Model Design Specification

Engineering Tasks Related Product Information Demos

Model finite state machines
and truth tables in Simulink
for fault detection, modes, and
conditional logic

Stateflow

“Creating Stateflow Charts” in
the Stateflow documentation

rtwdemo_fuelsys

Model signal processing filters
(for example, fast Fourier
transform (FFT) and infinite
impulse response (IIR)) in
Simulink

Signal Processing Blockset

Signal Processing Blockset
documentation

rtwdemo_lmsadeq

Model video processing models
in Simulink

Video and Image Processing
Blockset

Video and Image Processing
Blockset documentation

Create physical models or
plant models in Simulink

Simscape

Simscape documentation
Model other domains and
applications

All products supported by code
generation

Documenting Model Designs
After you refine your concept models, you should document them so they can
be reviewed and, if necessary, archived. For some domains, you might be
contractually required to provide such documentation to your customers.

Prerequisites and Goals

Prerequisites Goal

Functional requirements

Refined concept models

Produce design artifacts for reviews and
archiving

1-29

http://www.mathworks.com/products/stateflow/
http://www.mathworks.com/products/sigprocblockset/
http://www.mathworks.com/products/viprocessing/
http://www.mathworks.com/products/viprocessing/
http://www.mathworks.com/products/simscape/

1 Introduction to Real-Time Workshop® Technology

Mapping of Engineering Tasks to Related Product Information

Engineering Tasks Related Product
Information

Demos

Create documentation for
algorithms that you develop
in MATLAB

MATLAB® Report Generator™

“MATLAB Report Generator”
documentation

Create documentation from
Simulink and Stateflow
models

Simulink Report Generator

“Simulink Report Generator”
documentation

rtwdemo_codegenrpt

Integrating Component Models for System Simulation
During system specification, your components might be integrated into
another environment. You may need to share components with a different
group or plug them into another execution environment for additional
analysis and model iterations.

Prerequisites and Goals

Prerequisites Goals

Functional requirements

Refined concept models

Environment or system into which your
component is to be added must exist

Add one or more components to another
environment for system simulation

Refine the component model

Refine the integrated system model

Validate functionality of the model in non-real
time

Test the concept model

Approaches for Applying Real-Time Workshop Technology
Two ways to integrate a modeled component into another environment
include:

1-30

http://www.mathworks.com/products/ML_reportgenerator/
http://www.mathworks.com/products/SL_reportgenerator/

Developing a Model Design Specification

• Generating source code from the model and supplying the code and
dependent files and data for building in another environment

• Generating and supplying a shared library that can be dynamically linked
when needed

You then simulate the system. In both cases, during simulation and testing,
you might need to refine the component model. You iterate until the
component is validated in the context of the system.

At some point in your process, you might add hardware, perhaps for rapid
prototyping.

The following figure shows a typical approach for generating code from a
model and then integrating that code as a component in a separate target
environment, which can be host based or not.

System Simulator

System Executable
Test inputs

Test results

Co
m

pi
le

an
d

lin
k

Source
Code

Other
source
code

Other
source
code

Other
source
code

Component model

Simulink

Code
generation

Real-Time Workshop Embedded Coder can generate a shared library for a
model for your host platform. You can choose between generating a Microsoft
Windows dynamic link library (.dll) file or a UNIXshared object (.so) file.
Shared libraries package source code securely for easy distribution and shared
use. You can share a .dll or .so file among applications and you can upgrade
it without having to recompile the applications that use it.

1-31

1 Introduction to Real-Time Workshop® Technology

The following figure shows a typical approach for generating a shared library
from a model and then integrating the library as a component in a separate
target environment.

System Simulator

System Executable
Test inputs

Test results

Dy
na

m
ic

al
ly

lin
k

Library
(.dll or .so)

Other
libraries

(optional)
Component model

Simulink

Code/library
generation

Mapping of Engineering Tasks to Related Product Information

Engineering Tasks Related Product
Information

Demos

Schedule the generated code Chapter 8, “Models with
Multiple Sample Rates” in
the Real-Time Workshop
documentation

Chapter 16, “Asynchronous
Support” in the Real-Time
Workshop documentation

rtwdemos, select Multirate
Support folder

Specify function boundaries of
systems

“Nonvirtual Subsystem Code
Generation” on page 4-2 in
the Real-Time Workshop
documentation

rtwdemo_atomic
rtwdemo_ssreuse
rtwdemo_filepart
rtwdemo_export_functions

1-32

Developing a Model Design Specification

Engineering Tasks Related Product
Information

Demos

Specify components and
boundaries for design and
incremental code generation

Chapter 4, “Building
Subsystems and Working
with Referenced Models” in
the Real-Time Workshop
documentation

rtwdemo_mdlref_top

Specify function interfaces so
that external software can
compile, build, and invoke, the
generated code appropriately

Real-Time Workshop
Embedded Coder

“Controlling Model Function
Prototypes” in the Real-Time
Workshop Embedded Coder
documentation

rtwdemo_fcnprotoctrl

Manage data packaging in the
generated code for integrating
and packaging data

Real-Time Workshop
Embedded Coder

Module Packaging
Features in the Real-Time
Workshop Embedded Coder
documentation

rtwdemos, select Data
Packaging folder

Generate and control the
format of comments and
identifiers in generated code

Real-Time Workshop
Embedded Coder

“Customizing Comments
in Generated Code” and
“Configuring Symbols”
in the Real-Time
Workshop Embedded Coder
documentation

rtwdemo_comments
rtwdemo_symbols

1-33

http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/rtwembedded/

1 Introduction to Real-Time Workshop® Technology

Engineering Tasks Related Product
Information

Demos

Create a zip file that contains
generated code files, static
files, and dependent data
needed to build the generated
code in an environment other
than your host computer

“Relocating Code to Another
Development Environment” on
page 2-155 in the Real-Time
Workshop documentation

rtwdemo_buildinfo

Export models for validation
in a system simulator using
shared libraries

Real-Time Workshop
Embedded Coder

“Creating and Using
Host-Based Shared
Libraries” in the Real-Time
Workshop Embedded Coder
documentation

rtwdemo_shrlib

Integrating Component Models Into a System for
Real-Time Rapid Prototyping
Some industries, such as the automotive industry, apply an integration step
called rapid prototyping. During rapid prototyping, you generate, deploy, and
tune code for a component (algorithm or controller) on a real-time simulator
connected to system hardware (the physical plant or vehicle being controlled).
As the following figure shows, rapid prototyping combines the algorithm,
software, and hardware design phases of system design, eliminating potential
bottlenecks. Engineers can see results and rapidly iterate solutions before
building expensive hardware.

1-34

http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/rtwembedded/

Developing a Model Design Specification

Algorithm
development

Traditional Approach

Hardware and
software design

Implementation of
production system

Algorithm design
and prototyping

R
ap

id
 it

er
at

io
n

M
an

ua
l i

te
ra

ti
on

Rapid Prototyping Process

Implementation of
production system

Prerequisites and Goals

Prerequisites Goals

Functional requirements

Refined concept models

System hardware for the physical plant or
vehicle being controlled

Access to target products you intend to use
(for example, the xPC Target or Real-Time
Windows Target product)

Refine component and environment model
designs by rapidly iterating between algorithm
design and prototyping

Validate whether a component can adequately
control the physical system in non-real time

Evaluate system performance before laying
out hardware, coding production software, or
committing to a fixed design

Test hardware

Approaches for Applying Real-Time Workshop Technology
Real-Time Workshop technology supports rapid prototyping by providing a
framework for running generated code in real time, tuning parameters, and
monitoring real-time data. You can perform rapid prototyping by

1 Creating or acquiring a real-time system that runs in real time on rapid
prototyping hardware

1-35

http://www.mathworks.com/products/xpctarget/
http://www.mathworks.com/products/rtwt/
http://www.mathworks.com/products/rtwt/

1 Introduction to Real-Time Workshop® Technology

2 Using Real-Time Workshop or Real-Time Workshop Embedded Coder
system target files to generate code that you can deploy onto the real-time
simulator

3 Monitoring signals, tuning parameters, and logging data.

The following figure shows a typical approach for rapid prototyping.

Actual environment (plants)

Algorithm model

Tuning and

logging

System model

Environment model
Co

de
ge

ne
ra

tio
nHost

HarnessReal-time
simulator

Another product that facilitates rapid prototyping is the xPC Target product.
This product provides a real-time operating system that makes PCs run
in real time. It also provides device driver blocks for numerous hardware
I/O cards. This makes it easy for you to create a rapid prototyping system
using inexpensive commercial-off-the-shelf (COTS) hardware. In addition,
third-party vendors offer products based on the xPC Target product or other
Real-Time Workshop technology.

1-36

http://www.mathworks.com/products/xpctarget/

Developing a Model Design Specification

Mapping of Engineering Tasks to Related Product Information

Engineering Tasks Related Product
Information

Demos

Generate code for rapid
prototyping

Chapter 3, “Generated Code
Formats” in the Real-Time
Workshop documentation

Real-Time Workshop
Embedded Coder

“Data Structures, Code
Modules, and Program
Execution” in the Real-Time
Workshop Embedded Coder
documentation

Chapter 13, “Targeting the
Wind River Systems Tornado
Environment for Real-Time
Applications” in the Real-Time
Workshop documentation

rtwdemo_counter
rtwdemo_async

Generate code for rapid
prototyping in hard real time
using PCs

xPC Target

xPC Target documentation

help xpcdemos

Generate code for rapid
prototyping in soft real time
using PCs

Real-Time Windows Target

Real-Time Windows Target
documentation

rtvdp (and others)

1-37

http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/xpctarget/
http://www.mathworks.com/products/rtwt/

1 Introduction to Real-Time Workshop® Technology

Developing a Detailed Software Design

In this section...

“Deciding on Data Representation and Storage” on page 1-38
“Checking Models Against Best Practices” on page 1-41
“Optimizing a Design for Specific Hardware with On-Target Rapid
Prototyping” on page 1-43

Deciding on Data Representation and Storage
After you validate a model and produce a specification, you design the
software by using a system simulator or rapid prototyping hardware.

The Real-Time Workshop and Real-Time Workshop Embedded Coder
products support the Simulink built-in data types. In addition, you can use
the Simulink Fixed Point product to specify fixed-point math for Simulink,
Stateflow, and Embedded MATLAB models. Fixed-point processing is
especially important in mass production environments that cannot afford
microprocessors with floating-point units. The process of converting from
floating-point to fixed-point math is time consuming, whether or not you are
using models. The Simulink Fixed Point product includes conversion and
scaling tools that help automate that process.

The Simulink Fixed Point product offers bit-wise accurate simulation results
when compared with the behavior on the actual embedded microprocessor.
It does this by using integer word sizes and other hardware characteristics
that you specify when you configure the model. You do not need to generate
code to perform fixed-point simulation or analysis. However, after assessing
the fixed-point model and confirming that the results match those of the
specification, or other reference, you can generate code for implementation
and further analysis. The Real-Time Workshop Embedded Coder product has
specific features that can help you generate highly efficient fixed-point code.
For example, you can explicitly suppress the generation of floating-point code.

1-38

http://www.mathworks.com/products/simfixed/

Developing a Detailed Software Design

Prerequisites and Goals

Prerequisites Goal

Concept model that has been validated against
requirements

A design specification

Refine model design to account for
representation and storage of data in generated
code

Mapping of Engineering Tasks to Related Product Information

Engineering Tasks Related Product
Information

Demos

Select a deployment code
format

Chapter 3, “Generated Code
Formats” in the Real-Time
Workshop documentation

Real-Time Workshop
Embedded Coder

“Data Structures, Code
Modules, and Program
Execution” in the Real-Time
Workshop Embedded Coder
documentation

Chapter 13, “Targeting the
Wind River Systems Tornado
Environment for Real-Time
Applications” in the Real-Time
Workshop documentation

“Generating Code That
Complies with AUTOSAR
Standards” in the Real-Time
Workshop Embedded Coder
documentation

rtwdemo_counter
rtwdemo_async
rtwdemo_osek
rtwdemo_autosar

1-39

http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/rtwembedded/

1 Introduction to Real-Time Workshop® Technology

Engineering Tasks Related Product
Information

Demos

Specify target hardware
settings

“Choosing and Configuring
Your Target” on page 2-2
in the Real-Time Workshop
documentation

rtwdemo_targetsettings

Specify fixed-point algorithms
in Simulink, Stateflow, and
Embedded MATLAB

Simulink Fixed Point

“Data Types and Scaling”
and “Code Generation” in
the Simulink Fixed Point
documentation

rtwdemo_fixpt1
rtwdemo_fuelsys_fixpt

Convert a floating-point model
or subsystem to a fixed-point
representation

Simulink Fixed Point

“Fixed-Point Advisor” in
the Simulink Fixed Point
documentation

fxpdemo_fpa

Iterate to obtain an optimal
fixed-point design using
autoscaling

Simulink Fixed Point

“Automatic Scaling” in
the Simulink Fixed Point
documentation

fxpdemo_feedback

Create or rename data
types specifically for your
application

Real-Time Workshop
Embedded Coder

“Code Generation with
User-Defined Data
Types” in the Real-Time
Workshop Embedded
Coderdocumentation

rtwdemo_udt

Control the format of
identifiers in generated
code

Real-Time Workshop
Embedded Coder

“Configuring Symbols”
in the Real-Time
Workshop Embedded Coder
documentation

rtwdemo_symbols

1-40

http://www.mathworks.com/products/simfixed/
http://www.mathworks.com/products/simfixed/
http://www.mathworks.com/products/simfixed/
http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/rtwembedded/

Developing a Detailed Software Design

Engineering Tasks Related Product
Information

Demos

Specify how signals, tunable
parameters, block states, and
data objects are declared,
stored, and represented in
generated code

Real-Time Workshop
Embedded Coder

“Custom Storage Classes”
in the Real-Time
Workshop Embedded Coder
documentation

rtwdemo_cscpredef

Create a data dictionary for a
model

Real-Time Workshop
Embedded Coder

“Managing the Data
Dictionary” in the Real-Time
Workshop Embedded Coder
documentation

rtwdemo_advsc

Relocate data segments for
generated functions and data
using #pragmas for calibration
or safe data access

Real-Time Workshop
Embedded Coder

“Memory Sections” in
the Real-Time Workshop
Embedded Coder
documentation

rtwdemo_memsec

Checking Models Against Best Practices
After you refine your model for embedded code generation, you should check
that the model adheres to standards and best practices automatically with
tooling, by conducting peer reviews, and by generating tests.

Prerequisites and Goals

Prerequisites Goals

Model refined for embedded code generation

Standards and best practices to which code
must adhere

Check that the model adheres to standards and
best practices

Generate tests

1-41

http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/rtwembedded/

1 Introduction to Real-Time Workshop® Technology

Mapping of Engineering Tasks to Related Product Information

Engineering Tasks Related Product Information Demos

Check a model against basic
modeling guidelines

“Consulting the Model Advisor”
in the Simulink documentation

rtwdemo_advisor1

Add custom checks to the
Simulink Model Advisor

Simulink Verification and
Validation

“Customizing the Model
Advisor” in the Simulink
Verification and Validation
documentation

slvnvdemo_mdladv

Check a model against
custom standards or
guidelines

“Consulting the Model Advisor”
in the Simulink documentation

Check a model against
industry standards and
guidelines (MathWorks
Automotive Advisory Board
(MAAB), IEC 61508, and
DO-178B)

Real-Time Workshop
Embedded Coder

“Developing Models and
Code That Comply with
Industry Standards and
Guidelines” in the Real-Time
Workshop Embedded Coder
documentation

Simulink Verification and
Validation

“Model Advisor Checks” in
the Simulink Verification and
Validation documentation

Obtain model coverage for
structural coverage analysis
such as MC/DC

Simulink Verification and
Validation

“Using Model Coverage” in
the Simulink Verification and
Validation documentation

1-42

http://www.mathworks.com/products/simverification/
http://www.mathworks.com/products/simverification/
http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/simverification/
http://www.mathworks.com/products/simverification/
http://www.mathworks.com/products/simverification/
http://www.mathworks.com/products/simverification/

Developing a Detailed Software Design

Engineering Tasks Related Product Information Demos

Prove properties and
generate test vectors for
models

Simulink® Design Verifier™

Simulink Design Verifier
documentation

Generate reports of models
and software designs

MATLAB Report Generator

MATLAB Report Generator
documentation

Simulink Report Generator

Simulink Report Generator
documentation

rtwdemos_codegenrpt

Conduct reviews of your
model and software designs
with coworkers, customers,
and suppliers

Simulink Report Generator

“Exporting Simulink Models
to Web Views” in the
Simulink Report Generator
documentation

Optimizing a Design for Specific Hardware with
On-Target Rapid Prototyping
After you refine your detailed software design, you are ready to generate
code intended to run on an embedded microprocessor and optimize the code
with on-target rapid prototyping. During on-target rapid prototyping, you
run the generated code in real time, tune parameters, and monitor real-time
data on the same processor you plan to use in mass production, or a close
equivalent to it.

Real-Time Workshop technology provides a framework for on-target rapid
prototyping. You can generate code from your model and then assess, interact
with, and optimize the code using real embedded compilers and hardware.
This effort can help determine whether your algorithm can fit on or run
fast enough for production devices, which typically have limited processor
resources.

1-43

http://www.mathworks.com/products/sldesignverifier/
http://www.mathworks.com/products/ML_reportgenerator/
http://www.mathworks.com/products/SL_reportgenerator/
http://www.mathworks.com/products/SL_reportgenerator/

1 Introduction to Real-Time Workshop® Technology

Prerequisites and Goals

Prerequisites Goals

Detailed software design

Embedded microprocessor target

Refine the concept model of your component
or system

Test and validate the model’s functionality in
real time

Test the hardware

Obtain real-time profiles and code metrics for
analysis and sizing based on your embedded
processor

Assess the feasibility of the algorithm based
on integration with the environment or plant
hardware

Approach for Applying Real-Time Workshop Technology
To do on-target rapid prototyping, you:

1 Generate the source code for your component.

2 Integrate any existing, externally written code required by the component,
such as device drivers.

3 Use a third-party integrated development environment (IDE) with a
MathWorks or third-party link product to build an executable for the
embedded microprocessor.

4 Use the link product to monitor signals, tune parameters, and log data as
the embedded microprocessor controls the actual environment or plant.

The following figure shows a typical on-target rapid prototyping .

1-44

Developing a Detailed Software Design

Embedded
microprocessor

Actual environment (plants)

Algorithm model

Tuning and

logging

System model

Environment model

Co
de

ge
ne

ra
tio

n

Host

Harness

1-45

1 Introduction to Real-Time Workshop® Technology

Mapping of Engineering Tasks to Related Product Information

Engineering Tasks Related Product Information Demos

Generate source code for your
models, integrate the code
into your production build
environment, and run it on
existing hardware

“Integrating Component
Models for System Simulation”
on page 1-30

Chapter 3, “Generated Code
Formats” in the Real-Time
Workshop documentation

Real-Time Workshop
Embedded Coder

“Data Structures, Code
Modules, and Program
Execution” in the Real-Time
Workshop Embedded Coder
documentation

Chapter 13, “Targeting the
Wind River Systems Tornado
Environment for Real-Time
Applications” in the Real-Time
Workshop documentation

“Generating Code That
Complies with AUTOSAR
Standards” in the Real-Time
Workshop Embedded Coder
documentation

rtwdemo_counter
rtwdemo_fcnprotoctrl
rtwdemo_async
rtwdemo_osek
rtwdemo_autosar

1-46

http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/rtwembedded/

Developing a Detailed Software Design

Engineering Tasks Related Product Information Demos

Integrate existing externally
written C or C++ code with
your model for simulation
and code generation

“Integrating Existing C
Functions into Simulink
Models with the Legacy
Code Tool” in the Simulink
documentation

rtwdemos, select Custom
Code folder

Generate code for on-target
rapid prototyping on specific
embedded microprocessors
and IDEs

“Embedded IDE Link CC”
documentation

Embedded IDE Link MU
documentation

“Embedded IDE Link TS”
documentation

“Embedded IDE Link VS”
documentation

“Target Support Package TC2”
documentation

“Target Support Package TC6”
documentation

“Target Support Package FM5”
documentation

“Target Support Package IC1”
documentation

See help for link and target
support package products

1-47

1 Introduction to Real-Time Workshop® Technology

Developing the Application Code

In this section...

“Developing Code for Embedded Systems” on page 1-48
“Developing Encrypted Models to Protect Intellectual Property” on page
1-53
“Testing the Generated Code in a Software Environment” on page 1-54

Developing Code for Embedded Systems
After you complete your detailed design and on-target rapid prototyping, you
generate production code. Generally, the production code varies little from
the code you used during on-target rapid prototyping. Differences generally
reflect code optimizations and code traceability and comments.

The Real-Time Workshop Embedded Coder exposes features of Real-Time
Workshop technology required to optimize generated code for speed, memory
usage, and simplicity, as required for production deployment.

Prerequisites and Goals

Prerequisites Goals

Detailed software design exists

Software design has been optimized for specific
hardware with on-target rapid prototyping

Optimize the speed and memory usage of the
generated code

Refine the code comments to facilitate
traceability

Approach for Applying Real-Time Workshop Technology
The following figure shows a typical production code generation .

1-48

Developing the Application Code

Host

Algorithm model

C/C++
source code

Simulink

Environment model

Co
de

ge
ne

ra
tio

n

1-49

1 Introduction to Real-Time Workshop® Technology

Mapping of Engineering Tasks to Related Product Information

Engineering Tasks Related Product Information Demos

Generate source code for
production

Chapter 3, “Generated Code
Formats” in the Real-Time
Workshop documentation

Real-Time Workshop
Embedded Coder

“Data Structures, Code
Modules, and Program
Execution” in the Real-Time
Workshop Embedded Coder
documentation

Chapter 13, “Targeting the
Wind River Systems Tornado
Environment for Real-Time
Applications” in the Real-Time
Workshop documentation

“Generating Code That
Complies with AUTOSAR
Standards” in the Real-Time
Workshop Embedded Coder
documentation

rtwdemo_counter
rtwdemo_fcnprotoctrl
rtwdemo_async
rtwdemo_osek
rtwdemo_autosar

Optimize generated ANSI®
C code for production
(for example, disable
floating-point code, remove
termination and error
handling code, and combine
code entry points into single
functions)

Chapter 9, “Optimizing a
Model for Code Generation”
in the Real-Time Workshop
documentation

Real-Time Workshop
Embedded Coder

“Code Generation Options
and Optimizations” in
the Real-Time Workshop
Embedded Coder
documentation

rtwdemos, select
Optimization folder

1-50

http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/rtwembedded/

Developing the Application Code

Engineering Tasks Related Product Information Demos

Optimize code for a specific
run-time environment, using
specialized function libraries

Real-Time Workshop
Embedded Coder

“Target Function Libraries”
in the Real-Time
Workshop Embedded Coder
documentation

rtwdemo_tfl_script

Control the format and style
of generated code

Real-Time Workshop
Embedded Coder

“Controlling Code
Style” in the Real-Time
Workshop Embedded Coder
documentation

rtwdemo_parentheses

Control the comments that
get inserted into generated
code

Real-Time Workshop
Embedded Coder

“Customizing Comments
in Generated Code” in
the Real-Time Workshop
Embedded Coder

rtwdemo_comments

Enter special instructions or
tags for postprocessing by
third-party tools or processes

“Customizing Post Code
Generation Build Processing”
on page 2-139 in the Real-Time
Workshop documentation

rtwdemo_buildinfo

Include requirements tags in
generated code

Simulink Verification and
Validation

“Including Requirements
with Generated Code” in the
Simulink Verification and
Validation documentation

rtwdemo_requirements

1-51

http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/simverification/
http://www.mathworks.com/products/simverification/

1 Introduction to Real-Time Workshop® Technology

Engineering Tasks Related Product Information Demos

Trace model blocks and
subsystems to generated code
and vice versa

Real-Time Workshop
Embedded Coder

“Creating and Using
a Code Generation
Report” in the Real-Time
Workshop Embedded Coder
documentation

“Using Code-to-Model
Traceability” in the Real-Time
Workshop Embedded Coder
documentation

“Using Model-to-Code
Traceability” in the Real-Time
Workshop Embedded Coder
documentation

“Developing Models and
Code That Comply with
Industry Standards and
Guidelines” in the Real-Time
Workshop Embedded Coder
documentation

rtwdemo_comments
rtwdemo_hyperlinks

1-52

http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/tic6000/

Developing the Application Code

Engineering Tasks Related Product Information Demos

Integrate existing externally
written code with code
generated for a model

“Integrating Existing C
Functions into Simulink
Models with the Legacy
Code Tool” in the Simulink
documentation

rtwdemos, select Custom
Code folder

Validate generated code
for MISRA C®3 and other
run-time violations

Real-Time Workshop
Embedded Coder

“Developing Models and Code
That Comply with MISRA C
Guidelines” in the Real-Time
Workshop Embedded Coder
documentation

Documentation for PolySpace
Products

rtwdemo_polyspace

Developing Encrypted Models to Protect Intellectual
Property
Real-Time Workshop technology supports two approaches for encrypting
generated code to protect the intellectual property of your designs and
algorithms.

• Use the Real-Time Workshop S-function system target file to generate
a Simulink C MEX-file S-function for the model or subsystem for use in
another Simulink simulation.

• Use the Real-Time Workshop Embedded Coder shared library system
target file to generated a shared library for the model or subsystem for use
in a system simulation external to Simulink.

You can then deploy the binary MEX-file S-function or shared library for use
within another Simulink model developed by a third-party vendor, without
sharing source code.

3. MISRA® and MISRA C® are registered trademarks of MISRA® Ltd., held on behalf of
the MISRA® Consortium.

1-53

http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/access/helpdesk/help/toolbox/polyspace/polyspace.html
http://www.mathworks.com/access/helpdesk/help/toolbox/polyspace/polyspace.html

1 Introduction to Real-Time Workshop® Technology

Prerequisites and Goals

Prerequisites Goals

Detailed software design exists

Software design has been optimized for specific
hardware with on-target rapid prototyping

Protect the intellectual property of component
model design and generated code

Generate a binary file (shared library)

Mapping of Engineering Tasks to Related Product Information

Engineering Tasks Related Product Information

Generate a MEX-file S-function for a model
or subsystem so it can be shared with a
third-party vendor

Chapter 11, “S-Function Target” in the
Real-Time Workshop documentation

Generate a shared library for a model
or subsystem so it can be shared with a
third-party vendor

“Creating and Using Host-Based Shared
Libraries” in the Real-Time Workshop
Embedded Coder documentation

Testing the Generated Code in a Software
Environment
After you generate your code, you should test it with your environment or
plant model to verify a successful conversion of the model to code. Your
algorithm should behave as expected and the source code and model results
should be equivalent.

Prerequisites and Goals

Prerequisites Goal

Production quality source code ready to be
tested with an environment or plant model

Environment or plant model

Test generated production code with an
environment or plant model to verify a
successful conversion of the model to code

1-54

Developing the Application Code

Approaches for Applying Real-Time Workshop Technology
To facilitate this testing, Real-Time Workshop Embedded Coder provides
an option for generating an S-function wrapper. An S-function wrapper is
an S-function block that calls your generated C or C++ code from within a
Simulink model. S-function wrappers provide a standard interface between a
Simulink model and externally written code, allowing you to integrate your
code into a model with minimal modification. You can replace or keep your
existing model algorithm portion and run software-in-the-loop (SIL) tests with
the code wrapped in an S-function as shown in the following figure.

Host

Algorithm model

Host-compiled C
with S-function

wrapper

1. Emulate target word sizes

 (change code)

2. Use actual target word sizes

 (do not change code)

Options

Simulink

Environment model
Co

de
ge

ne
ra

tio
n

As the figure indicates, Real-Time Workshop Embedded Coder provides two
options for running SIL tests.

• Emulate target word size behavior when running Simulink host-based
simulations to produce numerical results that match results you would
obtain on the embedded microprocessor. This option modifies the generated
code to emulate the target behavior.

• Use portable word sizes that do not emulate the target behavior, but
simulate the code in Simulink using the host word sizes. While results in
this case might be different, you do not need to change the generated code.
You can test the actual production code in Simulink.

1-55

1 Introduction to Real-Time Workshop® Technology

Mapping of Engineering Tasks to Related Product Information

Engineering Tasks Related Product Information Demos

Generate an S-function
wrapper for calling your
generated source code from a
model running in Simulink

Real-Time Workshop
Embedded Coder

“Automatic S-Function
Wrapper Generation”
in the Real-Time
Workshop Embedded Coder
documentation

rtwdemo_sil

Set up and run SIL tests on
your host computer

Real-Time Workshop
Embedded Coder

“Verifying Generated Code
with Software-in-the-Loop”
in the Real-Time
Workshop Embedded Coder
documentation

rtwdemo_sil

1-56

http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/rtwembedded/

Integrating Software

Integrating Software

In this section...

“Verifying Component Production Code in the Target Environment” on
page 1-57
“Verifying Component by Building a Complete Real-Time Target
Environment” on page 1-61
“Verifying Software Integration” on page 1-64

Verifying Component Production Code in the Target
Environment
After you generate the production code for a component design, you need to
integrate, compile, link, and deploy the code as a complete application on the
embedded system. One approach is to manually integrate the code into an
existing software framework that consists of an operating system, device
drivers, and support utilities. The algorithm can include externally written
legacy or custom code.

Prerequisites and Goals

Prerequisites Goal

Production quality source code generated

Externally written code to be integrated

Integrate all software components for testing
in the target environment

Approaches for Applying Real-Time Workshop Technology
To maximize application portability, you should limit the generated code to
ANSI/ISO® C or C++ code only, as the following figure shows.

1-57

1 Introduction to Real-Time Workshop® Technology

Special
interfaces

Actuators
Communication

interfaces
Comm
drivers

Input
drivers

Output
drivers

Special
device
drivers

Scheduler/operating system
and support utilities

Sensors

Tuning

Algorithm model

Generated
algorithm

code

Included
legacy
code

You can simplify integration for a target environment by using Real-Time
Workshop Embedded Coder features for controlling code interfaces and
exporting subsystems. You also have the option of including target-specific
code, including compiler optimizations.

The following figure shows a mix of ANSI C/C++ code with code optimized for
a target environment.

1-58

Integrating Software

Special
interfaces

Actuators
Communication

interfaces
Comm
drivers

Input
drivers

Output
drivers

Special
device
drivers

Scheduler/operating system
and support utilities

Sensors

Tuning

Controller model

Generated
algorithm

code

Included
target

optimized
code

The following table compares exporting code that is strictly ANSI C/C++ and
code that mixes ANSI C/C++ with code optimized for a target environment.

ANSI C/C++ Export Mixed Code Export

Purpose Mass production

Drivers and scheduler already exist

Mass production

Drivers and scheduler already exist

Maximum processor resources
(optimizations) needed

1-59

1 Introduction to Real-Time Workshop® Technology

ANSI C/C++ Export Mixed Code Export

Benefits Maximum code portability

Maximum configurability

Maximum code efficiency

Moderate configurability
Real time Requires external scheduler

integration
Requires external scheduler
integration

Mapping of Engineering Tasks to Related Product Information

Engineering Tasks Related Product Information Demos

Integrate existing externally
written C or C++ code with
your model for simulation
and code generation

“Integrating Existing C
Functions into Simulink
Models with the Legacy
Code Tool” in the Simulink
documentation

rtwdemos, select Custom
Code folder

Connect to data interfaces
for the generated C code data
structures

Chapter 17, “Data Exchange
APIs” in the Real-Time
Workshop documentation

rtwdemo_capi
rtwdemo_asap2

Control the generation of code
interfaces so that external
software can compile, build,
and invoke the generated
code appropriately

Real-Time Workshop
Embedded Coder

“Controlling Model Function
Prototypes” in the Real-Time
Workshop Embedded Coder
documentation

rtwdemo_fcnprotoctrl

Export virtual and
function-call subsystems

Real-Time Workshop
Embedded Coder

Real-Time Workshop
Embedded Coder

“Exporting Function-Call
Subsystems” in the Real-Time
Workshop Embedded Coder
documentation

rtwdemo_export_functions

1-60

http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/rtwembedded/

Integrating Software

Engineering Tasks Related Product Information Demos

Include target-specific code Real-Time Workshop
Embedded Coder

“Target Function Libraries”
in the Real-Time
Workshop Embedded Coder
documentation

rtwdemo_tfl_script

Customize and control the
build process

Chapter 2, “Code Generation
and the Build Process” in
the Real-Time Workshop
documentation

rtwdemo_buildinfo

Create a zip file that contains
generated code files, static
files, and dependent data
needed to build the generated
code in an environment other
than your host computer

“Relocating Code to Another
Development Environment” on
page 2-155 in the Real-Time
Workshop documentation

rtwdemo_buildinfo

Verifying Component by Building a Complete
Real-Time Target Environment
An approach to software integration is to build a complete system executable
for the target environment that includes:

• Your algorithm

• Scheduling algorithms

• Calls to drivers for board-specific devices

This single build approach is more time consuming to set up, but makes it
easier to get the full application running on the target.

1-61

http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/rtwembedded/

1 Introduction to Real-Time Workshop® Technology

Prerequisites and Goals

Prerequisites Goal

Production quality source code generated

Externally written code to be integrated

Integrate all software components as a
complete system for testing in the target
environment

Approach for Applying Real-Time Workshop Technology
The following figure shows a typical for building a complete system executable
for the target environment.

Special
interfaces

Actuators
Communication

interfaces
Comm
drivers

Input
drivers

Output
drivers

Special
device
drivers

Scheduler/operating system
and support utilities

Sensors

Tuning

Algorithm model

Generated
algorithm

code

Optional
target

optimized
code

1-62

Integrating Software

Mapping of Engineering Tasks to Related Product Information

Engineering Tasks Related Product Information Demos

Generate source code for
production

Chapter 3, “Generated Code
Formats” in the Real-Time
Workshop documentation

Real-Time Workshop
Embedded Coder

“Data Structures, Code
Modules, and Program
Execution” in the Real-Time
Workshop Embedded Coder
documentation

Chapter 13, “Targeting the
Wind River Systems Tornado
Environment for Real-Time
Applications” in the Real-Time
Workshop documentation

“Generating Code That
Complies with AUTOSAR
Standards” in the Real-Time
Workshop Embedded Coder
documentation

rtwdemo_counter
rtwdemo_async
rtwdemo_osek
rtwdemo_autosar

Optimize code for a specific
run-time environment, using
specialized function libraries

Real-Time Workshop
Embedded Coder

“Target Function Libraries”
in the Real-Time
Workshop Embedded Coder
documentation

rtwdemo_tfl_script

Enter special instructions or
tags for postprocessing by
third-party tools or processes

“Customizing Post Code
Generation Build Processing”
on page 2-139 in the Real-Time
Workshop documentation

rtwdemo_buildinfo

1-63

http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/rtwembedded/

1 Introduction to Real-Time Workshop® Technology

Engineering Tasks Related Product Information Demos

Integrate existing externally
written code with code
generated for a model

“Integrating Existing C
Functions into Simulink
Models with the Legacy
Code Tool” in the Simulink
documentation

rtwdemos, select Custom
Code folder

Connect to data interfaces
for the generated C code data
structures

Chapter 17, “Data Exchange
APIs” in the Real-Time
Workshop documentation

rtwdemo_capi
rtwdemo_asap2

Customize and control the
build process

Chapter 2, “Code Generation
and the Build Process” in
the Real-Time Workshop
documentation

rtwdemo_buildinfo

Create a zip file that contains
generated code files, static
files, and dependent data
needed to build the generated
code in an environment other
than your host computer

“Relocating Code to Another
Development Environment” on
page 2-155 in the Real-Time
Workshop documentation

rtwdemo_buildinfo

Schedule the generated code Chapter 8, “Models with
Multiple Sample Rates” in
the Real-Time Workshop
documentation

Chapter 16, “Asynchronous
Support” in the Real-Time
Workshop documentation

rtwdemos, select Multirate
Support folder

Verifying Software Integration
A common technique for verifying software integration is processor-in-the-loop
(PIL) testing.

Prerequisites and Goals

Prerequisites Goals

Production quality source code generated

Externally written code to be integrated

Object code files that have been verified in a
target environment

1-64

Integrating Software

Approaches for Applying Real-Time Workshop Technology
During PIL testing you can:

1 Use the Real-Time Workshop Embedded Coder product to generate source
code for your component model.

2 Use an appropriate integrated development environment (IDE) to
cross-compile and link the generated code for your target hardware.

3 Use the IDE debugger or instruction set simulator (ISS) to integrate
the executable into a framework for cosimulation with your Simulink
environment or plant model for open- or closed-loop testing.

You can run PIL tests in different ways:

• Use the IDE debugger or ISS to run your embedded code in lock step, non
real time for passing data to and from Simulink. In this case, a successful
PIL test produces results that match the original model behavior.
Depending on the capabilities of the IDE, it might be possible to also collect
execution profile metrics, stack measurements, code coverage, and other
measurements of your embedded code.

• Run the code on the embedded hardware and use the IDE debugger or ISS
to shuffle data between the hardware and Simulink.

• Run the code on the embedded hardware without an IDE, and use a
standard communication layer to handle interactions. Currently, limited
built-in tool support is available for this method. However, you can
accomplish it by using knowledge of the embedded environment and
Real-Time Workshop Embedded Coder custom target options.

The following figure shows the PIL testing .

1-65

1 Introduction to Real-Time Workshop® Technology

Host

Algorithm model

Cross-compiled C
(IDE, ISS)

1. Run code in ISS

2. Run code on HW, with ISS

 as conduit

3. Run code directly on HW,

 with limited product support

Options

Simulink

Environment model

Co
de

ge
ne

ra
tio

n

ID
E

Li
nk

Mapping of Engineering Tasks to Related Product Information

Engineering Tasks Related Product Information Demos

Set up and run PIL tests on
your target system

“Verifying Generated Code
with Processor-in-the-Loop”
in the Real-Time
Workshop Embedded Coder
documentation

“Embedded IDE Link CC”
documentation

Embedded IDE Link MU
documentation

“Embedded IDE Link TS”
documentation

“Embedded IDE Link VS”
documentation

rtwdemo_pil

rtwdemo_custom_pil

rtwdemo_rtiostream

See the list of supported
hardware for the Real-Time
Workshop Embedded Coder
product on MathWorks Web
site, and then find a demo for
the related product of interest

1-66

http://www.mathworks.com/products/rtwembedded/supportedio.html
http://www.mathworks.com/products/rtwembedded/supportedio.html

Integrating and Calibrating System Components

Integrating and Calibrating System Components

In this section...

“Verifying System Integration” on page 1-67
“Calibrating the ECU” on page 1-70

Verifying System Integration
The next step of the development process is to verify your system integration.
During system integration, you integrate the software and its microprocessor
with power electronics, signal conditioning, and other aspects of the hardware
environment for the final embedded system product.

A critical step of system integration is verification. Hardware-in-the-loop
(HIL) testing is a technique for testing and verifying an embedded
system (or ECU) by using a real-time target environment. It adds the
complexity of the environment (or plant) under control to the test platform
by adding a mathematical representation of all related dynamic systems.
The mathematical representations are referred to as the simulated plant
executing in real time.

For example, a HIL simulation platform for the development of automotive
anti-lock braking systems might have a mathematical representation for
different aspects of the controller under test.

• Vehicle dynamics such as suspension, wheels, tires, roll, pitch, and yaw

• Road and environment characteristics

• Dynamics of the brake system’s hydraulic components

1-67

1 Introduction to Real-Time Workshop® Technology

Prerequisites and Goals

Prerequisites Goals

Production quality source code generated or
written for all system components

All software components have been integrated

Software integration complete

ECU and all other required hardware is
available

Integrate the software and its microprocessor
with the hardware environment for the final
embedded system product

Add the complexity of the environment (or
plant) under control to the test platform

Test and verify the embedded system (or ECU)
by using a real-time target environment

Approaches for Applying Real-Time Workshop Technology
Real-Time Workshop technology supports HIL. You use Simulink software to
develop and validate the environment model. Then, you use the Real-Time
Workshop product to generate, build, and download the executable for the
environment model to the HIL testing platform to validate an ECU in real
time. The code that you build for the simulator might include VxWorks from
Wind River or another real-time operating system (RTOS).

The following figure shows a typical HIL .

Embedded
system

Algorithm model

Simulink

Environment model

Co
de

ge
ne

ra
tio

n

Co
de

ge
ne

ra
tio

n

Harness
Real-time
simulator

The HIL platform available from The MathWorks is the xPC Target product.
Several third-party products are also available for use as HIL platforms. The
xPC Target product offers hard real-time performance for any PC with Intel®

1-68

http://www.mathworks.com/products/xpctarget/

Integrating and Calibrating System Components

or AMD® 32-bit processors functioning as your real-time target. It enables
you to add I/O interface blocks to your models and automatically generate
code with Real-Time Workshop technology and download the code to a second
PC running the xPC Target real-time kernel. System integrator solutions
based on xPC Target are also available.

Mapping of Engineering Tasks to Related Product Information

Engineering Tasks Related Product Information Demos

Generate source code for HIL
testing

Chapter 3, “Generated Code
Formats” in the Real-Time
Workshop documentation

Real-Time Workshop
Embedded Coder

“Data Structures, Code
Modules, and Program
Execution” in the Real-Time
Workshop Embedded Coder
documentation

Chapter 13, “Targeting the
Wind River Systems Tornado
Environment for Real-Time
Applications” in the Real-Time
Workshop documentation

“Generating Code That
Complies with AUTOSAR
Standards” in the Real-Time
Workshop Embedded Coder
documentation

rtwdemo_f14

Conduct hard real-time HIL
testing using PCs

xPC Target

xPC Target documentation

help xpcdemos

1-69

http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/xpctarget/

1 Introduction to Real-Time Workshop® Technology

Calibrating the ECU
As part of system integration, you might need to calibrate the ECU to ensure
it is properly tuned for its intended use. Many automotive calibration systems
read calibration data from ASAP2 description files. You can use the Real-Time
Workshop product to produce ASAP2 files during the code generation process.
For more information about exporting an ASAP2 file, see Appendix B,
“Generating ASAP2 Files” in the Real-Time Workshop documentation.

If you are developing your own calibration system, the Real-Time Workshop
C API interface provides an alternative for interfacing with the generated
code’s data.

Prerequisites and Goals

Prerequisites Goals

System is integrated Ensure ECU is properly tuned for its intended
use

Mapping of Engineering Tasks to Related Production
Information

Engineering Tasks Related Product Information Demos

Generate ASAP2 data files Appendix B, “Generating ASAP2
Files” in the Real-TimeWorkshop
documentation

rtwdemo_asap2

Generate C API data
interface files

Chapter 17, “Data Exchange
APIs” in the Real-TimeWorkshop
documentation

rtwdemo_capi

1-70

2

Code Generation and the
Build Process

This chapter provides an overview of the Real-Time Workshop features
that you can control with the Configuration Parameters dialog box and
Model Explorer. The following sections step you through the Configuration
Parameters dialog panes and discuss more options for controlling code
generation and compiling it for specific environments.

• “Choosing and Configuring Your Target” on page 2-2

• “Choosing and Configuring a Compiler” on page 2-18

• “Adjusting Simulation Configuration Parameters for Code Generation”
on page 2-27

• “Configuring Real-Time Workshop Code Generation Parameters” on page
2-58

• “Build Process” on page 2-87

• “Configuring Generated Code with TLC” on page 2-100

• “Interacting with the Build Process” on page 2-104

• “Customizing the Build Process” on page 2-130

• “Validating Generated Code” on page 2-145

• “Integrating Legacy and Custom Code” on page 2-150

• “Relocating Code to Another Development Environment” on page 2-155

2 Code Generation and the Build Process

Choosing and Configuring Your Target

In this section...

“Introduction” on page 2-2
“Selecting a System Target File” on page 2-3
“Selecting a System Target File Programmatically” on page 2-4
“Available Targets” on page 2-5
“Creating Custom Targets” on page 2-10
“Template Makefiles and Make Options” on page 2-10

Introduction
The first step to configuring a model for Real-Time Workshop code generation
is to choose and configure a code generation target. When you select a target,
other model configuration parameters change automatically to best serve
requirements of the target. For example:

• Code interface parameters

• Build process parameters, such as the template make file

• Target hardware parameters, such as word size and byte ordering

You can specify this configuration information for a specific type of target
in one step by invoking the System Target File Browser, as explained in
“Selecting a System Target File” on page 2-3. The browser lists a variety of
ready-to-run configurations.

After selecting a system target, you can modify model configuration parameter
settings, if necessary

If you want to switch between different targets in a single workflow for
different code generation purposes (for example, rapid prototyping versus
product code deployment), set up different configuration sets for the same
model and switch the active configuration set for the current operation. For
more information on how to set up configuration sets and change the active
configuration set, see “Configuration Sets” in the Simulinkdocumentation.

2-2

Choosing and Configuring Your Target

Selecting a System Target File
To select a target configuration using the System Target File Browser,

1 Click Real-Time Workshop on the Configuration Parameters dialog box.
The Real-Time Workshop pane appears.

2 Click the Browse button next to the System target file field. This opens
the System Target File Browser. The browser displays a list of all currently
available target configurations, including customizations. When you select
a target configuration, the Real-Time Workshop software automatically
chooses the appropriate system target file, template makefile, and make
command.

“Selecting a System Target File” on page 2-3 shows the System Target File
Browser with the generic real-time target selected.

3 Click the desired entry in the list of available configurations. The
background of the list box turns yellow to indicate an unapplied choice has
been made. To apply it, click Apply or OK.

System Target File Browser

When you choose a target configuration, the Real-Time Workshop software
automatically chooses the appropriate system target file, template makefile,
and make command for the selected target, and displays them in the
System target file field. The description of the target file from the browser
is placed below its name in the general Real-Time Workshop pane.

2-3

2 Code Generation and the Build Process

Selecting a System Target File Programmatically
Simulink models store model-wide parameters and target-specific data in
configuration sets. Every configuration set contains a component that defines
the structure of a particular target and the current values of target options.
Some of this information is loaded from a system target file when you select a
target using the System Target File Browser. You can configure models to
generate alternative target code by copying and modifying old or adding new
configuration sets and browsing to select a new target. Subsequently, you can
interactively select an active configuration from among these sets (only one
configuration set can be active at a given time).

Scripts that automate target selection need to emulate this process.

To program target selection

1 Obtain a handle to the active configuration set with a call to the
getActiveConfigSet function.

2 Define string variables that correspond to the required Real-Time
Workshop system target file, template makefile, and make command
settings. For example, for the ERT target, you would define variables for
the strings 'ert.tlc', 'ert_default_tmf', and 'make_rtw'.

3 Select the system target file with a call to the switchTarget function. In
the function call, specify the handle for the active configuration set and
the system target file.

4 Set the TemplateMakefile and MakeCommand configuration parameters to
the corresponding variables created in step 2.

For example:

cs = getActiveConfigSet(model);
stf = 'ert.tlc';
tmf = 'ert_default_tmf';
mc = 'make_rtw';
switchTarget(cs,stf,[]);
set_param(cs,'TemplateMakefile',tmf);
set_param(cs,'MakeCommand',mc);

2-4

Choosing and Configuring Your Target

Available Targets
The following table lists supported system target files and their associated
code formats. The table also gives references to relevant manuals or chapters
in this book. All of these targets are built using the make_rtw make command.

Note You can select any target of interest using the System Target File
Browser. This allows you to experiment with configuration options and save
your model with different configurations. However, you cannot build or
generate code for non-GRT targets unless you have the appropriate license
on your system (Real-Time Workshop Embedded Coder license for ERT,
Real-Time Windows Target license for RTWIN, and so on).

Each system target file invokes one or more template makefiles. The template
makefile that is invoked activates a particular compiler (for example, Lcc,
gcc, or Watcom compilers). This is specified for you by MEXOPTS, which is
determined when you run mex -setup to select a compiler for mex. One
exception is the Microsoft® Visual C++® project target, which has separate
System Target File Browser entries.

Targets Available from the System Target File Browser

Target/Code
Format

System Target
File

Template Makefile
and Comments Reference

Real-Time
Workshop
Embedded Coder
(for PC or UNIX4
platforms)

ert.tlc
ert_shrlib.tlc

ert_default_tmf

Use mex -setup to
configure for Lcc,
Watcom, vc, gcc, and
other compilers

Real-Time Workshop
Embedded Coder
documentation

4. UNIX® is a registered trademark of The Open Group in the United States and other
countries.

2-5

2 Code Generation and the Build Process

Targets Available from the System Target File Browser (Continued)

Target/Code
Format

System Target
File

Template Makefile
and Comments Reference

Real-Time
Workshop
Embedded Coder
for Visual C++®5
Project Makefile

ert.tlc ert_msvc.tmf

Creates a makefile which
can be loaded into the
Visual C++ IDE

Real-Time Workshop
Embedded Coder
documentation

Real-Time
Workshop
Embedded Coder
for Tornado®
(VxWorks)6

ert.tlc ert_tornado.tmf Real-Time Workshop
Embedded Coder
documentation

Real-Time
Workshop
Embedded Coder
for AUTOSAR

autosar.tlc ert_default_tmf Real-Time Workshop
Embedded Coder
documentation

Generic Real-Time
for PC or UNIX
platforms

grt.tlc grt_default_tmf

Use mex -setup to
configure for Lcc,
Watcom, vc, gcc, and
other compilers

Chapter 3, “Generated
Code Formats”

Generic Real-Time
for Visual C++
Project Makefile

grt.tlc grt_msvc.tmf Chapter 3, “Generated
Code Formats”

5. Visual C++® is a registered trademark of Microsoft® Corporation.

6. Tornado® and VxWorks® are registered trademarks of Wind River® Systems, Inc.

2-6

Choosing and Configuring Your Target

Targets Available from the System Target File Browser (Continued)

Target/Code
Format

System Target
File

Template Makefile
and Comments Reference

Generic Real-Time
(dynamic) for PC or
UNIX platforms

grt_malloc.tlc grt_malloc_default_
tmf

Use mex -setup to
configure for Lcc,
Watcom, vc, gcc, and
other compilers

Does not support
SimStruct.

Chapter 3, “Generated
Code Formats”

Generic Real-Time
(dynamic) for
Visual C++ Project
Makefile

grt_malloc.tlc grt_malloc_msvc.tmf

Does not support
SimStruct.

Chapter 3, “Generated
Code Formats”

Rapid Simulation
Target (default
for PC or UNIX
platforms)

rsim.tlc rsim_default_tmf

Use mex -setup to
configure

Chapter 12, “Running
Rapid Simulations”

Rapid Simulation
Target for LCC
compiler

rsim.tlc rsim_lcc.tmf Chapter 12, “Running
Rapid Simulations”

Rapid Simulation
Target for UNIX
platforms

rsim.tlc rsim_unix.tmf Chapter 12, “Running
Rapid Simulations”

Rapid Simulation
Target for Visual
C++ compiler

rsim.tlc rsim_vc.tmf Chapter 12, “Running
Rapid Simulations”

Rapid Simulation
Target for Watcom
compiler

rsim.tlc rsim_watc.tmf Chapter 12, “Running
Rapid Simulations”

2-7

2 Code Generation and the Build Process

Targets Available from the System Target File Browser (Continued)

Target/Code
Format

System Target
File

Template Makefile
and Comments Reference

S-Function Target
for PC or UNIX
platforms

rtwsfcn.tlc rtwsfcn_default_tmf

Use mex -setup to
configure

Chapter 11, “S-Function
Target”

S-Function Target
for LCC

rtwsfcn.tlc rtwsfcn_lcc.tmf Chapter 11, “S-Function
Target”

S-Function Target
for UNIX platforms

rtwsfcn.tlc rtwsfcn_unix.tmf Chapter 11, “S-Function
Target”

S-Function Target
for Visual C++
compiler

rtwsfcn.tlc rtwsfcn_vc.tmf Chapter 11, “S-Function
Target”

S-Function Target
for Watcom

rtwsfcn.tlc rtwsfcn_watc.tmf Chapter 11, “S-Function
Target”

Tornado (VxWorks)
Real-Time Target

tornado.tlc tornado.tmf Chapter 13, “Targeting
the Wind River Systems
Tornado Environment for
Real-Time Applications”

ASAM-ASAP2 Data
Definition Target

asap2.tlc asap2_default_tmf Appendix A, “Limitations
on the Use of Absolute
Time”

Real-Time Windows
Target for Open
Watcom

rtwin.tlc
rtwinert.tlc

rtwin.tmf
rtwinert.tmf

Real-Time Windows
Target documentation

xPC Target for
Visual C++ or
Watcom C/C++
compilers

xpctarget.tlc
xpctargetert.tlc

xpc_default_tmf
xpc_ert_tmf
xpc_vc.tmf
xpc_watc.tmf

xPC Target
documentation

2-8

Choosing and Configuring Your Target

Targets Available from the System Target File Browser (Continued)

Target/Code
Format

System Target
File

Template Makefile
and Comments Reference

Target Support
Package FM5

mpc555exp.tlc
mpc555pil.tlc
mpc555rt.tlc
mpc555rt_grt.tlc

mpc555exp.tmf
mpc555exp_diab.tmf
mpc555pil.tmf
mpc555pil_diab.tmf
mpc555rt.tmf
mpc555rt_grt.tmf

Target Support Package
FM5 documentation

Target Support
Package IC1

c166.tlc
c166_grt.tlc

c166.tmf
c166_grt.tmf

Target Support Package
IC1 documentation

Target Support
Package TC2

ccslink_grt.tlc
ccslink_ert.tlc
7

N/A
8

Target Support Package
TC2 documentation

Target Support
Package TC6

ccslink_grt.tlc
(GRT)
ccslink_ert.tlc
9

N/A
10

Target Support Package
TC6 documentation

Targets Supporting Nonzero Start Time
When you try to build models with a nonzero start time, if the selected target
does not support a nonzero start time, the Real-Time Workshop software
does not generate code and displays an error message. The Rapid Simulation
(RSim) target supports a nonzero start time when the Configuration
Parameters > RSim Target > Solver selection parameter is set to Use
Simulink solver module. All other targets do not support a nonzero start
time.

7. ti_c2000_grt.tlc (GRT) and ti_c2000_ert.tlc are provided for backward compatibility

8. ti_c2000_grt.tmf (GRT) and ti_c2000_ert.tmf are provided for backward compatibility

9. ti_c6000.tlc (GRT) and ti_c6000_ert.tlc are provided for backward compatibility

10. ti_c6000.tmf (GRT) and ti_c6000_ert.tmf are provided for backward compatibility

2-9

2 Code Generation and the Build Process

Creating Custom Targets
You can create your own system target files to build custom targets that
interface with external code or operating environments. If you have in the
past created system target files, note that the form of callbacks has changed
between Versions 5 and 6 of the Real-Time Workshop product. See the
Real-Time Workshop Embedded Coder documentation for details, including
how to make your custom targets appear in the System Target File Browser
and display appropriate controls in panes of the Configuration Parameters
dialog box.

Template Makefiles and Make Options
The Real-Time Workshop product includes a set of built-in template makefiles
that are designed to build programs for specific targets.

There are two types of template makefiles:

• Compiler-specific template makefiles are designed for use with a particular
compiler or development system.

By convention, compiler-specific template makefiles are named according to
the target and compiler (or development system). For example, grt_vc.tmf
is the template makefile for building a generic real-time program under the
Visual C++ compiler; ert_lcc.tmf is the template makefile for building a
Real-Time Workshop Embedded Coder program under the Lcc compiler.

• Default template makefiles make your model designs more portable, by
choosing the correct compiler-specific makefile and compiler for your
installation. “Choosing and Configuring a Compiler” on page 2-18 describes
the operation of default template makefiles in detail.

Default template makefiles are named target_default_tmf. They
are M-files that, when run, select the appropriate TMF. For example,
grt_default_tmf is the default template makefile for building a generic
real-time program; ert_default_tmf is the default template makefile for
building a Real-Time Workshop Embedded Coder program.

You can supply options to makefiles by using arguments to the Make
command field in the general Real-Time Workshop pane of the
Configuration Parameters dialog box. Append the arguments after make_rtw
(or make_xpc or other make command), as in the following example:

2-10

Choosing and Configuring Your Target

make_rtw OPTS="-DMYDEFINE=1"

The syntax for make command options differs slightly for different compilers.

Complete details on the structure of template makefiles are provided in the
Real-Time Workshop Embedded Coder documentation. This information is
provided for those who want to customize template makefiles. This section
describes compiler-specific template makefiles and common options you can
use with each.

Note To control compiler optimizations for your Real-Time Workshop
makefile build at the Simulink GUI level, use the Compiler optimization
level option on the Real-Time Workshop pane of the Configuration
Parameters dialog box. The Compiler optimization level option provides

• Target-independent values Optimizations on (faster runs) and
Optimizations off (faster builds), which allow you to easily toggle
compiler optimizations on and off during code development

• The value Custom for entering custom compiler optimization flags at
Simulink GUI level (rather than at other levels of the build process)

If you specify compiler options for your Real-Time Workshop makefile build
using OPT_OPTS, MEX_OPTS (except MEX_OPTS="-v"), or MEX_OPT_FILE, the
value of Compiler optimization level is ignored and a warning is issued
about the ignored parameter.

Template Makefiles for UNIX Platforms
The template makefiles for UNIX platforms are designed to be used with
the Free Software Foundation’s GNU® Make. These makefile are set up to
conform to the guidelines specified in the IEEE®11 Std 1003.2-1992 (POSIX)
standard.

• ert_unix.tmf

• grt_malloc_unix.tmf

11. IEEE® is a registered trademark of The Institute of Electrical and Electronics Engineers,
Inc.

2-11

2 Code Generation and the Build Process

• grt_unix.tmf

• rsim_unix.tmf

• rtwsfcn_unix.tmf

You can supply options by using arguments to the make command.

• OPTS — User-specific options, for example,

make_rtw OPTS="-DMYDEFINE=1"

• OPT_OPTS— Optimization options. Default is -O. To enable debugging
specify as OPT_OPTS=-g. Because of optimization problems in IBM_RS, the
default is no optimization.

• CPP_OPTS — C++ compiler options.

• USER_SRCS— Additional user sources, such as files needed by S-functions.

• USER_INCLUDES — Additional include paths, for example,

USER_INCLUDES="-Iwhere-ever -Iwhere-ever2"

These options are also documented in the comments at the head of the
respective template makefiles.

Template Makefiles for the Microsoft Visual C++ Compiler
The Real-Time Workshop product offers two sets of template makefiles
designed for use with the Visual C++ compiler.

To build an executable within the Real-Time Workshop build process, use one
of the target_vc.tmf template makefiles:

• ert_vc.tmf

• grt_malloc_vc.tmf

• grt_vc.tmf

• rsim_vc.tmf

• rtwsfcn_vc.tmf

2-12

Choosing and Configuring Your Target

You can supply options by using arguments to the make command.

• OPT_OPTS — Optimization option. Default is -O2. To enable debugging
specify as OPT_OPTS=-Zd.

• OPTS — User-specific options.

• CPP_OPTS — C++ compiler options.

• USER_SRCS— Additional user sources, such as files needed by S-functions.

• USER_INCLUDES — Additional include paths, for example,

USER_INCLUDES="-Iwhere-ever -Iwhere-ever2"

These options are also documented in the comments at the head of the
respective template makefiles.

Visual C++ Code Generation Only. To create a Visual C++ project
makefile (model.mak) without building an executable, use one of the
target_msvc.tmf template makefiles:

• ert_msvc.tmf

• grt_malloc_msvc.tmf

• grt_msvc.tmf

These template makefiles are designed to be used with nmake, which is
bundled with the Visual C++ compiler.

You can supply the following options by using arguments to the nmake
command:

• OPTS — User-specific options, for example,

make_rtw OPTS="/D MYDEFINE=1"

• USER_SRCS— Additional user sources, such as files needed by S-functions.

• USER_INCLUDES — Additional include paths, for example,

USER_INCLUDES="-Iwhere-ever -Iwhere-ever2"

2-13

2 Code Generation and the Build Process

These options are also documented in the comments at the head of the
respective template makefiles.

Template Makefiles for the Watcom C/C++ Compiler
The Real-Time Workshop product provides template makefiles to create an
executable for the Microsoft Windows platform using Watcom C/C++. These
template makefiles are designed to be used with wmake, which is bundled
with Watcom C/C++.

Note The Watcom C compiler is no longer available from the manufacturer.
However, the Real-Time Workshop product continues to ship with
Watcom-related template makefiles.

• ert_watc.tmf

• grt_malloc_watc.tmf

• grt_watc.tmf

• rsim_watc.tmf

• rtwsfcn_watc.tmf

You can supply options by using arguments to the make command. Note that
the location of the quotes is different from the other compilers and make
utilities discussed in this chapter.

• OPTS — User-specific options, for example,

make_rtw "OPTS=-DMYDEFINE=1"

• OPT_OPTS — Optimization options. The default optimization option is
-oxat. To turn off optimization and add debugging symbols, specify the
-d2 compiler switch in the make command, for example,

make_rtw "OPT_OPTS=-d2"

• CPP_OPTS — C++ compiler options.

• USER_OBJS— Additional user objects, such as files needed by S-functions.

2-14

Choosing and Configuring Your Target

• USER_PATH — The directory path to the source (.c or .cpp) files that are
used to create any .obj files specified in USER_OBJS. Multiple paths must
be separated with a semicolon. For example,

USER_PATH="path1;path2"

• USER_INCLUDES — Additional include paths, for example,

USER_INCLUDES="-Iinclude-path1 -Iinclude-path2"

These options are also documented in the comments at the head of the
respective template makefiles.

Template Makefiles for the LCC Compiler
The Real-Time Workshop product provides template makefiles to create an
executable for the Windows platform using Lcc compiler Version 2.4 and
GNU Make (gmake).

• ert_lcc.tmf

• grt_lcc.tmf

• grt_malloc_lcc.tmf

• rsim_lcc.tmf

• rtwsfcn_lcc.tmf

You can supply options by using arguments to the make command:

• OPTS — User-specific options, for example,

make_rtw OPTS="-DMYDEFINE=1"

• OPT_OPTS — Optimization options. Default is none. To enable debugging,
specify -g4 in the make command:

make_rtw OPT_OPTS="-g4"

• CPP_OPTS — C++ compiler options.

• USER_SRCS— Additional user sources, such as files needed by S-functions.

• USER_INCLUDES — Additional include paths, for example,

2-15

2 Code Generation and the Build Process

USER_INCLUDES="-Iwhere-ever -Iwhere-ever2"

For Lcc, have a / as file separator before the filename instead of a \, for
example, d:\work\proj1/myfile.c.

These options are also documented in the comments at the head of the
respective template makefiles.

Enabling the Real-Time Workshop Software to Build When
Path Names Contain Spaces
The Real-Time Workshop software is able to handle path names that include
spaces. Spaces might appear in the path from several sources:

• Your MATLAB installation directory

• The current MATLAB directory in which you initiate a build

• A compiler you are using for a Real-Time Workshop build

If your work environment includes one or more of the preceding scenarios, use
the following support mechanisms, as necessary and appropriate:

• Add the following code to your template makefile (.tmf):

ALT_MATLAB_ROOT = |>ALT_MATLAB_ROOT<|
ALT_MATLAB_BIN = |>ALT_MATLAB_BIN<|
!if "$(MATLAB_ROOT)" != "$(ALT_MATLAB_ROOT)"
MATLAB_ROOT = $(ALT_MATLAB_ROOT)
!endif
!if "$(MATLAB_BIN)" != "$(ALT_MATLAB_BIN)"
MATLAB_BIN = $(ALT_MATLAB_BIN)
!endif

This code replaces MATLAB_ROOT with ALT_MATLAB_ROOT when the values
of the two tokens are not equal, indicating the path for your MATLAB
installation directory includes spaces. Likewise, ALT_MATLAB_BIN replaces
MATLAB_BIN.

Note the preceding code is specific to nmake. See the supplied Real-Time
Workshop template make files for platform-specific examples.

2-16

Choosing and Configuring Your Target

• Use the MATLAB command rtw_alt_pathname to translate fully qualified
path into standard DOS 8.3 style names. Specify the command with the
path you want to translate.

For example, to translate the path D:\Applications\Common Files,
specify the following:

rtw_alt_pathname('D:\Applications\Common Files')
ans =

D:\APPLIC~1\COMMON~1

• When using operating system commands, such as system or dos, enclose
path that specify executables or command parameters in double quotes
(" "). For example,

system('dir "D:\Applications\Common Files"')

2-17

2 Code Generation and the Build Process

Choosing and Configuring a Compiler

In this section...

“Compilers and the Build Process” on page 2-18
“The Real-Time Workshop Product and ANSI24 C/C++ Compliance” on page
2-19
“Support for C and C++ Code Generation” on page 2-20
“Support for International (Non-US-ASCII) Characters” on page 2-21
“C++ Target Language Considerations” on page 2-24
“Choosing and Configuring Your Compiler on a Microsoft Windows
Platform” on page 2-24
“Choosing and Configuring Your Compiler on The Open Group UNIX
Platforms” on page 2-25
“Including S-Function Source Code” on page 2-25

Compilers and the Build Process
The Real-Time Workshop build process depends upon the correct installation
of one or more supported compilers. Compiler, in this context, refers to a
development environment containing a linker and make utility, in addition to
a high-level language compiler. For details on supported compiler versions,
see

http://www.mathworks.com/support/compilers/current_release

Most Real-Time Workshop targets create an executable that runs on your
workstation. When creating the executable, the Real-Time Workshop build
process must be able to access an appropriate compiler. The build process can
automatically find a compiler to use based on your default MEX compiler.

The build process also requires the selection of a template makefile. The
template makefile determines which compiler runs, during the make phase of
the build, to compile the generated code.

24. ANSI® is a registered trademark of the American National Standards Institute, Inc.

2-18

http://www.mathworks.com/support/compilers/current_release/

Choosing and Configuring a Compiler

To determine which template makefiles are appropriate for your compiler
and target, see Targets Available from the System Target File Browser on
page 2-5.

For both Real-Time Workshop generated files and user-supplied files, the file
extension, .c or .cpp, determines whether a C or a C++ compiler will be
used in the Real-Time Workshop build process. If the file extension is .c, a C
compiler will be used to compile the file, and the symbols will use the C linkage
convention. If the file extension is .cpp, a C++ compiler will be used to compile
the file, and the symbols by default will use the C++ linkage specification.

The Real-Time Workshop Product and ANSI12 C/C++
Compliance
The Real-Time Workshop software generates code that is compliant with the
following standards:

Language Supported Standard

C ISO/IEC 9899:1990, also known as C89/C90
C++ ISO/IEC 14882:2003

Code generated by the Real-Time Workshop software from the following
sources is ANSI C/C++ compliant:

• Simulink built-in block algorithmic code

• Real-Time Workshop and Real-Time Workshop Embedded Coder system
level code (task ID [TID] checks, management, functions, and so on)

• Code from other blocksets, including the Simulink Fixed Point product, the
Communications Blockset product, and so on

• Code from other code generators, such as the Stateflow Coder product and
Embedded MATLAB functions

Additionally, the Real-Time Workshop software can incorporate code from

• Embedded targets (for example, startup code, device driver blocks)

12. ANSI is a registered trademark of the American National Standards Institute, Inc.

2-19

2 Code Generation and the Build Process

• User-written S-functions or TLC files

Note Coding standards for these two sources are beyond the control of the
Real-Time Workshop software, and can be a source for compliance problems,
such as code that uses C99 features not supported in the ANSI C, C89/C90
subset.

Support for C and C++ Code Generation
Real-Time Workshop supports C and C++ code generation. The primary
motivation for C++ support is to facilitate integration of generated code with
legacy or custom user code written in C++. Consider the following as you
choose a language for your generated code:

• Whether you need to configure Real-Time Workshop to use a specific
compiler. This is required to generate C++ code on Windows. See “Choosing
and Configuring a Compiler” on page 2-18.

• The language configuration setting for the model. See “Configuring the
Target Language for Generated Code” on page 2-61.

• Whether you need to integrate legacy or custom code with generated code.
For a summary of integration options, see “Integrating Legacy and Custom
Code” on page 2-150.

• Whether you need to integrate C and C++ code. If so, see “Integrating C
and C++ Code” on page 10-90.

Note You can mix C and C++ code when integrating Real-Time Workshop
generated code with custom code. However, you must be aware of the
differences between C and default C++ linkage conventions, and add the
extern "C"’ linkage specifier wherever it is appropriate. For the details
of the differing linkage conventions and how to apply extern "C", refer
to a C++ programming language reference book.

• “C++ Target Language Limitations” on page 2-21.

2-20

Choosing and Configuring a Compiler

For a demo, enter sfcndemo_cppcount in the MATLAB Command Window.
For a Stateflow example, enter sf_cpp.

C++ Target Language Limitations

• Real-Time Workshop provides Beta support for C++ code generation for all
blockset products. C++ code generation for other blockset products has
not yet been fully evaluated.

• Real-Time Workshop does not support C++ code generation for the
following:

SimDriveline
SimMechanics
SimPowerSystems
Target Support Package FM5
Target Support Package IC1
Target Support Package TC2
Target Support Package TC6
xPC Target

• When using the model reference feature, the language of the code generated
for the top model and any referenced models must match. For example,
if you generate C++ code for the top model, the generated code for all
referenced models must also be C++ code.

• The following Real-Time Workshop Embedded Coder dialog box fields
currently do not accept the .cpp extension. However, a .cpp file will be
generated if you specify a filename without an extension in these fields,
with C++ selected as the target language for your generated code.

- Data definition filename field on the Data Placement pane of the
Configuration Parameters dialog box

- Definition file field for an mpt data object in the Model Explorer

These restrictions on specifying .cpp will be removed in a future release.

Support for International (Non-US-ASCII) Characters
Real-Time Workshop does not include non-US-ASCII characters in compilable
portions of source code. However, Simulink, Stateflow, Real-Time Workshop,
and Real-Time Workshop Embedded Coder do support non-US-ASCII

2-21

2 Code Generation and the Build Process

characters in certain ways. When non-US-ASCII characters are encountered
during code generation, they either become comments in the generated code
or do not propagate into the generated source files. Sources of non-US-ASCII
characters are described below:

• Simulink Block Names: The name of Simulink blocks are permitted to
use non-US-ASCII character sets. The block name can be output in a
comment above the generated code for that block when the Simulink
block / Stateflow object comments check box is selected. If Real-Time
Workshop also uses the block name in the generated code as an identifier,
the identifier’s name will be changed to ensure only US-ASCII characters
are present.

One exception to using non-US-ASCII characters in block names is for
nonvirtual subsystems configured to use the subsystem name as either the
function name or the filename. In this case, only US-ASCII characters
can be used to name the subsystem.

• User comments on Stateflow diagrams: These comments can contain
non-US-ASCII characters. They are written to the generated code when
the Include comments check box is selected.

• Custom TLC files (.tlc): User-created Target Language Compiler files
can have non-US-ASCII characters inside both TLC comments and in any
code comments which are output. The Target Language Compiler does not
support non-US-ASCII characters in TLC variable or function names.

Additional Support with Real-Time Workshop Embedded Coder
Users of Real-Time Workshop Embedded Coder have additional international
character support:

• Simulink Block Description: Real-Time Workshop Embedded Coder
propagates block descriptions entered from Simulink Block Parameter
dialog boxes into the generated code as comments when the Simulink
block descriptions check box on the Real-Time Workshop/Comments
pane of the Configuration Parameters dialog box is selected. Non-US-ASCII
characters are supported for these descriptions.

• Real-Time Workshop Embedded Coder code template file: Code Generation
Template (.cgt) files provide customization capability for the generated
code. Any output lines in the .cgt file which are C or C++ comments can

2-22

Choosing and Configuring a Compiler

contain non-US-ASCII characters, for example the file banner and file
trailer sections; these comments are propagated to the generated code.
However, although TLC comments in .cgt files can contain non-US-ASCII
characters, these TLC comments are not propagated to the generated code.

• Stateflow object descriptions: Stateflow object descriptions can contain
non-US-ASCII characters. The description will appear as a comment above
the generated code for that chart when the Stateflow object descriptions
check box is selected.

• Simulink Parameter Object Description: Simulink Parameter Object
descriptions can contain non-US-ASCII characters. The description will
appear as a comment above the generated code when the Simulink data
object descriptions check box is selected.

• MPT Signal Object Description: MPT object descriptions can contain
non-US-ASCII characters. The description will appear as a comment above
the generated code when the Simulink data object descriptions check box
is selected.

Character Set Limitation
You can encounter problems with models containing characters of a specific
character set, such as Shift JIS, on a host system for which that character
set is not configured as the default.

When models containing characters of a given character set are used on a host
system that is not configured with that character set as the default, Simulink
can incorrectly interpret characters during model loading and saving. This
can lead to corrupted characters being displayed in the model and possibly
the model failing to load. It can also lead to corrupted characters in the model
file (.mdl) if you save it.

This limitation does not exist when the characters used in the model are in
the default character set for the host system. For example, you can use Shift
JIS characters with no issues if the host system is configured to use Japanese
Windows.

Additionally, during code generation, the Target Language Compiler can
have similar problems reading characters from either the model.rtw or user
written .tlc files. This can result in corrupt characters in generated source
file comments or a Target Language Compiler error.

2-23

2 Code Generation and the Build Process

For an example of international character set support for code generation, run
the demo model rtwdemo_international. This demo model is set up to work
around the character limitations described above. If you run this demo from
a non-Japanese MATLAB host machine, you must set up an international
character set for Simulink. For example, type

bdclose all; set_param(0, 'CharacterEncoding', 'Shift_JIS')
rtwdemo_international

Other uses of non-US-ASCII characters in models or in files used during the
build process are not supported; you should not depend on any incidental
functionality that may exist.

For additional information, see the description of slCharacterEncoding in
“Model Construction” in the Simulink documentation.

C++ Target Language Considerations
To use the C++ target language support, you might need to configure the
Real-Time Workshop software to use the appropriate compiler. For example,
on a Microsoft Windows platform the default compiler is the Lcc C compiler
shipped with the MATLAB product, which does not support C++. If you do not
configure the Real-Time Workshop software to use a C++ compiler before you
specify C++ for code generation, the following build error message appears:

The specified Real-Time Workshop target is configured to generate

C++, but the C-only compiler, LCC, is the default compiler. To

specify a C++ compiler, enter 'mex -setup' at the command prompt.

To generate C code, click (Open) to open the Configuration

Parameters dialog and set the target language to C.

Choosing and Configuring Your Compiler on a
Microsoft Windows Platform
On Windows platforms, you can use the Lcc C compiler shipped with the
MATLAB product, or you can install and use one of the supported Windows
compilers.

The Real-Time Workshop code generator will choose a compiler based on
the template makefile (TMF) name specified on the Real-Time Workshop
pane of the Configuration Parameters dialog box. The simplest approach is

2-24

Choosing and Configuring a Compiler

to let the code generator pick a compiler based on your default compiler, as
set up using the mex -setup function. When you use this approach, you do
not need to define compiler-specific environment variables, and the Real-Time
Workshop code generator determines the location of the compiler using
information from the mexopts.bat file located in the preferences directory
(use the prefdir command to verify this location).

To use this approach, the TMF filename specified must be an M-file that
returns default compiler information by using the mexopts.bat file. Most
targets provided by the Real-Time Workshop product use this approach, as
when grt_default_tmf or ert_default_tmf is specified as the TMF name.

Alternatively, the name provided for the TMF can be a compiler-specific
template makefile, for example grt_vc.tmf, which designates the Microsoft
Visual C++ compiler. When you provide a compiler-specific TMF filename,
the Real-Time Workshop code generator uses the default mexopts.bat
information to locate the compiler if mex has been set up for the same compiler
as the specified TMF. If mex is not set up with a default compiler, or if it does
not match the compiler specified by the TMF, then an environment variable
must exist for the compiler specified by the TMF. The environment variable
required depends on the compiler.

Choosing and Configuring Your Compiler on The
Open Group UNIX Platforms
On a UNIX platform, the Real-Time Workshop build process uses the default
compiler. For all operating systems except the Sun™ operating system, cc is
the default compiler. On a Sun operating system, the default is gcc.

You should choose the UNIX template makefile that is appropriate to your
target. For example, grt_unix.tmf is the correct template makefile to build
a generic real-time program on a UNIX platform.

Including S-Function Source Code
When the Real-Time Workshop code generator builds models with S-functions,
source code for the S-functions can be either in the current directory or in the
same directory as their MEX-file. The code generator adds an include path
to the generated makefiles whenever it finds a file named sfncname.h in the

2-25

2 Code Generation and the Build Process

same directory that the S-function MEX-file is in. This directory must be
on the MATLAB path.

Similarly, the Real-Time Workshop code generator adds a rule for the
directory when it finds a file sfncname.c (or .cpp) in the same directory as
the S-function MEX-file is in.

2-26

Adjusting Simulation Configuration Parameters for Code Generation

Adjusting Simulation Configuration Parameters for Code
Generation

In this section...

“Introduction” on page 2-27
“Configuring the Solver” on page 2-28
“Configuring a Model for Data Logging” on page 2-29
“Configuring Optimizations” on page 2-32
“Configuring Diagnostics” on page 2-33
“Describing Hardware Properties” on page 2-35
“Configuring Referenced Models” on page 2-48
“Interactions of the Simulink and Real-Time Workshop Products to
Consider” on page 2-49

Introduction
When you are ready to generate code for a model, consider adjusting the
model’s simulation configuration parameters. One way of adjusting the
parameters is to modify option settings in the Configuration Parameters
dialog box. Alternatively, you can use the set_param function. The user
interface options and associated parameters related to the Real-Time
Workshop and Real-Time Workshop Embedded Coder products are described
in “Configuration Parameters” in the Real-Time Workshop reference. This
section describes simulation parameter adjustments to consider for code
generation.

Note When you change a check box, menu selection, or edit field in any
Configuration Parameters dialog box, the white background of the element
you altered turns to light yellow to indicate that an unsaved change has been
made. When you click OK, Cancel, or Apply, the background resets to white.

2-27

2 Code Generation and the Build Process

Configuring the Solver

• “Configuring Start and Stop Times” on page 2-28

• “Configuring the Solver Type” on page 2-29

• “Configuring the Tasking Mode” on page 2-29

For details about solver options, see “Solver Pane” in the Simulink reference
documentation.

Configuring Start and Stop Times
The stop time must be greater than or equal to the start time. If the stop time
is zero, or if the total simulation time (Stop minus Start) is less than zero,
the generated program runs for one step. If the stop time is set to inf, the
generated program runs indefinitely.

When using the GRT or Wind River Systems Tornado targets, you can
override the stop time when running a generated program from the Microsoft
Windows command prompt or UNIX13 command line. To override the stop
time that was set during code generation, use the -tf switch.

model -tf n

The program runs for n seconds. If n = inf, the program runs indefinitely.
See Getting Started in the Real-Time Workshop documentation for an
example of the use of this option.

Certain blocks have a dependency on absolute time. If you are designing
a program that is intended to run indefinitely (Stop time = inf), and
your generated code does not use the rtModel data structure (that is, it
uses simstructs instead), you must not use these blocks. See Appendix
A, “Limitations on the Use of Absolute Time” for a list of blocks that can
potentially overflow timers.

If you know how long an application that depends on absolute time needs to
run, you can ensure that timers do not overflow and that they use optimal
word sizes by specifying the Application lifespan (days) parameter on the

13. UNIX® is a registered trademark of The Open Group in the United States and other
countries.

2-28

Adjusting Simulation Configuration Parameters for Code Generation

Optimization pane. See “Controlling Memory Allocation for Time Counters”
on page 9-53 for details.

Configuring the Solver Type
For code generation, you must configure a model to use a fixed-step solver for
all targets except the S-function and RSim targets. You can configure the
S-function and RSim targets with a fixed-step or variable-step solver.

Configuring the Tasking Mode
The Real-Time Workshop product supports both single-tasking and
multitasking modes for periodic sample times. See Chapter 8, “Models with
Multiple Sample Rates” for details.

Configuring a Model for Data Logging
This section describes techniques by which a program generated by the
Real-Time Workshop software can save data to a MAT-file for analysis. See
also “Data Logging” in Getting Started for a tutorial on data logging features.

Note Data logging is available only for targets that have access to a file
system. In addition, only the RSim target executables are capable of accessing
MATLAB workspace data.

• “Configuring a Model to Log States, Time, and Output” on page 2-29

• “Logging Data with Scope and To Workspace Blocks” on page 2-31

• “Logging Data with To File Blocks” on page 2-31

• “Data Logging Differences in Single- and Multitasking Models” on page 2-32

Configuring a Model to Log States, Time, and Output
The Data Import/Export pane enables a generated program to save system
states, outputs, and simulation time at each model execution time step. The
data is written to a MAT-file, named (by default) model.mat.

2-29

2 Code Generation and the Build Process

Before using this data logging feature, you should learn how to configure
a Simulink model to return output to the MATLAB workspace. This is
discussed in “Exporting Data to the MATLAB Workspace” in the Simulink
documentation.

For each workspace return variable that you define and enable, the Real-Time
Workshop code generator defines a MAT-file variable. For example, if your
model saves simulation time to the workspace variable tout, your generated
program logs the same data to a variable named (by default) rt_tout.

The code generated by the Real-Time Workshop code generator logs the
following data:

• All root Outport blocks

The default MAT-file variable name for system outputs is rt_yout.

The sort order of the rt_yout array is based on the port number of the
Outport block, starting with 1.

• All continuous and discrete states in the model

The default MAT-file variable name for system states is rt_xout.

• Simulation time

The default MAT-file variable name for simulation time is rt_tout.

• “Overriding the Default MAT-File Name” on page 2-30

• “Overriding the Default MAT-File Variable Names” on page 2-31

Overriding the Default MAT-File Name. The MAT-file name defaults to
model.mat. To specify a different filename,

1 Choose Configuration Parameters from the Simulation menu. The
dialog box opens. Click Real-Time Workshop.

2 Append the following option to the existing text in the Make command
field.

OPTS="-DSAVEFILE=filename"

2-30

Adjusting Simulation Configuration Parameters for Code Generation

Overriding the Default MAT-File Variable Names. By default, the
Real-Time Workshop code generation software prefixes the string rt_ to
the variable names for system outputs, states, and simulation time to form
MAT-file variable names. To change this prefix,

1 Choose Configuration Parameters from the Simulation menu. The
dialog box opens. Click Real-Time Workshop.

2 In the System target file field, select grt.tlc.

3 Under Real-Time Workshop, select the Interface subpane.

4 Select a prefix (rt_) or suffix (_rt) from the MAT-file variable name
modifier field, or choose none for no prefix (other targets may or may not
have this option).

Logging Data with Scope and To Workspace Blocks
The code generated by the Real-Time Workshop code generator also logs data
from these sources:

• All Scope blocks that have the Save data to workspace option enabled

You must specify the variable name and data format in each Scope block’s
dialog box.

• All To Workspace blocks in the model

You must specify the variable name and data format in each To Workspace
block’s dialog box.

The variables are written to model.mat, along with any variables logged from
the Workspace I/O pane.

Logging Data with To File Blocks
You can also log data to a To File block. The generated program creates a
separate MAT-file (distinct from model.mat) for each To File block in the
model. The file contains the block’s time and input variable(s). You must
specify the filename, variable names, decimation, and sample time in the To
File block’s dialog box.

2-31

2 Code Generation and the Build Process

Note Models referenced by Model blocks do not perform data logging in that
context except for states, which you can include in the state logged for top
models. Code generated by the Real-Time Workshop software for referenced
models does not perform data logging to MAT-files.

Data Logging Differences in Single- and Multitasking Models
When logging data in single-tasking and multitasking systems, you will notice
differences in the logging of

• Noncontinuous root Outport blocks

• Discrete states

In multitasking mode, the logging of states and outputs is done after the first
task execution (and not at the end of the first time step). In single-tasking
mode, the code generated by the Real-Time Workshop software logs states
and outputs after the first time step.

See “Data Logging in Single-Tasking and Multitasking Model Execution”
on page 7-15 for more details on the differences between single-tasking and
multitasking data logging.

Note The rapid simulation target (RSim) provides enhanced logging options.
See Chapter 12, “Running Rapid Simulations” for more information.

Configuring Optimizations
For information on configuring optimizations, see the following sections:

• Chapter 9, “Optimizing a Model for Code Generation”

• “Optimization Dependencies” on page 9-56

If you are licensed to use the Real-Time Workshop Embedded Coder product,
see also “Configuring Optimizations” and “Tips for Optimizing the Generated
Code” in the Real-Time Workshop Embedded Coder documentation.

2-32

Adjusting Simulation Configuration Parameters for Code Generation

Configuring Diagnostics
Diagnostic parameters that pertain to code generation include the following
Data Validity parameters:

• Detect loss of tunability in the Parameters section

• Model Verification block enabling in the Debugging section

Detecting Loss of Tunability

If a tunable workspace variable is modified by Mask Initialization code, or is
used in an arithmetic expression with unsupported operators or functions, the
expression is reduced to a numeric expression and therefore cannot be tuned.
You can use the Detect loss of tunability diagnostic to report such loss of
tunability. The possible values are:

• none — Loss of tunability can occur without notification.

• warning — Loss of tunability generates a warning (default).

• error — Loss of tunability generates an error.

For a list of supported operators and functions, see “Tunable Expression
Limitations” on page 5-16.

Enabling Model Verification Blocks
A specific use of the diagnostics options for code generation is to control the
behavior of model verification (assertion) blocks. The Model Verification
block enabling menu in the Data Validity subpane specifies whether model
verification blocks such as Assert, Check Static Gap, and related range check
blocks are included, excluded, or default to their local settings. The diagnostic
has the same effect on code generated by the Real-Time Workshop software as
it does on simulation behavior.

Note Simulation and code generation ignore theModel Verification block
enabling parameter when model verification blocks are inside a S-function.

Settings are

2-33

2 Code Generation and the Build Process

• Use local settings

• Enable All

• Disable All

For Assertion blocks that are not disabled, the generated code for a model
includes one of the following statements, at appropriate locations, depending
on the block’s input signal type (Boolean, real, or integer, respectively).

utAssert(input_signal);
utAssert(input_signal != 0.0);
utAssert(input_signal != 0);

By default, utAssert has no effect in generated code. For assertions to abort
execution, you must enable them by including a parameter in the make_rtw
command. Specify the Make command field on the Real-Time Workshop
pane as follows:

make_rtw OPTS='-DDOASSERTS'

If you want triggered assertions not to abort execution and instead to print
the assertion statement, use the following make_rtw variant:

make_rtw OPTS='-DDOASSERTS -DPRINT_ASSERTS'

utAssert is defined as

#define utAssert(exp) assert(exp)

If you want to customize the assertion behavior in generated code, you can
provide your own definition of utAssert in a hand-coded header file that
overrides the default implementation generated in utAssert.h. For details on
how to include a customized header file in the generated code, see “Configuring
Custom Code” on page 2-70 in the Real-Time Workshop documentation.

Finally, when running a model in accelerator mode, the Simulink engine calls
back to itself to execute assertion blocks instead of using generated code.
Thus, user-defined callbacks are still called when assertions fail.

2-34

Adjusting Simulation Configuration Parameters for Code Generation

Describing Hardware Properties
When you use Simulink software to create and execute a model, and
Real-Time Workshop software to generate code, you may need to consider up
to three platforms, often called hardware targets:

• MATLAB Host — The platform that runs MathWorks software during
application development

• Embedded Target — The platform on which an application will be deployed
when it is put into production

• Emulation Target — The platform on which an application under
development is tested before deployment

The same platform might serve in two or possibly all three capacities, but they
remain conceptually distinct. Often the MATLAB host and the emulation
target are the same. The embedded target is usually different from, and less
powerful than, the MATLAB host or the emulation target; often it can do little
more than run a downloaded executable file.

When you use Simulink software to execute a model for which you will later
generate code, or use Real-Time Workshop software to generate code for
deployment on an embedded target, you must provide information about the
embedded target hardware and the compiler that you will use with it. The
Simulink software uses this information to guarantee bit-true agreement for
the results of integer and fixed-point operations performed in simulation and
in code generated for the embedded target. The Real-Time Workshop code
generator uses the information to create code that executes with maximum
efficiency.

When you generate code for testing on an emulation target, you must
additionally provide information about the emulation target hardware
and the compiler that you will use with it. The code generator uses this
information to create code that provides bit-true agreement for the results of
integer and fixed-point operations performed in simulation, in code generated
for the embedded target, and in code generated for the emulation target. The
agreement is guaranteed even though the embedded target and emulation
target may use very different hardware, and the compilers for the two targets
may use different defaults where the C standard does not completely define
behavior.

2-35

2 Code Generation and the Build Process

Describing the Emulation and Embedded Targets
The Configuration Parameters dialog Hardware Implementation pane
provides options that you can use to describe hardware properties, such as
data size and byte ordering, and compiler behavior details that may vary with
the compiler, such as integer rounding. The Hardware Implementation
pane contains two subpanes:

• Embedded Hardware — Describes the embedded target hardware
and the compiler that you will use with it. This information affects both
simulation and code generation.

• Emulation Hardware— Describes the emulation target hardware and
the compiler that you will use with it. This information affects only code
generation.

The two subpanes provide identical options and value choices. By default, the
Hardware Implementation subpane initially look like this:

The default assumption is that the embedded target and emulation target are
the same, so the Emulation Hardware subpane by default does not need
to specify anything and contains only a checked option labeled None. Code
generated under this configuration will be suitable for production use, or for
testing in an environment identical to the production environment.

If you clear the check box, the Emulation Hardware subpane appears,
initially showing the same values as the Emulation Hardware subpane. If
you change any of these values, then generate code, the code will be able to
execute in the environment specified by the Emulation Hardware subpane,
but will behave as if it were executing in the environment specified by the
Embedded Hardware subpane. See “Describing Emulation Hardware
Characteristics” on page 2-45 for details.

2-36

Adjusting Simulation Configuration Parameters for Code Generation

If you have used the Real-Time Workshop pane General tab to specify a
System target file, and the target file specifies a default microprocessor and
its hardware properties, the default and properties appear as initial values in
the Hardware Implementation pane.

Options with only one possible value cannot be changed. Any option that has
more than one possible value provides a list of legal values. If you specify
any hardware properties manually, check carefully that their values are
consistent with the system target file. Otherwise, the generated code may fail
to compile or execute, or may execute but give incorrect results.

Note Hardware Implementation pane options do not control hardware or
compiler behavior in any way. Their purpose is solely to describe hardware
and compiler properties to MATLAB software, which uses the information to
generate code that is correct for the platform, runs as efficiently as possible,
and gives bit-true agreement for the results of integer and fixed-point
operations in simulation, production code, and test code.

The rest of this section describes the options in the Embedded Hardware
and Emulation Hardware subpanes. Subsequent sections describe
considerations that apply only to one or the other subpane. For more about
Hardware Implementation options, see “Hardware Implementation Pane”.
To see an example of Hardware Implementation pane capabilities, run
the rtwdemo_targetsettings demo.

Describing the Device Vendor. The Device vendor option gives the name
of the device vendor. To set the option, select a vendor name from the Device
vendor menu. Your selection of vendor will determine the available device
values in the Device type list. If the desired vendor name does not appear
in the menu, select Generic and then use the Device type option to further
specify the device.

2-37

2 Code Generation and the Build Process

Note

• For complete lists of Device vendor and Device type values, see “Device
vendor” and “Device type” in the Simulink reference documentation.

• To add Device vendor and Device type values to the default set that
is displayed on the Hardware Implementation pane, see “Registering
Additional Device Vendor and Device Type Values” on page 2-38.

Describing the Device Type. The Device type option selects a hardware
device among the supported devices listed for your Device vendor selection.
To set the option, select a microprocessor name from the Device type menu.
If the desired microprocessor does not appear in the menu, change the Device
vendor to Generic.

If you specified the Device vendor as Generic, examine the listed device
descriptions and select the device type that matches your hardware. If no
available device type is appropriate, select Custom.

If you select a device type for which the target file specifies default hardware
properties, the properties appear as initial values in the subpane. Options
with only one possible value cannot be changed. Any option that has
more than one possible value provides a list of legal values. Select values
appropriate to your hardware. If the device type is Custom, all options can be
set, and each option has a list of all possible values.

Registering Additional Device Vendor and Device Type Values. To add
Device vendor and Device type values to the default set that is displayed
on the Hardware Implementation pane, you can use a hardware device
registration API provided by the Real-Time Workshop software.

To use this API, you create an sl_customization.m file, located in your
MATLAB path, that invokes the registerTargetInfo function and fills
in a hardware device registry entry with device information. The device
information will be registered with Simulink software for each subsequent
Simulink session. (To register your device information without restarting
MATLAB, issue the MATLAB command sl_refresh_customizations.)

2-38

Adjusting Simulation Configuration Parameters for Code Generation

For example, the following sl_customization.m file adds device vendor
MyDevVendor and device type MyDevType to the Simulink device lists.

function sl_customization(cm)
cm.registerTargetInfo(@loc_register_device);

end

function thisDev = loc_register_device
thisDev = RTW.HWDeviceRegistry;
thisDev.Vendor = 'MyDevVendor';
thisDev.Type = 'MyDevType';
thisDev.Alias = {};
thisDev.Platform = {'Prod', 'Target'};
thisDev.setWordSizes([8 16 32 32 32]);
thisDev.Endianess = 'Unspecified';
thisDev.IntDivRoundTo = 'Undefined';
thisDev.ShiftRightIntArith = true;
thisDev.setEnabled({'IntDivRoundTo'});

end

If you subsequently select the device in the Hardware Implementation
pane, it is displayed as follows:

To register multiple devices, you can specify an array of
RTW.HWDeviceRegistry objects in your sl_customization.m file. For
example,

function sl_customization(cm)
cm.registerTargetInfo(@loc_register_device);

end

2-39

2 Code Generation and the Build Process

function thisDev = loc_register_device

thisDev(1) = RTW.HWDeviceRegistry;
thisDev(1).Vendor = 'MyDevVendor';
thisDev(1).Type = 'MyDevType1';
...

thisDev(4) = RTW.HWDeviceRegistry;
thisDev(4).Vendor = 'MyDevVendor';
thisDev(4).Type = 'MyDevType4';
...

end

The following table lists the RTW.HWDeviceRegistry properties that you can
specify in the registerTargetInfo function call in your sl_customization.m
file.

Property Description

Vendor String specifying the Device vendor value for your
hardware device.

Type String specifying the Device type value for your
hardware device.

Alias Cell array of strings specifying any aliases or
legacy names that users might specify that should
resolve to this device. Specify each alias or legacy
name in the format 'Vendor->Type'. (Real-Time
Workshop Embedded Coder software provides
the utility functions RTW.isHWDeviceTypeEq and
RTW.resolveHWDeviceType for detecting and
resolving alias values or legacy values when testing
user-specified values for the target device type.)

Platform Cell array of enumerated string values specifying
whether this device should be listed in the
Embedded hardware subpane ({'Prod'}), the
Emulation hardware subpane ({'Target'}), or
both ({'Prod', 'Target'}).

2-40

Adjusting Simulation Configuration Parameters for Code Generation

Property Description

setWordSizes Array of integer sizes to associate with the Number
of bits parameters char, short, int, long, and
native word size, respectively.

Endianess String specifying an enumerated value for the Byte
ordering parameter: 'Unspecified', 'Little' for
little Endian, or 'Big' for big Endian.

IntDivRoundTo String specifying an enumerated value for the
Signed integer division rounds to parameter:
'Zero', 'Floor', or 'Undefined'.

ShiftRightIntArith Boolean value specifying whether your compiler
implements a signed integer right shift as an
arithmetic right shift (true) or not (false).

setEnabled Cell array of strings specifying which device
properties should be enabled (modifiable) in
the Hardware Implementation pane when
this device type is selected. In addition to
the 'Endianess', 'IntDivRoundTo', and
'ShiftRightIntArith' properties listed above, you
can enable individual Number of bits parameters
using the property names 'BitPerChar',
'BitPerShort', 'BitPerInt', 'BitPerLong', and
'NativeWordSize'.

Describing the Number of Bits. The Number of bits options describe the
native word size of the microprocessor, and the bit lengths of char, short,
int, and long data. For code generation to succeed:

• The bit lengths must be such that char <= short <= int <= long.

• All bit lengths must be multiples of 8, with a maximum of 32.

• The bit length for long data must not be less than 32.

Real-Time Workshop integer type names are defined in the file rtwtypes.h.
The values that you provide must be consistent with the word sizes as defined
in the compiler’s limits.h header file. The following table lists the standard

2-41

2 Code Generation and the Build Process

Real-Time Workshop integer type names and maps them to the corresponding
Simulink names.

Real-Time Workshop
Integer Type

Simulink Integer Type

boolean_T boolean

int8_T int8

uint8_T uint8

int16_T int16

uint16_T uint16

int32_T int32

uint32_T uint32

If no ANSI C type with a matching word size is available, but a larger ANSI C
type is available, the Real-Time Workshop code generator uses the larger type
for int8_T, uint8_T, int16_T, uint16_T, int32_T, and uint32_T.

An application can use integer data of any length from 1 (unsigned) or 2
(signed) bits up 32 bits. If the integer length matches the length of an
available type, the Real-Time Workshop code generator uses that type. If no
matching type is available, the code generator uses the smallest available
type that can hold the data, generating code that never uses unnecessary
higher-order bits. For example, on a target that provided 8-bit, 16-bit, and
32-bit integers, a signal specified as 24 bits would be implemented as an
int32_T or uint32_T.

Code that uses emulated integer data is not maximally efficient, but can be
useful during application development for emulating integer lengths that are
available only on production hardware. The use of emulation does not affect
the results of execution.

Describing the Byte Ordering. The Byte ordering option specifies
whether the target hardware uses Big Endian (most significant byte
first) or Little Endian (least significant byte first) byte ordering. If left
as Unspecified, the Real-Time Workshop software generates code that
determines the endianness of the target; this is the least efficient option.

2-42

Adjusting Simulation Configuration Parameters for Code Generation

Describing Quotient Rounding for Signed Integer Division. ANSI C
does not completely define the rounding technique to be used when dividing
one signed integer by another, so the behavior is implementation-dependent.
If both integers are positive, or both are negative, the quotient must round
down. If either integer is positive and the other is negative, the quotient
can round up or down.

The Signed integer division rounds to parameter tells the Real-Time
Workshop code generator how the compiler rounds the result of signed
integer division. Providing this information does not affect the operation of
the compiler, it only describes that behavior to the code generator, which
uses the information to optimize code generated for signed integer division.
The parameter options are:

• Zero — If the quotient is between two integers, the compiler chooses the
integer that is closer to zero as the result.

• Floor— If the quotient is between two integers, the compiler chooses the
integer that is closer to negative infinity.

• Undefined — Choose this option if neither Zero nor Floor describes the
compiler’s behavior, or if that behavior is unknown.

The following table illustrates the compiler behavior that corresponds to each
of these three options:

N D
Ideal
N/D Zero Floor Undefined

33 4 8.25 8 8 8

-33 4 -8.25 -8 -9 -8 or -9
33 -4 -8.25 -8 -9 -8 or -9
-33 -4 8.25 8 8 8 or 9

Note Select Undefined only as a last resort. When the Real-Time Workshop
code generator does not know the signed integer division rounding behavior of
the compiler, it must generate fairly costly code in order to guarantee correct
results.

2-43

2 Code Generation and the Build Process

The compiler’s implementation for signed integer division rounding can
be obtained from the compiler documentation, or by experiment if no
documentation is available.

Describing Arithmetic Right Shifts on Signed Integers. ANSI C does
not define the behavior of right shifts on negative integers, so the behavior
is implementation-dependent. The Shift right on a signed integer as
arithmetic shift parameter tells the Real-Time Workshop code generator
how the compiler implements right shifts on negative integers. Providing this
information does not affect the operation of the compiler, it only describes that
behavior to the code generator, which uses the information to optimize the
code generated for arithmetic right shifts.

Select the option if the C compiler implements a signed integer right shift as
an arithmetic right shift, and clear the option otherwise. An arithmetic right
shift fills bits vacated by the right shift with the value of the most significant
bit, which indicates the sign of the number in twos complement notation.
The option is selected by default. If your compiler handles right shifts as
arithmetic shifts, this is the preferred setting.

• When the option is selected, the Real-Time Workshop software generates
simple efficient code whenever the Simulink model performs arithmetic
shifts on signed integers.

• When the option is cleared, the Real-Time Workshop software generates
fully portable but less efficient code to implement right arithmetic shifts.

The compiler’s implementation for arithmetic right shifts can be obtained
from the compiler documentation, or by experiment if no documentation is
available.

Describing Embedded Hardware Characteristics
“Describing the Emulation and Embedded Targets” on page 2-36 documents
the options available on the Hardware Implementation subpanes. This
section describes considerations that apply only to the Embedded Hardware
subpane. When you use this subpane, keep the following in mind:

• Code generation targets can have word sizes and other hardware
characteristics that differ from the MATLAB host. Furthermore, code can
be prototyped on hardware that is different from either the deployment

2-44

Adjusting Simulation Configuration Parameters for Code Generation

target or the MATLAB host. The Real-Time Workshop code generator
takes these differences into account when generating code.

• The Simulink product uses some of the information in the Embedded
Hardware subpane to ensure that simulation without code generation
gives the same results as executing generated code, including detecting
error conditions that could arise on the target hardware, such as hardware
overflow.

• The Real-Time Workshop software generates code that guarantees bit-true
agreement with Simulink results for integer and fixed-point operations.
Generated code that emulates unavailable data lengths runs less efficiently
than it would without emulation, but the emulation does not affect bit-true
agreement with Simulink for integer and fixed-point results.

• To ensure correctness and efficiency, if you change targets at any point
during application development you must reconfigure the hardware
implementation parameters for the new target before generating or
regenerating code. Bit-true agreement for the results of integer and
fixed-point operations in simulation, production code, and test code is not
guaranteed when code executes on hardware for which it was not generated.

• Use the Round integer calculations toward parameter on your model’s
blocks to simulate the rounding behavior of the C compiler that you intend
to use to compile code generated from the model. This setting appears on
the Signal data type pane of the parameter dialog boxes of blocks that
can perform signed integer arithmetic, such as the Product and Lookup
Table blocks.

• For most blocks, the value of Round integer calculations toward
completely defines rounding behavior. For blocks that support fixed-point
data and the Simplest rounding mode, the value of Signed integer
division rounds to also affects rounding. For details, see “Rounding” in
the Simulink Fixed Point User’s Guide.

• When models contain Model blocks, all models that they reference must
be configured to use identical hardware settings.

Describing Emulation Hardware Characteristics
“Describing the Emulation and Embedded Targets” on page 2-36 documents
the options available on the Hardware Implementation subpanes. This

2-45

2 Code Generation and the Build Process

section describes considerations that apply only to the Emulation Hardware
subpane.

Note (If the Emulation Hardware subpane contains a button labeled
Configure current execution hardware device, see “Updating from
Earlier Versions” on page 2-48, then continue from this point.)

The default assumption is that the embedded target and emulation target are
the same, so the Emulation Hardware subpane by default does not need to
specify anything and contains only a selected check box labeled None. Code
generated under this configuration will be suitable for production use, or for
testing in an environment identical to the production environment.

To generate code that runs on an emulation target for test purposes, but
behaves as if it were running on an embedded target in a production
application, you must specify the properties of both targets in the Hardware
Implementation pane. The Embedded Hardware subpane specifies
embedded target hardware properties, as described previously. To specify
emulation target properties:

1 Clear the None option in the Emulation Hardware subpane.

By default, the Hardware Implementation pane now looks like this:

2-46

Adjusting Simulation Configuration Parameters for Code Generation

2 In the Emulation Hardware subpane, specify the properties of the
emulation target, using the instructions in “Describing the Emulation and
Embedded Targets” on page 2-36

If you have used the Real-Time Workshop pane General tab to specify a
System target file, and the target file specifies a default microprocessor and
its hardware properties, the default and properties appear as initial values in
both subpanes of the Hardware Implementation pane.

Options with only one possible value cannot be changed. Any option that has
more than one possible value provides a list of legal values. If you specify
any hardware properties manually, check carefully that their values are
consistent with the system target file. Otherwise, the generated code may fail
to compile or execute, or may execute but give incorrect results.

If you do not display the Emulation Hardware subpane, the Simulink
and Real-Time Workshop software defaults every Emulation Hardware
option to have the same value as the corresponding Embedded Hardware
option. If you hide the Emulation Hardware subpane after setting its
values, the values that you specified will be lost. The underlying configuration

2-47

2 Code Generation and the Build Process

parameters immediately revert to the values that they had when you exposed
the subpane, and these values, rather than the values that you specified, will
appear if you re-expose the subpane.

Updating from Earlier Versions. If your model was created before Release
14 and has not been updated, by default the Hardware Implementation
pane initially looks like this:

Click Configure current execution hardware device. The Configure
current execution hardware device button disappears. The subpane then
appears as shown in the first figure in this section. Save your model at this
point to avoid redoing Configure current execution hardware device
next time you access the Hardware Implementation pane.

Configuring Referenced Models
Minimize occurrences of algebraic loops by selecting theMinimize algebraic
loop occurrences parameter on the Model Reference pane. The
setting of this option affects only generation of code from the model. See
“Describing Hardware Properties” on page 2-35 in the Real-Time Workshop
documentation for information on how this option affects code generation. For
more information, see “Model Blocks and Direct Feedthrough”.

Use the Round integer calculations toward parameter on your model’s
blocks to simulate the rounding behavior of the C compiler that you intend
to use to compile code generated from the model. This setting appears on

2-48

Adjusting Simulation Configuration Parameters for Code Generation

the Signal data type pane of the parameter dialog boxes of blocks that can
perform signed integer arithmetic, such as the Product and Lookup Table
blocks.

For most blocks, the value of Round integer calculations toward
completely defines rounding behavior. For blocks that support fixed-point
data and the Simplest rounding mode, the value of Signed integer division
rounds to also affects rounding. For details, see “Rounding” in the Simulink
Fixed Point User’s Guide.

When models contain Model blocks, all models that they reference must
be configured to use identical hardware settings. For information on the
Model Referencing pane options, see “Referencing a Model” in the Simulink
documentation.

Interactions of the Simulink and Real-Time Workshop
Products to Consider
The Simulink engine propagates data from one block to the next along signal
lines. The data propagated consists of

• Data type

• Line widths

• Sample times

The first stage of code generation is compilation of the block diagram. This
stage is analogous to that of a C or C++ program. The compiler carries out
type checking and preprocessing. Similarly, the Simulink engine verifies that
input/output data types of block ports are consistent, line widths between
blocks are of the correct thickness, and the sample times of connecting blocks
are consistent.

You can verify what data types any given Simulink block supports by typing

showblockdatatypetable

at the MATLAB prompt, or (from the Help browser) clicking the command
above.

2-49

2 Code Generation and the Build Process

The Simulink engine typically derives signal attributes from a source block.
For example, the Inport block’s parameters dialog box specifies the signal
attributes for the block.

In this example, the Inport block has a port width of 3, a sample time of .01
seconds, the data type is double, and the signal is complex.

This figure shows the propagation of the signal attributes associated with the
Inport block through a simple block diagram.

2-50

Adjusting Simulation Configuration Parameters for Code Generation

In this example, the Gain and Outport blocks inherit the attributes specified
for the Inport block.

• “Sample Time Propagation” on page 2-51

• “Latches for Subsystem Blocks” on page 2-53

• “Block Execution Order” on page 2-53

• “Algebraic Loops” on page 2-55

Sample Time Propagation
Inherited sample times in source blocks (for example, a root inport) can
sometimes lead to unexpected and unintended sample time assignments.
Since a block may specify an inherited sample time, information available at
the outset is often insufficient to compile a block diagram completely.

In such cases, the Simulink engine propagates the known or assigned sample
times to those blocks that have inherited sample times but that have not
yet been assigned a sample time. Thus, the engine continues to fill in the
blanks (the unknown sample times) until sample times have been assigned to
as many blocks as possible.

Blocks that still do not have a sample time are assigned a default sample
time according to the following rules:

1 If the current system has at least one rate in it, the block is assigned the
fastest rate.

2-51

2 Code Generation and the Build Process

2 If no rate exists and the model is configured for a variable-step solver,
the block is assigned a continuous sample time (but fixed in minor time
steps). The Real-Time Workshop product (with the exception of the rapid
simulation and S-function targets) does not currently support variable-step
solvers.

3 If no rate exists and the model is configured for a fixed-step solver, the
block is assigned a discrete sample time of (Tf - Ti)/50, where Ti is the
simulation start time and Tf is the simulation stop time. If Tf is infinity,
the default sample time is set to 0.2.

To ensure a completely deterministic model (one where no sample times are
set using the above rules), you should explicitly specify the sample times of all
your source blocks. Source blocks include root inport blocks and any blocks
without input ports. You do not have to set subsystem input port sample
times. You might want to do so, however, when creating modular systems.

An unconnected input implicitly connects to ground. For ground blocks and
ground connections, the default sample time is derived from destination
blocks or the default rule.

All blocks have an inherited sample time (Ts = -1). They are all assigned
a sample time of (Tf - Ti)/50.

Constant Block Sample Times. You can specify a sample time for Constant
blocks. This has certain implications for code generation.

When a sample time of inf is selected for a Constant block,

• If Inline parameters is on, the block takes on a constant sample time,
and propagates a constant sample time downstream.

2-52

Adjusting Simulation Configuration Parameters for Code Generation

• If Inline parameters is off, the Constant block inherits its sample time –
which is nonconstant – and propagates that sample time downstream.

Generated code for any block differs when it has a constant sample time; its
outputs are represented in the constant block outputs structure instead of in
the general block outputs structure. The generated code thus reflects that the
Constant block propagates a constant sample time downstream if a sample
time of inf is specified and Inline parameters is on.

Latches for Subsystem Blocks
When an Inport block is the signal source for a triggered or function-call
subsystem, you can use latch options to preserve input values while the
subsystem executes. The Inport block latch options include:

For... You Can Use...

Triggered
subsystems

Latch input by delaying outside signal

Function-call
subsystems

Latch input by copying inside signal

When you use Latch input by copying inside signal for a function-call
subsystem, the Real-Time Workshop code generator

• Preserves latches in generated code regardless of any optimizations that
might be set

• Places the code for latches at the start of a subsystem’s output/update
function

For more information on these options, see the description of the Inport block
in the Simulink documentation.

Block Execution Order
Once the Simulink engine compiles the block diagram, it creates a model.rtw
file (analogous to an object file generated from a C or C++ file). The model.rtw
file contains all the connection information of the model, as well as the
necessary signal attributes. Thus, the timing engine in can determine when
blocks with different rates should be executed.

2-53

2 Code Generation and the Build Process

You cannot override this execution order by directly calling a block (in
hand-written code) in a model. For example, in the next figure the
disconnected_trigger model on the left has its trigger port connected to
ground, which can lead to all blocks inheriting a constant sample time.
Calling the trigger function, f(), directly from user code does not work
correctly and should never be done. Instead, you should use a function-call
generator to properly specify the rate at which f() should be executed, as
shown in the connected_trigger model on the right.

���������	�

���

��

���

���

������	��

���
� ��� ��	�

��

��	�
�

���

���

������	��

���
� ��� ��	�

��

��	�
�

��

����	��������
������	��

������	�

���

��

Instead of the function-call generator, you could use any other block that can
drive the trigger port. Then, you should call the model’s main entry point to
execute the trigger function.

For multirate models, a common use of the Real-Time Workshop product is to
build individual models separately and then hand-code the I/O between the
models. This approach places the burden of data consistency between models
on the developer of the models. Another approach is to let the Simulink and
Real-Time Workshop products ensure data consistency between rates and
generate multirate code for use in a multitasking environment. The Simulink
Rate Transition block is able to interface both periodic and asynchronous
signals. For a description of the Real-Time Workshop libraries, see Chapter
16, “Asynchronous Support”. For more information on multirate code
generation, see Chapter 8, “Models with Multiple Sample Rates”.

2-54

Adjusting Simulation Configuration Parameters for Code Generation

Algebraic Loops
Algebraic loops are circular dependencies between variables. This prevents
the straightforward direct computation of their values. For example, in the
case of a system of equations

• x = y + 2

• y = -x

the values of x and y cannot be directly computed.

To solve this, either repeatedly try potential solutions for x and y (in an
intelligent manner, for example, using gradient based search) or “solve” the
system of equations. In the previous example, solving the system into an
explicit form leads to

• 2x = 2

• y = -x

• x = 1

• y = -1

An algebraic loop exists whenever the output of a block having direct
feedthrough (such as Gain, Sum, Product, and Transfer Fcn) is fed back as an
input to the same block. The Simulink engine is often able to solve models
that contain algebraic loops, such as the next diagram.

2-55

2 Code Generation and the Build Process

The Real-Time Workshop software does not produce code that solves algebraic
loops. This restriction includes models that use Algebraic Constraint blocks
in feedback paths. However, the Simulink engine can often eliminate all
or some algebraic loops that arise, by grouping equations in certain ways
in models that contain them. It does this by separating the update and
output functions to avoid circular dependencies. See “Algebraic Loops” in the
Simulink documentation for details.

Algebraic Loops in Triggered Subsystems. While the Simulink engine
can minimize algebraic loops involving atomic and enabled subsystems, a
special consideration applies to some triggered subsystems. An example for
which code can be generated is shown in the following model and triggered
subsystem.

The default Simulink behavior is to combine output and update methods for
the subsystem, which creates an apparent algebraic loop, even though the
Unit Delay block in the subsystem has no direct feedthrough.

You can allow the Simulink engine to solve the problem by splitting the
output and update methods of triggered and enabled-triggered subsystems
when necessary and feasible. If you want the Real-Time Workshop code
generator to take advantage of this feature, select the Minimize algebraic
loop occurrences check box in the Subsystem Parameters dialog box. Select
this option to avoid algebraic loop warnings in triggered subsystems involved
in loops.

2-56

Adjusting Simulation Configuration Parameters for Code Generation

Note If you always check this box, the generated code for the subsystem
might contain split output and update methods, even if the subsystem is
not actually involved in a loop. Also, if a direct feedthrough block (such as a
Gain block) is connected to the inport in the above triggered subsystem, the
Simulink engine cannot solve the problem, and the Real-Time Workshop
software is unable to generate code.

A similar Minimize algebraic loop occurrences option appears on the
Model Referencing pane of the Configuration Parameters dialog box.
Selecting it enables the Real-Time Workshop software to generate code for
models containing Model blocks that are involved in algebraic loops.

2-57

2 Code Generation and the Build Process

Configuring Real-Time Workshop Code Generation
Parameters

In this section...

“Introduction” on page 2-58
“Opening the Real-Time Workshop Pane” on page 2-59
“Selecting a Target Configuration” on page 2-60
“Configuring the Target Language for Generated Code” on page 2-61
“Configuring the Build Process” on page 2-61
“Configuring Report Generation” on page 2-64
“Configuring Code Comments” on page 2-65
“Configuring Generated Identifiers” on page 2-66
“Configuring Custom Code” on page 2-70
“Troubleshooting the Build Process” on page 2-72
“Configuring Model Interfaces” on page 2-73
“Selecting and Viewing Target Function Libraries” on page 2-78

Introduction
As discussed in “Adjusting Simulation Configuration Parameters for Code
Generation” on page 2-27, many model configuration parameters affect the
way that the Real-Time Workshop software generates code and builds an
executable from your model.

However, you initiate and directly control the code generation and build
process from the Real-Time Workshop pane and related tabs (also presented
as subnodes).

In addition to using the Configuration Parameters dialog box, you can
use get_param and set_param to individually access most configuration
parameters. The configuration parameters you can get and set are listed
in “Parameter Command-Line Information Summary” in the Real-Time
Workshop reference.

2-58

Configuring Real-Time Workshop® Code Generation Parameters

You can use the Model Advisor to help configure any model to optimally
achieve your code generation objectives. See “Getting Advice About
Optimizing Models for Code Generation” on page 9-5 for more information.

Opening the Real-Time Workshop Pane
There are three ways to open the Real-Time Workshop pane of the
Configuration Parameters dialog box:

• From the Simulation menu, choose Configuration Parameters.
When the Configuration Parameters dialog box opens, click Real-Time
Workshop in the Select (left) pane.

• SelectModel Explorer from the View menu in the model window, or type
daexplr on the MATLAB command line and press Enter. In the Model
Explorer, expand the node for the current model in the left pane and click
Configuration (active). The configuration dialog elements are listed in
the middle pane. Clicking any of these brings up that dialog in the right
pane. Alternatively, right-clicking the Real-Time Workshop configuration
element in the middle pane and choosing Properties from the context
menu activates that dialog in a separate window.

• Select Options from the Real-Time Workshop submenu of the Tools
menu in the model window.

The general Real-Time Workshop pane, as it appears in the Model Explorer,
appears in the next figure.

2-59

2 Code Generation and the Build Process

Real-Time Workshop Pane

This pane allows you to specify most of the options for controlling the
Real-Time Workshop code generation and build process. The content of the
pane and its subpanes can change depending on the target you specify.
Thus, a model that has multiple configuration sets can invoke parameters in
one configuration that do not apply to another configuration. In addition,
some configuration options are available only with the Real-Time Workshop
Embedded Coder product.

For descriptions of Real-Time Workshop pane parameters, see “Real-Time
Workshop Pane: General” in the Real-Time Workshop reference.

Selecting a Target Configuration
Use the Browse button on the Real-Time Workshop pane to open the
System Target File Browser (See “Selecting a System Target File” on page
2-3). The browser lets you select a preset target configuration consisting of a
system target file, template makefile, and make command.

2-60

Configuring Real-Time Workshop® Code Generation Parameters

If you select a target configuration by using the System Target File Browser,
your selection appears in the System target file field (target.tlc).

If you are using a target configuration that does not appear in the System
Target File Browser, enter the name of your system target file in the System
target file field. Click Apply or OK to configure for that target.

“Choosing and Configuring Your Target” on page 2-2 describes the use of the
browser and includes a complete list of available target configurations.

Configuring the Target Language for Generated Code
Use the Language menu in the Target selection section of the Real-Time
Workshop pane to select the target language for the code generated by the
Real-Time Workshop code generator. You can select C or C++. The Real-Time
Workshop software generates .c or .cpp files, depending on your selection,
and places the files in your build directory.

Note If you select C++, you might need to configure the Real-Time Workshop
software to use the appropriate compiler before you build a system. For
details, see “Choosing and Configuring a Compiler” on page 2-18.

Configuring the Build Process

Controlling Compiler Optimization Level and Specifying
Custom Optimization Settings
To control compiler optimizations for your Real-Time Workshop makefile build
at Simulink GUI level, use the Compiler optimization level parameter.
The Compiler optimization level parameter provides

• Target-independent values Optimizations on (faster runs) and
Optimizations off (faster builds), which allow you to easily toggle
compiler optimizations on and off during code development

• The value Custom for entering custom compiler optimization flags at
Simulink GUI level, rather than editing compiler flags into template

2-61

2 Code Generation and the Build Process

makefiles (TMFs) or supplying compiler flags to Real-Time Workshop
make commands

The default setting is Optimizations off (faster builds). Selecting the
value Custom enables the Custom compiler optimization flags field, in
which you can enter custom compiler optimization flags (for example, -O2).

Note If you specify compiler options for your Real-Time Workshop makefile
build using OPT_OPTS, MEX_OPTS (except MEX_OPTS="-v"), or MEX_OPT_FILE,
the value of Compiler optimization level is ignored and a warning is issued
about the ignored parameter.

For more information about the Compiler optimization level parameter
and its values, see “Compiler optimization level” and “Custom compiler
optimization flags” in the Real-Time Workshop reference.

Specifying TLC Options
You can enter Target Language Compiler (TLC) command line options in the
TLC options edit field, for example

• -aVarName=1 to declare a TLC variable and/or assign a value to it

• -IC:\Work to specify an include path

• -v to obtain verbose output from TLC processing (for example, when
debugging)

Specifying TLC options does not add any flags to the Make command field,
as do some of the targets available in the System Target File Browser.

For additional information, see “Setting Target Language Compiler Options”
on page 2-102 for details, as well as the Target Language Compiler
documentation.

Specifying Whether To Generate a Makefile
The Generate makefile option specifies whether the Real-Time Workshop
build process is to generate a makefile for a model. By default, the Real-Time

2-62

Configuring Real-Time Workshop® Code Generation Parameters

Workshop build process generates a makefile. You can suppress the
generation of a makefile, for example in support of custom build processing
that is not based on makefiles, by clearing Generate makefile . When you
clear this option,

• The Make command and Template makefile options are unavailable.

• You must set up any post code generation build processing, using a
user-defined command, as explained in “Customizing Post Code Generation
Build Processing” on page 2-139.

Specifying a Make Command
A high-level M-file command, invoked when a build is initiated, controls the
Real-Time Workshop build process. Each target has an associated make
command. The Make command field displays this command.

Almost all targets use the default command, make_rtw. Third-party targets
might supply another make command. See the vendor’s documentation.

In addition to the name of the make command, you can supply arguments
in the Make command field. These arguments include compiler-specific
options, include paths, and other parameters. When the build process invokes
the make utility, these arguments are passed along in the make command line.

“Template Makefiles and Make Options” on page 2-10 lists the Make
command arguments you can use with each supported compiler.

Specifying the Template Makefile
The Template makefile field has these functions:

• If you have selected a target configuration using the System Target
File Browser, this field displays the name of an M-file that selects an
appropriate template makefile for your development environment. For
example, in “Real-Time Workshop Pane: General”, the Template makefile
field displays grt_default_tmf, indicating that the build process invokes
grt_default_tmf.m.

2-63

2 Code Generation and the Build Process

“Template Makefiles and Make Options” on page 2-10 gives a detailed
description of the logic by which the Real-Time Workshop build process
selects a template makefile.

• Alternatively, you can explicitly enter the name of a specific template
makefile (including the extension) or an M-file that returns a template
make file in this field. You must do this if you are using a target
configuration that does not appear in the System Target File Browser. For
example, this is necessary if you have written your own template makefile
for a custom target environment or you.

If you specify your own template makefile, be sure to include the filename
extension. If you omit the extension, the Real-Time Workshop build process
attempts to find and execute a file with the extension .m (that is, an M-file).
The template make file (or an M-file that returns a template make file) must
be on the MATLAB path. To determine whether the file is on the MATLAB
path, enter the following command in the MATLAB Command Window:

which tmf_filename

Generating Code Only
To configure the model for code generation only, rather than a complete build
(make command does not execute), select the Generate code only parameter.
The code is not compiled and an executable is not built.

When you select this option, the label of the Build button changes to
Generate code.

Configuring Report Generation
To generate an navigable summary of source files when the model is built,
select the Create code generation report parameter on the Report pane.
Selecting this parameter causes the Real-Time Workshop software to produce
an HTML file for each generated source file, plus a summary and an index file,
in a directory named html within the build directory. If you also select the
Launch report automatically option (which is enabled by selecting Create
code generation report) , the HTML summary and index are automatically
displayed. If you do not want to see the report at that time, clear this second
check box. In either case, you can refer to HTML reports at any time. To

2-64

Configuring Real-Time Workshop® Code Generation Parameters

review an existing HTML report, use any HTML browser to open the file
html/model_codgen_rpt.html within your build directory.

For more detail on report content, see “Viewing Generated Code in Generated
HTML Reports” on page 2-145.

Configuring Code Comments
Configure how the Real-Time Workshop code generator inserts comments into
generated code, by modifying parameters on the Comments pane.

Note Comments can include international (non-US-ASCII) characters
encountered during code generation when found in Simulink block names and
block descriptions, user comments on Stateflow diagrams, Stateflow object
descriptions, custom TLC files, and code generation template files.

To... Select...

Include comments in
generated code

Include comments. Selecting this parameter allows you to select one
or more comment types to be placed in the code.

Automatically insert
comments that
describe a block’s
code before the code
in the generated file

Simulink block / Stateflow object comments.

2-65

2 Code Generation and the Build Process

To... Select...

Include comments
for blocks that
were eliminated
as the result
of optimizations
(such as parameter
inlining)

Show eliminated blocks.

Include comments for
parameter variable
names and names
of source blocks in
the model parameter
structure declaration
in model_prm.h

Verbose comments for SimulinkGlobal storage class. If you do not
select this parameter, parameter comments are generated if less than
1000 parameters are declared. This reduces the size of the generated file
for models with a large number of parameters. When you select the
parameter, parameter comments are generated regardless of the number
of parameters.

For descriptions of Comments pane parameters, see “Real-Time Workshop
Pane: Comments” in the Real-Time Workshop reference documentation.

Configuring Generated Identifiers
Configure how the Real-Time Workshop code generator uses symbols to name
identifiers and objects by setting parameters on the Symbols pane.

Two options are available for GRT targets: Maximum identifier length and
Reserved names. These are the only symbols options for GRT targets.

The Maximum identifier length field allows you to limit the number of
characters in function, type definition, and variable names. The default is 31
characters. This is also the minimum length you can specify; the maximum
is 256 characters. Consider increasing identifier length for models having
a deep hierarchical structure, and when exercising some of the mnemonic
identifier options described below.

Within a model containing Model blocks, no collisions of constituent model
names can exist. When generating code from a model that uses model
referencing, the Maximum identifier length must be large enough to

2-66

Configuring Real-Time Workshop® Code Generation Parameters

accommodate the root model name and the name mangling string (if any). A
code generation error occurs ifMaximum identifier length is too small.

When a name conflict occurs between a symbol within the scope of a higher
level model and a symbol within the scope of a referenced model, the symbol
from the referenced model is preserved. Name mangling is performed on the
symbol from the higher level model.

The Reserved names field allows you to specify the set of keywords that the
Real-Time Workshop code generation process should not use, facilitating
code integration where functions and variables from external environments
are unknown in the Simulink model. For a list of rules for specifying
reserved names, see “Reserved names” in the Real-Time Workshop reference
documentation.

If your model contains Embedded MATLAB Function or Stateflow blocks, the
Real-Time Workshop code generation process can use the reserved names
specified for those blocks if you select Use the same reserved names as
Simulation Target.

If the Real-Time Workshop Embedded Coder product is installed on your
system, the Symbols pane expands to include options for controlling identifier
formats, mangle length, scalar inlined parameters, and Simulink data object
naming rules. For details, see “Customizing Generated Identifiers” in the
Real-Time Workshop Embedded Coder documentation.

For descriptions of Symbols pane parameters, see “Real-Time Workshop Pane:
Symbols” in the Real-Time Workshop reference documentation.

Reserved Keywords
Real-Time Workshop software reserves certain words for its own use as
keywords of the generated code language. Real-Time Workshop keywords are
reserved for use internal to Real-Time Workshop software or C programming,
and should not be used in Simulink models as identifiers or function names.
If your model contains any reserved keywords, the Real-Time Workshop build
does not complete and an error message is displayed. To address this error,
modify your model to use identifiers or names that are not reserved. The
following tables list Real-Time Workshop Language Keywords and Real-Time
Workshop Target Function Library Keywords.

2-67

2 Code Generation and the Build Process

Note You can register additional reserved identifiers in the Simulink
environment. For more information, see “Reserved names” in the Real-Time
Workshop reference documentation.

Real-Time Workshop Language Keywords

abs continue FALSE NULL time_T

asm creal_T float pointer_T true

auto creal32_T for real_T TRUE

bool creal64_T fortran real32_T typedef

boolean_T cuint8_T goto real64_T uint_T

break cuint16_T id_t register uint8_T

byte_T cuint32_T if return uint16_T

case default int short uint32_T

char do int_T signed uint64_T

char_T double int8_T single union

cint8_T else int16_T sizeof unsigned

cint16_T enum int32_T static void

cint32_T extern int64_T struct volatile

const false long switch while

Real-Time Workshop Target Function Library Keywords

acos fmaxf muDoubleScalarRound rt_UNSGN

acosf fmin muDoubleScalarSign rt_ZCFcn

acosh fminf muDoubleScalarSin rtGetInf

acoshf fmod muDoubleScalarSinh rtGetInfF

asin fmodf muDoubleScalarSqrt rtGetMinusInf

asinf hypot muDoubleScalarTan rtGetMinusInfF

2-68

Configuring Real-Time Workshop® Code Generation Parameters

Real-Time Workshop Target Function Library Keywords (Continued)

asinh hypotf muDoubleScalarTanh rtGetNaN

asinhf ldexp pow rtGetNaNF

atan log powf rtInf

atan2 log10 roundf rtInfF

atan2f log10f rt_ABS rtIsInf

atanf logf rt_atan2 rtIsInfF

atanh memcmp rt_atan232 rtIsNaN

atanhf memcpy rt_DIVQUOT rtIsNaNF

ceil memset rt_DIVREM rtMinusInf

ceilf muDoubleScalarAbs RT_E rtMinusInfF

cos muDoubleScalarAcos rt_FSGN rtNaN

cosf muDoubleScalarAcosh rt_hypot rtNaNF

cosh muDoubleScalarAsin rt_hypot32 sin

coshf muDoubleScalarAsinh rt_I32ZCFcn sinf

DBL_EPSILON muDoubleScalarAtan rt_In sinh

DBL_MAX muDoubleScalarAtan2 rt_InitInfAndNaN sinhf

DBL_MIN muDoubleScalarAtanh RT_LN_10 SLibSfcnHelperFcns

exp muDoubleScalarCeil RT_LOG10E sqrt

exp10 muDoubleScalarCos rt_Lookup sqrtf

exp10f muDoubleScalarCosh rt_Lookup2D_General tan

expf muDoubleScalarExp rt_Lookup2D_Normal tanf

fabs muDoubleScalarFloor rt_Lookup2D32_General tanh

fabsf muDoubleScalarHypot rt_Lookup2D32_Normal tanhf

floor muDoubleScalarLog rt_Lookup32 trunc

floorf muDoubleScalarLog10 rt_MAX truncf

FLT_EPSILON muDoubleScalarMax rt_MIN utAssert

FLT_MAX muDoubleScalarMin RT_PI

2-69

2 Code Generation and the Build Process

Real-Time Workshop Target Function Library Keywords (Continued)

FLT_MIN muDoubleScalarMod rt_SATURATE

fmax muDoubleScalarPower rt_SGN

Configuring Custom Code
Configure a model such that the Real-Time Workshop code generator includes
external code—headers, files and functions—in generated code by using the
Custom Code pane.

Use the Custom Code pane to insert code into the generated files and to
include additional files and paths in the build process.

To... Select...

Insert custom code
near the top of the
generated model.c or
model.cpp file, outside
of any function

Source file and enter the custom code to insert.

Insert custom code near
the top of the generated
model.h file

Header file and enter the custom code to insert.

Insert custom code
inside the model’s
initialize function
in the model.c or
model.cpp file

Initialize function

Insert custom code
inside the model’s
terminate function
in the model.c or
model.cpp file.

Terminate function and enter the custom code to insert. Also select
the Terminate function required parameter on the Interface pane.

2-70

Configuring Real-Time Workshop® Code Generation Parameters

To... Select...

Add include directories,
which contain header
files, to the build
process

Include directories and enter the absolute or relative paths to the
directories. If you specify relative paths, the paths must be relative
to the directory containing your model files, not relative to the build
directory. The order in which you specify the directories is the order in
which they are searched for source and include files.

Add source files to be
compiled and linked

Source files and enter the full paths or just the filenames for the files.
A filename is sufficient if the file is in the current MATLAB directory
or in one of the include directories. For each additional source that
you specify, the Real-Time Workshop build process expands a generic
rule in the template makefile for the directory in which the source file
is found. For example, if a source file is found in directory inc, the
Real-Time Workshop build process adds a rule similar to the following:

%.obj: buildir\inc\%.c
$(CC) -c -Fo$(@F) $(CFLAGS) $<

The Real-Time Workshop build process adds the rules in the order you
list the source files.

Add libraries to be
linked

Libraries and enter the full paths or just the filenames for the
libraries. A file name is sufficient if the library is located in the current
MATLAB directory or is listed as one of the Include directories.

Use the same custom
code settings as those
specified for simulation
of Embedded MATLAB
Function blocks,
Stateflow charts, and
Truth Table blocks

Use the same custom code settings as Simulation Target

Note This option refers to the Simulation Target pane in the
Configuration Parameters dialog box.

Enable a library model
to use custom code
settings unique from
the parent model to
which the library is
linked

Use local custom code settings (do not inherit frommain model)

Note This option is available only for library models that contain
Embedded MATLAB Function blocks, Stateflow charts, or Truth Table
blocks. Select Tools > Open RTW Target in the Embedded MATLAB
Editor or Stateflow Editor for your library model.

2-71

2 Code Generation and the Build Process

Note Custom code that you include in a configuration set is ignored when
building S-function targets, accelerated simulation targets, and model
reference simulation targets.

For descriptions of Custom Code pane parameters, see “Real-Time Workshop
Pane: Custom Code” in the Real-Time Workshop reference documentation.

Troubleshooting the Build Process
Use the Debug pane to configure a model such that generated code and the
build process are optimized for troubleshooting. You can set parameters that
apply to the model compilation phase, the target language code generation
phase, or both.

The debug parameters will be helpful if you are writing TLC code for
customizing targets, integrating legacy code, or developing new blocks. .

To... Select...

Display progress
information during
code generation in the
MATLAB Command
Window

Verbose build.Compiler output also displays.

Prevent the build
process from deleting
the model.rtw file from
the build directory at the
end of the build

Retain .rtw file. This parameter is useful if you are modifying the
target files, in which case you need to look at the model.rtw file.

Instruct the TLC
profiler to analyze the
performance of TLC code
executed during code
generation and generate
a report

Profile TLC. The report is in HTML format and can be read in your
Web browser.

2-72

Configuring Real-Time Workshop® Code Generation Parameters

To... Select...

Start the TLC debugger
during code generation

Start TLC debugger when generating code. Alternatively,
enter the argument -dc for the System Target File parameter on
the Real-Time Workshop pane. To start the debugger and run a
debugger script, enter -df filename for System Target File.

To generate a report
containing statistics
indicating how many
times the Real-Time
Workshop code generator
reads each line of
TLC code during code
generation

Start TLC coverage when generating code. Alternatively, enter
the argument -dg for the System Target File parameter on the
Real-Time Workshop pane.

Halt a build if any
user-supplied TLC file
contains an %assert
directive that evaluates
to FALSE

Enable TLC assertion. Alternatively, you can use MATLAB
commands to control TLC assertion handling. To set the flag on or
off, use the set_param command. The default is off.

set_param(model, 'TLCAssertion', 'on|off')

To check the current setting, use get_param.

get_param(model, 'TLCAssertion')

See the Target Language Compiler documentation for details. Also, consider
using the Model Advisor as a tool for troubleshooting model builds.

For descriptions of Debug pane parameters, see “Real-Time Workshop Pane:
Debug” in the Real-Time Workshop reference documentation.

Configuring Model Interfaces
Use the Interface pane to control which math library is used at run time,
whether to include one of three APIs in generated code, and certain other
interface options.

2-73

2 Code Generation and the Build Process

To... Select or Enter...

Specify the target-specific
math library to use when
generating code

Select C89/C90(ANSI), C99(ISO), or GNU99(GNU) for Target
function library. (Additional values may be listed if you have
created and registered target function libraries with the Real-Time
Workshop Embedded Coder product, or if you have licensed any
Link or Target products.)

Selecting C89/C90(ANSI) provides the ANSI14 C set of library
functions. For example, selecting C89/C90(ANSI) would result
in generated code that calls sin() whether the input argument
is double precision or single precision. However, if you select
C99(ISO), the call instead is to the function sinf(), which is single
precision. If your compiler supports the ISO15 C math extensions,
selecting the ISO C library can result in more efficient code.

For more information about target function libraries, see “Selecting
and Viewing Target Function Libraries” on page 2-78.

Direct where the
Real-Time Workshop
code generator should
place fixed-point and other
utility code

Select Auto or Shared location for Utility function generation.
The shared location directs code for utilities to be placed within
the slprj directory in your working directory, which is used for
building model reference targets. If you select Auto,

• When the model contains Model blocks, utilities are placed
within the slprj/target/_sharedutils directory.

• When the model does not contain Model blocks, utilities
are placed in the build directory (generally, in model.c or
model.cpp).

14. ANSI® is a registered trademark of the American National Standards Institute, Inc.

15. ISO® is a registered trademark of the International Organization for Standardization.

2-74

Configuring Real-Time Workshop® Code Generation Parameters

To... Select or Enter...

Specify a string to be
added to the variable
names used when logging
data to MAT-files, to
distinguish logging data
from Real-Time Workshop
and Simulink applications

Enter a prefix or suffix, such as rt_ or (_rt, forMAT-file variable
name modifier. The Real-Time Workshop code generator prefixes
or appends the string to the variable names for system outputs,
states, and simulation time specified in the Data Import/Export
pane. See “Configuring a Model for Data Logging” on page 2-29 for
information on MAT-file data logging.

Specify an API to be
included in generated code

Select C API, External mode, or ASAP2 for Interface. When
you select C API or External mode, other options appear. C API
and External mode are mutually exclusive. However, this is not
the case for C API and ASAP2. For more information on working
with these interfaces, see “C API for Interfacing with Signals and
Parameters” on page 17-2 and Chapter 6, “External Mode”.

Note Before setting Target function library, verify that your compiler
supports the library you want to use. If you select a parameter value that
your compiler does not support, compiler errors can occur. For example, if
you select C99(ISO) and your compiler does not support the ISO C math
extensions, compile-time errors likely will occur.

When the Real-Time Workshop Embedded Coder product is installed on your
system, the Interface pane expands to include several additional options.
For details, see “Configuring Model Interfaces” in the Real-Time Workshop
Embedded Coder documentation.

For a summary of option dependencies, see “Interface Dependencies” on
page 2-76. For details on using the external mode interface, see Chapter 6,
“External Mode”. For information on using C API and ASAP2 interfaces see
Chapter 17, “Data Exchange APIs”.

For descriptions of Interface pane parameters, see “Real-Time Workshop
Pane: Interface” in the Real-Time Workshop reference documentation.

2-75

2 Code Generation and the Build Process

Interface Dependencies
Several parameters available on the Interface pane have dependencies
on settings of other parameters. The following table summarizes the
dependencies.

Parameter Dependencies? Dependency Details

Target function library No
Utility function generation Yes
Support floating-point
numbers (ERT targets only)

No

Support non-finite numbers
(ERT targets only)

Yes Enabled by Support floating-point
numbers

Support complex numbers
(ERT targets only)

No

Support absolute time (ERT
targets only)

No

Support continuous time (ERT
targets only)

No

Support non-inlined
S-functions (ERT targets
only)

Yes Requires that you enable Support
floating-point numbers and
Support non-finite numbers

GRT compatible call interface
(ERT targets only)

Yes Requires that you enable Support
floating-point numbers and disable
Single output/update function

Single output/update function
(ERT targets only)

Yes Disable for GRT compatible call
interface

Terminate function required
(ERT targets only)

Yes

Generate reusable code (ERT
targets only)

Yes

2-76

Configuring Real-Time Workshop® Code Generation Parameters

Parameter Dependencies? Dependency Details

Reusable code error
diagnostic (ERT targets only)

Yes Enabled by Generate reusable code

Pass root-level I/O as (ERT
targets only)

Yes Enabled by Generate reusable code

Create Simulink S-Function
block (ERT targets only)

No

MAT-file logging Yes For ERT targets, requires that you
enable Support floating-point
numbers, Support non-finite
numbers, and Terminate function
required

MAT-file file variable name
modifier (ERT targets only)

Yes Enabled by MAT-file logging

Suppress error status in
real-timemodel data structure
(ERT targets only)

No

Interface No
Signals in C API Yes Set Interface to C API

Parameters in C API Yes Set Interface to C API

Transport layer Yes Set Interface to External mode

MEX-file arguments Yes Set Interface to External mode

Static memory allocation Yes Set Interface to External mode

Static memory buffer size Yes Enable Static memory allocation

2-77

2 Code Generation and the Build Process

Selecting and Viewing Target Function Libraries

• “Selecting a Target-Specific Math Library for Your Model” on page 2-78

• “Function Replacement Table Overview” on page 2-79

• “Using the Target Function Library Viewer” on page 2-81

Selecting a Target-Specific Math Library for Your Model
A target function library (TFL) is a set of one or more function replacement
tables that define the target-specific implementations of math functions
and operators to be used in generating code for your Simulink model. The
Real-Time Workshop product provides three default TFLs, which you can
select from the Target function library drop-down list on the Interface
pane of the Configuration Parameters dialog box.

TFL Description Contains tables...

C89/C90
(ANSI)

Generates calls to the ISO/IEC 9899:1990
C standard math library for floating-point
functions.

ansi_tfl_table_tmw.mat

C99 (ISO) Generates calls to the ISO/IEC 9899:1999 C
standard math library.

iso_tfl_table_tmw.mat
ansi_tfl_table_tmw.mat

GNU99 (GNU) Generates calls to the Free Software
Foundation’s GNU gcc math library, which
provides C99 extensions as defined by compiler
option -std=gnu99.

gnu_tfl_table_tmw.mat
iso_tfl_table_tmw.mat
ansi_tfl_table_tmw.mat

TFL tables provide the basis for replacing default math functions and
operators in your model code with target-specific code. If you select a library
and then hover over the selected library with the cursor, a tool tip is displayed
that describes the TFL and lists the function replacement tables it contains.
Tables are listed in the order in which they are searched for a function or
operator match.

2-78

Configuring Real-Time Workshop® Code Generation Parameters

The Real-Time Workshop product allows you to view the content of TFL
function replacement tables using the Target Function Library Viewer, as
described in “Using the Target Function Library Viewer” on page 2-81. If you
are licensed to use the Real-Time Workshop Embedded Coder product, you
additionally can create and register the function replacement tables that
make up a TFL.

Function Replacement Table Overview
Each TFL function replacement table contains one or more table entries,
with each table entry representing a potential replacement for a single math
function or an operator. Each table entry provides a mapping between a
conceptual view of the function or operator (similar to the Simulink block
view of the function or operator) and a target-specific implementation of that
function or operator.

The conceptual view of a function or operator is represented in a TFL table
entry by the following elements, which identify the function or operator entry
to the code generation process:

2-79

2 Code Generation and the Build Process

• A function or operator key (a function name such as 'cos' or an operator
ID string such as 'RTW_OP_ADD')

• A set of conceptual arguments that observe Simulink naming ('y1', 'u1',
'u2', ...), along with their I/O types (output or input) and data types

• Other attributes, such as fixed-point saturation and rounding
characteristics for operators, as needed to identify the function or operator
to the code generation process as exactly as required for matching purposes

The target-specific implementation of a function or operator is represented in
a TFL table entry by the following elements:

• The name of an implementation function (such as 'cos_dbl' or
'u8_add_u8_u8')

• A set of implementation arguments, along with their I/O types (output or
input) and data types

• Parameters providing the build information for the implementation
function, including header file and source file names and paths as necessary

Additionally, a TFL table entry includes a priority value (0-100, with 0 as the
highest priority), which defines the entry’s priority relative to other entries
in the table.

During code generation for your model, when the code generation process
encounters a call site for a math function or operator, it creates and partially
populates a TFL entry object, for the purpose of querying the TFL database
for a replacement function. The information provided for the TFL query
includes the function or operator key and the conceptual argument list. The
TFL entry object is then passed to the TFL and, if there is a matching table
entry in the TFL, a fully-populated TFL entry, including the implementation
function name, argument list, and build information, is returned to the call
site and used to generate code.

Within the TFL that is selected for your model, the tables that comprise the
TFL are searched in the order in which they are listed (in the left or right pane
of the TFL Viewer or in the TFL’s Target function library tool tip). Within
each table, if multiple matches are found for a TFL entry object, priority level
determines the match that is returned. A higher-priority (lower-numbered)
entry will be used over a similar entry with a lower priority (higher number).

2-80

Configuring Real-Time Workshop® Code Generation Parameters

Using the Target Function Library Viewer
The Target Function Library Viewer allows you to examine the content of
TFL function replacement tables. (For an overview of function replacement
tables and the information they contain, see the preceding section.) To launch
the Viewer with all currently registered TFLs displayed, issue the following
MATLAB command:

>> RTW.viewTfl

Select the name of a TFL in the left pane, and the Viewer displays information
about the TFL in the right pane. For example, the tables that make up the
TFL are listed in priority order. In the following display, the GNU TFL has
been selected.

Click the plus sign (+) next to a TFL name in the left pane to expand its list
of tables, and select a table from the list. The Viewer displays all function
and operator entries in the selected table in the middle pane, along with
abbreviated table entry information for each entry. In the following display,
the ANSI table has been selected.

2-81

2 Code Generation and the Build Process

The following fields appear in the abbreviated table entry information
provided in the middle pane:

Field Description

Name Name of the function or ID of the operator to be
replaced (for example, cos or RTW_OP_ADD).

Implementation Name of the implementation function, which can
match or differ from Name.

NumIn Number of input arguments.
In1Type Data type of the first conceptual input argument.
In2Type Data type of the second conceptual input argument.
OutType Data type of the conceptual output argument.

2-82

Configuring Real-Time Workshop® Code Generation Parameters

Field Description

Priority The entry’s search priority, 0-100, relative to other
entries of the same name and conceptual argument
list within this table. Highest priority is 0, and
lowest priority is 100. The default is 100. If the
table provides two implementations for a function
or operator, the implementation with the higher
priority will shadow the one with the lower priority.

UsageCount Not used.

Select a function or operator entry in the middle pane. The Viewer displays
detailed information from the table entry in the right pane. In the following
display, the second entry for the cos function has been selected.

The following fields appear in the detailed table entry information provided
in the right pane.

2-83

2 Code Generation and the Build Process

Field Description

Description Text description of the table entry (can be empty).
Key Name of the function or ID of the operator to be replaced

(for example, cos or RTW_OP_ADD), and the number of
conceptual input arguments.

Implementation Name of the implementation function, and the number
of implementation input arguments.

Implementation
type

Type of implementation: FCN_IMPL_FUNCT for
function or FCN_IMPL_MACRO for macro.

Saturation
mode

Saturation mode supported by the implementation
function for an operator replacement:
RTW_SATURATE_ON_OVERFLOW,
RTW_WRAP_ON_OVERFLOW, or
RTW_SATURATE_UNSPECIFIED.

Rounding mode Rounding mode supported by the implementation
function for an operator replacement:
RTW_ROUND_FLOOR, RTW_ROUND_CEILING,
RTW_ROUND_ZERO, RTW_ROUND_NEAREST,
RTW_ROUND_NEAREST_ML,
RTW_ROUND_SIMPLEST, RTW_ROUND_CONV, or
RTW_ROUND_UNSPECIFIED.

GenCallback
file

Not used.

Implementation
header

Name of the header file that declares the implementation
function.

Implementation
source

Name of the implementation source file.

Priority The entry’s search priority, 0-100, relative to other
entries of the same name and conceptual argument
list within this table. Highest priority is 0, and lowest
priority is 100. The default is 100. If the table provides
two implementations for a function or operator, the
implementation with the higher priority will shadow the
one with the lower priority.

2-84

Configuring Real-Time Workshop® Code Generation Parameters

Field Description

Total Usage
Count

Not used.

Conceptual
argument(s)

Name, I/O type (RTW_IO_OUTPUT or
RTW_IO_INPUT), and data type for each conceptual
argument.

Implementation Name, I/O type (RTW_IO_OUTPUT or
RTW_IO_INPUT), and data type for each
implementation argument.

If you select an operator entry, an additional tab containing fixed-point setting
information is displayed in the right pane. For example:

The following fields appear in the fixed-point setting information provided
in the right pane:

2-85

2 Code Generation and the Build Process

Field Description

Slopes must be
the same

Indicates whether TFL replacement request processing
must check that the slopes on all arguments (input and
output) are equal. Used with fixed-point addition and
subtraction replacement to disregard specific slope and
bias values and map relative slope and bias values to a
replacement function.

Must have zero
net bias

Indicates whether TFL replacement request processing
must check that the net bias on all arguments is
zero. Used with fixed-point addition and subtraction
replacement to disregard specific slope and bias values
and map relative slope and bias values to a replacement
function.

Relative
scaling factor
F

Slope adjustment factor (F) part of the relative scaling
factor, F2E, for relative scaling TFL entries. Used with
fixed-point multiplication and division replacement to
map a range of slope and bias values to a replacement
function.

Relative
scaling factor
E

Fixed exponent (E) part of the relative scaling factor,
F2E, for relative scaling TFL entries. Used with
fixed-point multiplication and division replacement to
map a range of slope and bias values to a replacement
function.

2-86

Build Process

Build Process

In this section...

“Build Process Steps” on page 2-87
“Model Compilation” on page 2-88
“Code Generation” on page 2-88
“Customized Makefile Generation” on page 2-89
“Executable Program Generation” on page 2-90
“Files and Directories Created by the Build Process” on page 2-92

Build Process Steps
The Real-Time Workshop software generates C code only or generates the C
code and produces an executable image, depending on the level of processing
you choose. By default, a Build button appears on the Real-Time Workshop
pane of the Configuration Parameters dialog box. This button completes
the entire build process and an executable image results. If you select the
Generate code only check box to the left of the button, the button label
changes to Generate code.

When you click the Build or Generate code button, the Real-Time Workshop
software performs the following build process. If the software detects code
generation constraints for your model, it issues warning or error messages.

1 “Model Compilation” on page 2-88

2 “Code Generation” on page 2-88

3 “Customized Makefile Generation” on page 2-89

4 “Executable Program Generation” on page 2-90

For more information, see “Configuring Report Generation” on page 2-64 in
the Real-Time Workshop documentation. You can also view an HTML report
in Model Explorer.

2-87

2 Code Generation and the Build Process

Model Compilation
The build process begins with the Simulink software compiling the block
diagram. During this stage, Simulink

• Evaluates simulation and block parameters

• Propagates signal widths and sample times

• Determines the execution order of blocks within the model

• Computes work vector sizes, such as those used by S-functions. (For more
information about work vectors, see the Simulink Writing S-Functions
documentation).

When Simulink completes this processing, it compiles an intermediate
representation of the model. This intermediate description is stored in a
language-independent format in the ASCII file model.rtw. The model.rtw
file is the input to the next stage of the build process.

model.rtw files are similar in format to Simulink model (.mdl) files, but are
used only for automated code generation. For a general description of the
model.rtw file format, see the Target Language Compiler documentation.

Code Generation
The Real-Time Workshop code generator uses the Target Language Compiler
(TLC) and a supporting TLC function library to transform the intermediate
model description stored in model.rtw into target-specific code.

The target language compiled by the TLC is an interpreted programming
language designed to convert a model description to code. The TLC executes a
TLC program comprising several target files (.tlc scripts). The TLC scripts
specify how to generate code from the model, using the model.rtw file as input.

The TLC

1 Reads the model.rtw file

2 Compiles and executes commands in a system target file

2-88

Build Process

The system target file is the entry point or main file. You select it from
those available on the MATLAB path with the system target file browser or
you can type the name of any such file on your system prior to building.

3 Compiles and executes commands in block-level target files

For blocks in the Simulink model, there is a corresponding target file that
is either dynamically generated or statically provided.

Note The Real-Time Workshop software executes all user-written
S-function target files, but optionally executes block target files for
Simulink blocks.

4 Writes a source code version of the Simulink block diagram

Customized Makefile Generation
After generating the code, the Real-Time Workshop software generates a
customized makefile, model.mk. The generated makefile instructs the make
system utility to compile and link source code generated from the model, as
well as any required harness program, libraries, or user-provided modules.

The Real-Time Workshop software creates model.mk from a system template
file, system.tmf (where system stands for the selected target name). The
system template makefile is designed for your target environment. You have
the option of modifying the template makefile to specify compilers, compiler
options, and additional information used during the creation of the executable.

The Real-Time Workshop software creates the model.mk file by copying the
contents of system.tmf and expanding lexical tokens (symbolic names) that
describe your model’s configuration.

The Real-Time Workshop software provides many system template makefiles,
configured for specific target environments and development systems.
“Selecting a System Target File” on page 2-3 in the Real-Time Workshop
documentation lists all template makefiles that are bundled with the
Real-Time Workshop software. To see an example template makefile, navigate
to matlabroot/rtw/c/grt, and open with an editor the file grt_msvc.tmf.

2-89

2 Code Generation and the Build Process

You can fully customize your build process by modifying an existing template
makefile or providing your own template makefile.

Executable Program Generation
The following figure shows how the Real-Time Workshop software controls
automatic program building.

������ ���

 �		��

��������
!�
��

������	�
��
�

���"��	�
!�������

������	�
!�������

�������
�������
���������	
����

���	��
!�������

������
�

����	�
#$���	����%

&�

'��

��(���

��

�	�"

During the final stage of processing, the Real-Time Workshop build process
invokes the generated makefile, model.mk, which in turn compiles and links
the generated code. On PC platforms, a batch file is created to invoke the

2-90

Build Process

generated makefile. The batch file sets up the proper environment for
invoking the make utility and related compiler tools. To avoid unnecessary
recompilation of C files, the make utility performs date checking on the
dependencies between the object and C files; only out-of-date source files are
compiled. Optionally, the makefile can download the resulting executable
image to your target hardware.

This stage is optional, as illustrated by the control logic in the preceding
figure. You might choose to omit this stage, for example, if you are targeting
an embedded microcontroller or a digital signal processing (DSP) board.

To omit this stage of processing, select the Generate code only check
box on the Real-Time Workshop pane of the Configuration Parameters
dialog box. You can then cross-compile your code and download it to your
target hardware. “Interacting with the Build Process” on page 2-104 in
the Real-Time Workshop documentation discusses the options that control
whether or not the build creates an executable image.

If you select Create code generation report on the Real-Time
Workshop > Report pane, a navigable summary of source files is produced
when the model is built. The report files occupy a directory called html within
the build directory. The report contents vary depending on the target, but all
reports feature links to generated source files. The following display shows
an example of an HTML code generation report for a generic real-time (GRT)
target.

2-91

2 Code Generation and the Build Process

Files and Directories Created by the Build Process
The following sections discuss

• “Files Created During Build Process” on page 2-92

• “Directories Used During the Build Process” on page 2-97

Files Created During Build Process
This section lists model.* files created during the code generation and build
process for the GRT and GRT malloc targets when used with stand-alone
models. Additional directories and files are created to support shared utilities
and model references (see Chapter 4, “Building Subsystems and Working with
Referenced Models” in the Real-Time Workshop documentation).

The build process derives many of the files from the model.mdl file you create
with Simulink. You can think of the model.mdl file as a very high-level
programming language source file.

2-92

Build Process

Note Files generated by the Real-Time Workshop Embedded Coder build
process are packaged slightly differently. Depending on model architectures
and code generation options, the Real-Time Workshop build process might
generate other files.

Descriptions of the principal generated files follow. Note that these
descriptions use the generic term model for the model name:

• model.rtw

An ASCII file, representing the compiled model, generated by the
Real-Time Workshop build process. This file is analogous to the object
file created from a high-level language source program. By default, the
Real-Time Workshop build process deletes this file when the build process
is complete. However, you can choose to retain the file for inspection.

• model.c

C source code that corresponds to model.mdl and is generated by the
Target Language Compiler. This file contains

- Include files model.h and model_private.h

- All data except data placed in model_data.c

- Model-specific scheduler code

- Model-specific solver code

- Model registration code

- Algorithm code

- Optional GRT wrapper functions

• model.h

Defines model data structures and a public interface to the model entry
points and data structures. Also provides an interface to the real-time
model data structure (model_rtM) via access macros. model.h is included
by subsystem .c files in the model. It includes

- Exported Simulink data symbols

- Exported Stateflow machine parented data

2-93

2 Code Generation and the Build Process

- Model data structures, including rtM

- Model entry point functions

• model_private.h

Contains local define constants and local data required by the model and
subsystems. This file is included by the generated source files in the model.
You might need to include model_private.h when interfacing legacy
hand-written code to a model. See “Header Dependencies When Interfacing
Legacy/Custom Code with Generated Code” on page 2-108 in the Real-Time
Workshop documentation for more information. This header file contains

- Imported Simulink data symbols

- Imported Stateflow machine parented data

- Stateflow entry points

- Real-Time Workshop details (various macros, enums, and so forth that
are private to the code)

• model_types.h

Provides forward declarations for the real-time model data structure
and the parameters data structure. These might be needed by function
declarations of reusable functions. model_types.h is included by all the
generated header files in the model.

• model_data.c

A conditionally generated C source code file containing declarations for
the parameters data structure and the constant block I/O data structure,
and any zero representations for structure data types that are used in the
model. If these data structures are not used in the model, model_data.c is
not generated. Note that these structures are declared extern in model.h.
When present, this file contains

- Constant block I/O parameters

- Include files model.h and model_private.h

- Definitions for the zero representations for any user-defined structure
data types used by the model

- Constant parameters

2-94

Build Process

• model.exe (Microsoft Windows platforms) or model (UNIX platforms),
generated in the current directory, not in the build directory

Executable program file created under control of the make utility by your
development system (unless you have explicitly specified that Real-Time
Workshop generate code only and skip the rest of the build process)

• model.mk

Customized makefile generated by the Real-Time Workshop build process.
This file builds an executable program file.

• rtmodel.h

Contains #include directives required by static main program modules
such as grt_main.c and grt_malloc_main.c. Since these modules are
not created at code generation time, they include rt_model.h to access
model-specific data structures and entry points. If you create your own
main program module, take care to include rtmodel.h.

• rtwtypes.h

For GRT targets, a header file that includes simstruc_types.h, which, in
turn, includes tmwtypes.h. For Real-Time Workshop Embedded Coder
ERT targets, rtwtypes.h itself provides the necessary defines, enums,
and so on, instead of including tmwtypes.h and simstruc_types.h. The
rtwtypes.h file generated for ERT is an optimized (reduced) file based
on the settings provided with the model that is being built. See “Header
Dependencies When Interfacing Legacy/Custom Code with Generated
Code” on page 2-108 in the Real-Time Workshop documentation for more
information.

• rt_nonfinite.c

C source file that declares and initializes global nonfinite values for inf,
minus inf, and nan. Nonfinite comparison functions are also provided. This
file is always generated for GRT-based targets and optionally generated
for other targets.

• rt_nonfinite.h

C header file that defines extern references to nonfinite variables and
functions. This file is always generated for GRT-based targets and
optionally generated for other targets.

• rtw_proj.tmw

2-95

2 Code Generation and the Build Process

Real-Time Workshop file generated for the make utility to use to determine
when to rebuild objects when the name of the current Real-Time Workshop
project changes

• model.bat

Windows batch file used to set up the appropriate compiler environment
and invoke the make command

• modelsources.txt

List of additional sources that should be included in the compilation.

Optional files:

• model_targ_data_map.m

M-file used by external mode to initialize the external mode connection

• model_dt.h

C header file used for supporting external mode. Declares structures that
contain data type and data type transition information for generated model
data structures.

• subsystem.c

C source code for each noninlined nonvirtual subsystem or copy thereof
when the subsystem is configured to place code in a separate file

• subsystem.h

C header file containing exported symbols for noninlined nonvirtual
subsystems. Analogous to model.h.

• model_capi.h

An interface header file between the model source code and the generated
C API. See “C API for Interfacing with Signals and Parameters” on page
17-2 in Real-Time Workshop User’s Guide for more information.

• model_capi.c

C source file that contains data structures that describe the model’s signals
and parameters without using external mode. See “C API for Interfacing
with Signals and Parameters” on page 17-2 in Real-Time Workshop User’s
Guide for more information.

2-96

Build Process

• rt_sfcn_helper.h, rt_sfcn_helper.c

Header and source files providing functions needed by noninlined
S-functions in a model. The functions rt_CallSys, rt_enableSys, and
rt_DisableSys are used when noninlined S-functions call downstream
function-call subsystems.

In addition, when you select the Create code generation report check box,
the Real-Time Workshop software generates a set of HTML files (one for each
source file plus a model_contents.html index file) in the html subdirectory
within your build directory.

The above source files have dependency relationships, and there are
additional file dependencies that you might need to take into account. These
are described in “Generated Source Files and File Dependencies” on page
2-107 in the Real-Time Workshop documentation.

Directories Used During the Build Process
the Real-Time Workshop build process places output files in three directories:

• The working directory

If you choose to generate an executable program file, the Real-Time
Workshop build process writes the file model.exe (Windows) or model
(UNIX) to your working directory.

• The build directory — model_target_rtw

A subdirectory within your working directory. The build directory name
is model_target_rtw, where model is the name of the source model and
target is the selected target type (for example, grt for the generic real-time
target). The build directory stores generated source code and all other files
created during the build process (except the executable program file).

• Project directory — slprj

A subdirectory within your working directory. When models referenced
via Model blocks are built for simulation or Real-Time Workshop code
generation, files are placed in slprj. The Real-Time Workshop Embedded
Coder configuration has an option that places generated shared code in
slprj without the use of model reference. Subdirectories in slprj provide
separate places for simulation code, some Real-Time Workshop code, utility

2-97

2 Code Generation and the Build Process

code shared between models, and other files. Of particular importance
to Real-Time Workshop users are:

- Header files from models referenced by this model

slprj/target/model/referenced_model_includes

- Model reference Real-Time Workshop target files

slprj/target/model

- MAT-files used during code generation of model reference
Real-Time Workshop target and stand-alone code generation

slprj/target/model/tmwinternal

- Shared (fixed-point) utilities

slprj/target/_sharedutils

See “Working with Project Directories” for more information on organizing
your files with respect to project directories.

The build directory always contains the generated code modules model.c,
model.h, and the generated makefile model.mk.

Depending on the target, code generation, and build options you select, the
build directory might also include

• model.rtw

• Object files (.obj or .o)

• Code modules generated from subsystems

• HTML summary reports of files generated (in the html subdirectory)

• TLC profiler report files

• Block I/O and parameter tuning information file (model_capi.c)

• C API code for parameters and signals

• Real-Time Workshop project (model.tmw) files

For additional information about using project directories, see “Project
Directory Structure for Model Reference Targets” on page 4-28 and

2-98

Build Process

“Supporting Shared Utility Directories in the Build Process” on page 4-57 in
the Real-Time Workshop documentation.

2-99

2 Code Generation and the Build Process

Configuring Generated Code with TLC

In this section...

“Introduction” on page 2-100
“Assigning Target Language Compiler Variables” on page 2-100
“Setting Target Language Compiler Options” on page 2-102

Introduction
You can use the Target Language Compiler (TLC) to fine tune your generated
code. TLC supports extended code generation variables and options in
addition to those included in the code generation options categories of the
Real-Time Workshop pane. There are two ways to set TLC variables and
options, as described in this section.

Note You should not customize TLC files in the directory
matlabroot/rtw/c/tlceven though the capability exists to do so. Such TLC
customizations might not be applied during the code generation process and
can lead to unpredictable results.

Assigning Target Language Compiler Variables
The %assign statement lets you assign a value to a TLC variable, as in

%assign MaxStackSize = 4096

This is also known as creating a parameter name/parameter value pair.

For a description of the %assign statement see the Target Language Compiler
documentation. You should write your %assign statements in the Configure
RTW code generation settings section of the system target file.

The following table lists the code generation variables you can set with the
%assign statement.

2-100

Configuring Generated Code with TLC

Target Language Compiler Optional Variables

Variable Description

MaxStackSize=N When the Enable local block outputs check box is
selected, the total allocation size of local variables that
are declared by all block outputs in the model cannot
exceed MaxStackSize (in bytes). MaxStackSize can be
any positive integer. If the total size of local block output
variables exceeds this maximum, the remaining block
output variables are allocated in global, rather than local,
memory. The default value for MaxStackSize is rtInf,
that is, unlimited stack size.

Note: Local variables in the generated code from sources
other than local block outputs, such as from a Stateflow
diagram or Embedded MATLAB Function block, and
stack usage from sources such as function calls and
context switching are not included in the MaxStackSize
calculation. For overall executable stack usage metrics,
do a target-specific measurement by using run-time
(empirical) analysis or static (code path) analysis with
object code.

MaxStackVariableSize=N When the Enable local block outputs check box is
selected, this limits the size of any local block output
variable declared in the code to N bytes, where N>0. A
variable whose size exceeds MaxStackVariableSize
is allocated in global, rather than local, memory. The
default is 4096.

WarnNonSaturatedBlocks=value Flag to control display of overflow warnings for blocks
that have saturation capability, but have it turned off
(unchecked) in their dialog. These are the options:

• 0 — No warning is displayed.

• 1 — Displays one warning for the model during code
generation

• 2 — Displays one warning that contains a list of all
offending blocks

2-101

2 Code Generation and the Build Process

For more information, see the Target Language Compiler documentation.

Setting Target Language Compiler Options
You can enter TLC options directly into the System target file field in the
Real-Time Workshop pane of the Configuration Parameters dialog box,
by appending the options and arguments to the system target filename.
This is equivalent to invoking the Target Language Compiler with options
on the MATLAB command line. The most common options are shown in the
following table.

Target Language Compiler Options

Option Description

-Ipath Adds path to the list of paths in which to search for
target files (.tlc files).

-m[N|a] Maximum number of errors to report when an error
is encountered (default is 5). For example, -m3
specifies that at most three errors will be reported.
To report all errors, specify -ma.

-d[g|n|o] Specifies debug mode (generate, normal, or off).
Default is off. When -dg is specified, a .log file is
create for each of your TLC files. When debug mode
is enabled (that is, generate or normal), the Target
Language Compiler displays the number of times
each line in a target file is encountered.

-aRTWCAPI -aRTWCAPI=1 to generate API for both signals and
parameters

-aRTWCAPISignals -aRTWCAPISignals=1 to generate API for signals
only

-aRTWCAPIParams -aRTWCAPIParams=1 to generate API for parameters
only

-aVariable=val Equivalent to the TLC statement

%assign Variable = val

Note: It is best to use %assign statements in the
TLC files, rather than the -a option.

2-102

Configuring Generated Code with TLC

You can speed your TLC development cycle by not rebuilding code when your
TLC files have changed, but your model has not. See “Retain .rtw file” in the
Real-Time Workshop reference documentation for information on how to
do this.

For more information on TLC options, see the Target Language Compiler
documentation.

2-103

2 Code Generation and the Build Process

Interacting with the Build Process

In this section...

“Introduction” on page 2-104
“Initiating the Build Process” on page 2-104
“Construction of Symbols” on page 2-105
“Generated Source Files and File Dependencies” on page 2-107
“Reloading Code from the Model Explorer” on page 2-126
“Rebuilding Generated Code” on page 2-127
“Profiling Generated Code” on page 2-128

Introduction
The Real-Time Workshop software generates code into a set of source files
that vary little among different targets. Not all possible files are generated for
every model. Some files are created only when the model includes subsystems,
calls external interfaces, or uses particular types of data. The Real-Time
Workshop code generator handles most of the code formatting decisions (such
as identifier construction and code packaging) in consistent ways.

Initiating the Build Process
You can initiate code generation and the build process by using the following
options:

• Clear the Generate code only option on the Real-Time Workshop pane
of the Configuration Parameters dialog box and click Build.

• Press Ctrl+B.

• Select Tools > Real-Time Workshop > Build Model.

• Invoke the rtwbuild command from the MATLAB command line, using
one of the following syntax options:

rtwbuild src
rtwbuild('src')

2-104

Interacting with the Build Process

For src, specify the name of a model or subsystem. The command initiates
the build process with the current model configuration settings and creates
an executable. If the model or subsystem is not loaded into the Simulink
environment, rtwbuild loads it before initiating the build process.

For more information on using subsystems, see Chapter 4, “Building
Subsystems and Working with Referenced Models”.

• Invoke the slbuild command from the MATLAB command line, using
one of the following syntax options:

slbuild model
slbuild model 'buildtype'
slbuild('model')
slbuild('model' 'buildtype')

For model, specify the name of a model for which you want to build a
stand-alone Real-Time Workshop target executable or a model reference
target. The buildtype can be one of the following:

- ModelReferenceSimTarget builds a model reference simulation target

- ModelReferenceRTWTarget builds a model reference simulation and
Real-Time Workshop targets

- ModelReferenceRTWTargetOnly builds a model reference Real-Time
Workshop target

The command initiates the build process with the current model
configuration settings. If the model has not been loaded by the Simulink
product, slbuild loads it before initiating the build process.

For more information on model referencing, see “Generating Code for
Model Referencing” on page 4-26.

Construction of Symbols
For GRT, GRT-malloc and RSim targets, the Real-Time Workshop code
generator automatically constructs identifiers for variables and functions in
the generated code. These symbols identify

• Signals and parameters that have Auto storage class

• Subsystem function names that are not user defined

2-105

2 Code Generation and the Build Process

• All Stateflow names

The components of a generated symbol include

• The root model name, followed by

• The name of the generating object (signal, parameter, state, and so on),
followed by

• A unique name mangling string

The name mangling string is conditionally generated only when necessary to
resolve potential conflicts with other generated symbols.

The length of generated symbols is limited by the Maximum identifier
length parameter specified on the Symbols pane of the Configuration
Parameters dialog box. When there is a potential name collision between two
symbols, a name mangling string is generated. The string has the minimum
number of characters required to avoid the collision. The other symbol
components are then inserted. If Maximum identifier length is not large
enough to accommodate full expansions of the other components, they are
truncated. To avoid this outcome, it is good practice to

• Avoid name collisions in general. One way to do this is to avoid using
default block names (for example, Gain1, Gain2...) when there are many
blocks of the same type in the model. Also, whenever possible, make
subsystems atomic and reusable.

• Where possible, increase the Maximum identifier length parameter to
accommodate the length of the symbols you expect to generate.

Maximum identifier length can be longer for top model than referenced
models. Model referencing can involve additional naming constraints. For
information, see “Configuring Generated Identifiers” on page 2-66 and
“Parameterizing Model References”.

Users of the Real-Time Workshop Embedded Coder product have additional
flexibility over how symbols are constructed, by using a Symbol format
field that controls the symbol formatting in much greater detail. See
“Code Generation Options and Optimizations” in the Real-Time Workshop
Embedded Coder documentation for more information.

2-106

Interacting with the Build Process

Generated Source Files and File Dependencies
The source and make files created during the Real-Time Workshop build
process are generated into your build directory, which is created or reused
in your current directory. Some files are unconditionally generated, while
the existence of others depend on target settings and options (for example,
support files for C API or external mode). See “Files and Directories Created
by the Build Process” on page 2-92 for descriptions of the generated files.

Note The file packaging of Real-Time Workshop Embedded Coder targets
differs slightly from the file packaging described below. See “Code Modules”
in the Real-Time Workshop Embedded Coder documentation for more
information.

Generated source file dependencies are depicted in the next figure. Arrows
coming from a file point to files it includes. Other dependencies exist, for
example on Simulink header files tmwtypes.h and simstruc_types.h, plus C
or C++ library files. The figure maps inclusion relations between only those
files that are generated in the build directory. Utility and model reference
code located in a project directory might also be referenced by these files. See
“Project Directory Structure for Model Reference Targets” on page 4-28 for
details.

The figure shows that parent system header files (model.h) include all child
subsystem header files (subsystem.h). In more layered models, subsystems
similarly include their children’s header files, on down the model hierarchy.
As a consequence, subsystems are able to recursively “see” into all their
descendants’ subsystems, as well as to see into the root system (because every
subsystem.c or subsystem.cpp includes model.h and model_private.h).

2-107

2 Code Generation and the Build Process

��
�����������

����������
�
��������
�����
����
�	���

�)�������	��
�	�*

���������	
����

��	�
������������� �������
�
��

��	�
������

�������������

�������

��
������

Real-Time Workshop® Generated File Dependencies

Note In the preceding figure, files model.h, model_private.h, and
subsystem.h also depend on the Real-Time Workshop header file rtwtypes.h.
Targets that are not based on the ERT target can have additional
dependencies on tmwtypes.h and simstruct_types.h.

Header Dependencies When Interfacing Legacy/Custom Code
with Generated Code
You can incorporate legacy or custom code into a Real-Time Workshop build
in any of several ways. One common approach is by creating S-functions. For
details on this approach, see Chapter 10, “Writing S-Functions for Real-Time
Workshop Code Generation”.

Another approach is to interface code using global variables created
by declaring storage classes for signals and parameters. This requires

2-108

Interacting with the Build Process

customizing an outer code harness, typically referred to as a main.c or
main.cpp file, to properly execute to the generated code. In addition, the
harness can contain custom code.

These scenarios require you to include header files specific to the Real-Time
Workshop product to make available the needed function declarations, type
definitions, and defines to the legacy or custom code.

rtwtypes.h. The header file rtwtypes.h defines data types, structures,
and macros required by the generated code. Normally, you should include
rtwtypes.h for both GRT and ERT targets instead of including tmwtypes.h or
simstruc_types.h. However, the contents of the header file varies depending
on your target selection.

For... rtwtypes.h

GRT target Provides a complete set of definitions by including
tmwtypes.h and simstruct_types.h, both of which
depend on

• System headers limits.h and float.h

• Real-Time Workshop headers: rtw_matlogging.h,
rtw_extmode.h, rtw_continuous.h, and
rtw_solver.h

ERT target and
targets based on
the ERT target

Is optimized, when possible, to include a minimum set
of #define statements, enumerations, and so on; does
not include tmwtypes.h and simstruct_types.h

The Real-Time Workshop build process generates the optimized version of
rtwtypes.h for the ERT target when both of the following conditions exist:

• The GRT compatible call interface option on the Real-Time
Workshop > Interfacepane of the Configuration Parameters dialog box is
cleared.

• The model contains no noninlined S-functions

You should always include rtwtypes.h. If you include it for GRT targets, for
example, it is easier to use your code with ERT-based targets.

2-109

2 Code Generation and the Build Process

rtwtypes.h for GRT targets:

#ifndef __RTWTYPES_H__
#define __RTWTYPES_H__
#include "tmwtypes.h"

/* This ID is used to detect inclusion of an incompatible
* rtwtypes.h

*/
#define RTWTYPES_ID_C08S16I32L32N32F1

#include "simstruc_types.h"
#ifndef POINTER_T
define POINTER_T
typedef void * pointer_T;
#endif
#ifndef TRUE
define TRUE (1)
#endif
#ifndef FALSE
define FALSE (0)
#endif
#endif

Top of rtwtypes.h for ERT targets:

#ifndef __RTWTYPES_H__

#define __RTWTYPES_H__

#ifndef __TMWTYPES__

#define __TMWTYPES__

#include <limits.h>

/*===*

* Target hardware information

* Device type: 32-bit Generic

* Number of bits: char: 8 short: 16 int: 32

* long: 32 native word size: 32

* Byte ordering: Unspecified

* Signed integer division rounds to: Undefined

* Shift right on a signed integer as arithmetic shift: on

2-110

Interacting with the Build Process

===/

/* This ID is used to detect inclusion of an incompatible rtwtypes.h */

#define RTWTYPES_ID_C08S16I32L32N32F1

/*===*

* Fixed width word size data types: *

* int8_T, int16_T, int32_T - signed 8, 16, or 32 bit integers *

* uint8_T, uint16_T, uint32_T - unsigned 8, 16, or 32 bit integers *

* real32_T, real64_T - 32 and 64 bit floating point numbers *

===/

typedef signed char int8_T;

typedef unsigned char uint8_T;

typedef short int16_T;

typedef unsigned short uint16_T;

typedef int int32_T;

typedef unsigned int uint32_T;

typedef float real32_T;

typedef double real64_T;

. . .

For GRT and ERT targets, the location of rtwtypes.h depends on
whether the build uses the shared utilities location. If you use a shared
location, the Real-Time Workshop build process places rtwtypes.h in
slprj/target/_sharedutils; otherwise, it places rtwtypes.h in the
standard build directory (model_target_rtw). See “Sharing Utility
Functions” on page 4-51 for more information on when and how to use the
shared utilities location.

The header file rtwtypes.h should be included by source files that use
Real-Time Workshop type names or other Real-Time Workshop definitions. A
typical example is for files that declare variables using a Real-Time Workshop
data type, for example, uint32_T myvar;.

A source file that is intended to be used by the Real-Time Workshop
product and by a Simulink S-function can leverage the preprocessor macro
MATLAB_MEX_FILE, which is defined by the mex function:

#ifdef MATLAB_MEX_FILE

2-111

2 Code Generation and the Build Process

#include "tmwtypes.h"
#else
#include "rtwtypes.h"
#endif

A source file meant to be used as the Real-Time Workshop main.c (or .cpp)
file would also include rtwtypes.h without any preprocessor checks.

#include "rtwtypes.h"

Custom source files that are generated using the Target Language Compiler
can also emit these include statements into their generated file.

model.h. The header file model.h declares model data structures and a public
interface to the model entry points and data structures. This header file also
provides an interface to the real-time model data structure (model_M) by
using access macros. If your code interfaces to model functions or model data
structures, as illustrated below, you should include model.h:

• Exported global signals

extern int32_T INPUT; /* '<Root>/In' */

• Global structure definitions

/* Block parameters (auto storage) */
extern Parameters_mymodel mymodel_P;

• RTM macro definitions

#ifndef rtmGetSampleTime
define rtmGetSampleTime(rtm, idx)
((rtm)->Timing.sampleTimes[idx])
#endif

• Model entry point functions (ERT example)

extern void mymodel_initialize(void);
extern void mymodel_step(void);
extern void mymodel_terminate(void);

2-112

Interacting with the Build Process

A Real-Time Workshop target’s main.c (or .cpp) file should include model.h.
If the main.c (or .cpp) file is generated from a TLC script, the TLC source
can include model.h using:

#include "%<CompiledModel.Name>.h"

If main.c or main.cpp is a static source file, a fixed header filename can be
used, rtmodel.h for GRT or autobuild.h for ERT. These files include the
model.h header file:

#include "model.h" /* If main.c is generated */

or

#include "rtmodel.h" /* If static main.c is used with GRT */

or

#include "autobuild.h" /* If static main.c is used with ERT */

Other custom source files may also need to include model.h if there is a need
to interface to model data, for example exported global parameters or signals.
The model.h file itself can have additional header dependencies, as listed in
the tables System Header Files on page 2-113 and Real-Time Workshop®
Header Files on page 2-115, due to requirements of generated code.

System Header Files

Header File Purpose GRT Targets ERT Targets

<float.h> Defines math
constants

Not included Included when generated code
honors the Stop time solver
configuration parameter due to
one of the following Real-Time
Workshop interface option
settings:

• MAT-file logging selected

• Interface set to External
mode

2-113

2 Code Generation and the Build Process

System Header Files (Continued)

Header File Purpose GRT Targets ERT Targets

<math.h> Provides
floating-point math
functions

Included when the
model contains
a floating-point
math function

Included when the model
contains a floating-point math
function that is not overridden
by an entry in the target function
library (TFL) selected for the
model

For more information about
TFLs, see “Selecting and
Viewing Target Function
Libraries” on page 2-78 in this
chapter, and the TFL chapter
in the Real-Time Workshop
Embedded Coder User’s Guide.

<stddef.h> Defines NULL Included when the
model contains a
utility function
that needs it

Included when the model
contains a utility function that
needs it

<stdio.h> Provides file I/O
functions

Included when the
model includes a
To File block

Included when the model
includes a To File block, or
you select Configuration
Parameters > Real-Time
Workshop > Interface
> MAT-file logging. See
“MAT-file logging”.

2-114

Interacting with the Build Process

System Header Files (Continued)

Header File Purpose GRT Targets ERT Targets

<stdlib.h> Provides utility
functions such as
div() and abs()

Included when the
model includes
• A Stateflow
chart

• A Math
Function block
configured for
mod() or rem(),
which generate
calls to div()

Included when the model
includes
• A Stateflow chart and
you select the Support
floating-point numbers
Real-Time Workshop
interface configuration
parameter

• A Math Function block
configured for mod() or rem(),
which generate calls to div()

<string.h> Provides memory
functions such
as memset() and
memcpy()

Always included
due to use of
memset() in model
initialization code

Included when block or model
initialization code calls memcpy()
or memset()

For a list of relevant blocks,
enter showblockdatatypetable
in the MATLAB Command
Window and look for blocks with
the N2 note.

To omit calls to memset()
from model initialization code,
select theRemove root level
I/O zero initialization and
Remove internal data zero
initialization optimization
configuration parameters.

Real-Time Workshop Header Files

Header File Purpose GRT Targets ERT Targets

dt_info.h Defines data
structures for
external mode

Included when you
configure a model
for external mode

Included when you configure a
model for external mode

2-115

2 Code Generation and the Build Process

Real-Time Workshop Header Files (Continued)

Header File Purpose GRT Targets ERT Targets

ext_work.h Defines external
mode functions

Included when you
configure a model
for external mode

Included when you configure a
model for external mode

fixedpoint.h Provides
fixed-point support
for noninlined
S-functions

Always included Included when either of the
following conditions exists:
• The model uses noninlined
S-functions

• You select the Real-Time
Workshop interface
configuration parameter GRT
compatible call interface

model_types.h Defines
model-specific data
types

Always included Always included

rt_logging.h Supports MAT-file
logging

Always included Included when you select
Configuration Parameters
> Real-Time Workshop >
Interface > MAT-file logging.
See “MAT-file logging”.

rt_nonfinite.h Provides support
for nonfinite
numbers in the
generated code

Always included Included when you select
one of the following
Real-Time Workshop interface
configuration parameters:

• MAT-file logging

• Support non-finite
numbers (and the generated
code requires nonfinite
numbers)

2-116

Interacting with the Build Process

Real-Time Workshop Header Files (Continued)

Header File Purpose GRT Targets ERT Targets

rtw_continuous.h Supports
continuous time

Always
included by
simstruc_types.h

Included when you select the
Real-Time Workshop interface
configuration parameter
Support continuous time
and simstruc.h is not already
included

rtw_extmode.h Supports external
mode

Always
included by
simstruc_types.h

Included when you configure
the model for external mode
and simstruc.h is not already
included

rtw_matlogging.h Supports MAT-file
logging

Included by
simstruc_types.h
and
rtw_logging.h

Included by rtw_logging.h

rtw_solver.h Supports
continuous states

Always
included by
simstruc_types.h

Included when you select the
Real-Time Workshop interface
configuration parameter
Support floating-point
numbers and simstruc.h is not
already included

rtwtypes.h Defines Real-Time
Workshop data
types; generated
file

Always included;
use the complete
version of the file,
which includes
tmwtypes.h and
simstruc_types.h
(see
simstruc_types.h
for dependencies)

Always included; use the
complete or optimized version
of the file as explained in
“rtwtypes.h” on page 2-109

2-117

2 Code Generation and the Build Process

Real-Time Workshop Header Files (Continued)

Header File Purpose GRT Targets ERT Targets

simstruc.h Provides support
for calling
noninlined
S-functions that
use the Simstruct
definition; also
includes limits.h,
string.h,
tmwtypes.h, and
simstruc_types.h

Always included Included when either of the
following conditions exists:
• The model uses noninlined
S-functions

• You select the Real-Time
Workshop interface
configuration parameter GRT
compatible call interface

simstruc_types.h Provides
definitions used by
generated code
and includes
the header files
rtw_matlogging.h,
rtw_extmode.h,
rtw_continuous.h,
rtw_solver.h, and
sysran_types.h

Always included
with rtwtypes.h

Not included; rtwtypes.h
contains needed definitions and
model.h contains needed header
files

sysran_types.h Supports external
mode

Always
included by
simstruc_types.h

Included when you configure
the model for external mode
and simstruc.h is not already
included

Note Header file dependencies noted in the preceding table apply to the
system target files grt.tlc and ert.tlc. Targets derived from these base
targets may have additional header dependencies. Also, code generation
for blocks from blocksets, embedded targets, and custom S-functions may
introduce additional header dependencies.

2-118

Interacting with the Build Process

Dependencies of the Model’s Generated code
The Real-Time Workshop software can directly build standalone executables
for the host system such as when using the GRT target. Several processor-
and operating system-specific targets also provide automated builds using a
cross-compiler. All of these targets are typically makefile-based interfaces for
which the Real-Time Workshop software provides a “Template MakeFile
(TMF) to makefile” conversion capability. Part of this conversion process is to
include in the generated makefile all of the source file, header file, and library
file information needed (the dependencies) for a successful compilation.

In other instances, the generated model code needs to be integrated into a
specific application. Or, it may be desired to enter the generated files and
any file dependencies into a configuration management system. This section
discusses the various aspects of the generated code dependencies and how to
determine them.

Typically, the generated code for a model consists of a small set of files:

• model.c or model.cpp

• model.h

• model_data.c or model_data.cpp

• model_private.h

• rtwtypes.h

These are generated in the build directory for a standalone model or a
subdirectory under the slprj directory for a model reference target. There is
also a top-level main.c (or .cpp) file that calls the top-level model functions
to execute the model. main.c (or .cpp) is a static (not generated) file (such
as grt_main.c or grt_main.cpp for GRT-based targets), and is either a
static file (ert_main.c or ert_main.cpp) or is dynamically generated for
ERT-based targets.

The preceding files also have dependencies on other files, which occur due to:

• Including other header files

• Using macros declared in other header files

• Calling functions declared in other source files

2-119

2 Code Generation and the Build Process

• Accessing variables declared in other source files

These dependencies are introduced for a number of reasons such as:

• Blocks in a model generate code that makes function calls. This can occur
in several forms:

- The called functions are declared in other source files. In some cases
such as a blockset, these source file dependencies are typically managed
by compiling them into a library file.

- In other cases, the called functions are provided by the compilers own
run-time library, such as for functions in the ANSI16 C header, math.h.

- Some function dependencies are themselves generated files. Some
examples are for fixed-point utilities and nonfinite support. These
dependencies are referred to as shared utilities. The generated functions
can appear in files in the build directory for standalone models or in
the _sharedutils directory under the slprj directory for builds that
involve model reference.

• Models with continuous time require solver source code files.

• Real-Time Workshop options such as external mode, C API, and MAT-file
logging are examples that trigger additional dependencies.

• Specifying custom code can introduce dependencies.

Providing the Dependencies. The Real-Time Workshop product provides
several mechanisms for feeding file dependency information into the
Real-Time Workshop build process. The mechanisms available to you depend
on whether your dependencies are block based or are model or target based.

For block dependencies, consider using

• S-functions and blocksets

- Directories that contain S-function MEX-files used by a model are added
to the header include path.

- Makefile rules are created for these directories to allow source code to
be found.

16. ANSI® is a registered trademark of the American National Standards Institute, Inc.

2-120

Interacting with the Build Process

- For S-functions that are not inlined with a TLC file, the S-function
source filename is added to the list of sources to compile.

- The S-Function block parameter SFunctionModules provides the ability
to specify additional source filenames.

- The rtwmakecfg.m mechanism provides further capability in specifying
dependencies. See “Using the rtwmakecfg.m API to Customize
Generated Makefiles” on page 10-95 for more information.

For more information on applying these approaches to legacy or custom
code integration, see Chapter 10, “Writing S-Functions for Real-Time
Workshop Code Generation”.

• S-Function Builder block, which provides its own GUI for specifying
dependency information

For model- or target-based dependencies, such as custom header files,
consider using

• The Real-Time Workshop/Custom Code pane of the Configuration
Parameters dialog box, which provides the ability to specify additional
libraries, source files, and include directories.

• TLC functions LibAddToCommonIncludes() and LibAddToModelSources(),
which allow you to specify dependencies during the TLC
phase. See “LibAddToCommonIncludes(incFileName)” and
“LibAddSourceFileCustomSection
(file, builtInSection, newSection)” in the Target Language Compiler
documentation for details. The Real-Time Workshop Embedded Coder
product also provides a TLC-based customization template capability for
generating additional source files.

Makefile Considerations. As previously mentioned, Real-Time Workshop
targets are typically makefile based and the Real-Time Workshop product
provides a “Template MakeFile (TMF) to makefile” conversion capability. The
template makefile contains a token expansion mechanism in which the build
process expands different tokens in the makefile to include the additional
dependency information. The resulting makefile contains the complete
dependency information. See Developing Embedded Targets in the Real-Time
Workshop Embedded Coder documentation for more information on working
with template makefiles.

2-121

2 Code Generation and the Build Process

The generated makefile contains the following information:

• Names of the source file dependencies (by using various SRC variables)

• Directories where source files are located (by using unique rules)

• Location of the header files (by using the INCLUDE variables)

• Precompiled library dependencies (by using the LIB variables)

• Libraries which need to be compiled and created (by using rules and the
LIB variables)

A property of make utilities is that the specific location for a given source C or
C++ file does not need to be specified. If there is a rule for that directory and
the source filename is a prerequisite in the makefile, the make utility can find
the source file and compile it. Similarly, the C or C++ compiler (preprocessor)
does not require absolute paths to the headers. Given the name of header
file by using an #include directive and an include path, it is able to find
the header. The generated C or C++ source code depends on this standard
compiler capability.

Also, libraries are typically created and linked against, but occlude the specific
functions that are being used.

Although the build process is successful and can create a minimum-size
executable, these properties can make it difficult to manually determine the
minimum list of file dependencies along with their fully qualified paths. The
makefile can be used as a starting point to determining the dependencies
that the generated model code has.

An additional approach to determining the dependencies is by using linker
information, such as a linker map file, to determine the symbol dependencies.
The location of Real-Time Workshop and blockset source and header files is
provided below to assist in locating the dependencies.

Real-Time Workshop Static File Dependencies. Several locations in
the MATLAB directory tree contain static file dependencies specific to the
Real-Time Workshop product:

• matlabroot/rtw/c/src/

2-122

Interacting with the Build Process

This directory has subdirectories and contains additional files that may
need to be compiled. Examples include solver functions (for continuous
time support), external mode support files, C API support files, and
S-function support files. Source files in this directory are included into the
build process using in the SRC variables of the makefile.

• matlabroot/rtw/extern/include/*.h

• matlabroot/simulink/include/*.h

These directories contain additional header file dependencies such as
tmwtypes.h, simstruc_types.h, and simstruc.h.

Note For ERT-based targets, several header dependencies from the above
locations can be avoided. ERT-based targets generate the minimum
necessary set of type definitions, macros, and so on, in the file rtwtypes.h.

Blockset Static File Dependencies. Blockset products leverage the
rtwmakecfg.m mechanism to provide the Real-Time Workshop software with
dependency information. As such, the rtwmakecfg.m file provided by the
blockset contains the listing of include path and source path dependencies
for the blockset. Typically, blocksets create a library from the source files
which the generated model code can then link against. The libraries are
created and identified using the rtwmakecfg.m mechanism. The locations of
thertwmakecfg.m files for the blocksets are

• matlabroot/commblks/commblksdemos/rtwmakecfg.m

• matlabroot/commblks/commmex/rtwmakecfg.m

• matlabroot/dspblks/dspmex/rtwmakecfg.m

• matlabroot/fuzzy/fuzzy/rtwmakecfg.m

• matlabroot/physmod/drive/drive/rtwmakecfg.m

• matlabroot/physmod/mech/mech/rtwmakecfg.m

• matlabroot/physmod/powersys/powersys/rtwmakecfg.m

2-123

2 Code Generation and the Build Process

If the model being compiled uses one or more of these blocksets, you can
determine directory and file dependency information from the respective
rtwmakecfg.m file.

Specifying Include Paths in Real-Time Workshop Generated
Source Files
You can add #include statements to generated code. Such references can
come from several sources, including TLC scripts for inlining S-functions,
custom storage classes, bus objects, and data type objects. The included
files typically consist of header files for legacy code or other customizations.
Additionally, you can specify compiler include paths with the -I compiler
option. The Real-Time Workshop build process uses the specified paths to
search for included header files.

Usage scenarios for the generated code include, but are not limited to, the
following:

• Real-Time Workshop generated code is compiled with a custom build
process that requires an environment-specific set of #include statements.

In this scenario, the Real-Time Workshop code generator is likely invoked
with the Generate code only check box selected. It may be appropriate to
use fully qualified paths, relative paths, or just the header filenames in the
#include statements, and additionally leverage include paths.

• The generated code is compiled using the Real-Time Workshop build
process.

In this case, compiler include paths (-I) can be provided to the Real-Time
Workshop build process in several ways:

- The Real-Time Workshop > Custom Code pane of the Configuration
Parameters dialog box allows you to specify additional include paths.
The include paths are propagated into the generated makefile when the
template makefile (TMF) is converted to the actual makefile.

- The rtwmakecfg.mmechanism allows S-functions to introduce additional
include paths into the Real-Time Workshop build process. The include
paths are propagated when the template makefile (TMF) is converted to
the actual makefile.

2-124

Interacting with the Build Process

- When building a custom Real-Time Workshop target that is
makefile-based, the desired include paths can be directly added into the
targets template makefile.

- A USER_INCLUDES make variable that specifies a directory in which the
Real-Time Workshop build process should search for included files can
be specified on the Real-Time Workshop make command. For example,

make_rtw USER_INCLUDES=-Id:\work\feature1

The user includes are passed to the command-line invocation of the make
utility, which will add them to the overall flags passed to the compiler.

Recommended Approaches. The following are recommended approaches
for using #include statements and include paths in conjunction with the
Real-Time Workshop build process to help ensure that the generated code
remains portable and that compatibility problems with future versions are
minimized.

Assume that additional header files are located at

c:\work\feature1\foo.h
c:\work\feature2\bar.h

• A simple approach is to ensure all #include statements contain only the
filename such as

#include "foo.h"
#include "bar.h"

Then, the include path passed to the compiler should contain all directories
where the headers files exist:

cc -Ic:\work\feature1 -Ic:\work\feature2 ...

• A second recommended approach is to use relative paths in #include
statements and provide an anchor directory for these relative paths using
an include path, for example,

#include "feature1\foo.h"
#include "feature2\bar.h"

2-125

2 Code Generation and the Build Process

Then specify the anchor directory (for example \work) to the compiler:

cc -Ic:\work ...

Directory Dependencies to Avoid. When using the Real-Time Workshop
build process, avoid dependencies on its build and project directory structure,
such as the model_ert_rtw build directory or the slprj project directory.
Thus, the #include statements should not just be relative to where the
generated source file exists. For example, if your MATLAB current working
directory is c:\work, a generated model.c source file would be generated
into a subdirectory such as

c:\work\model_ert_rtw\model.c

The model.c file would have #include statements of the form

#include "..\feature1\foo.h"
#include "..\feature2\bar.h"

However, as this creates a dependency on the Real-Time Workshop directory
structure, you should instead use one of the approaches described above.

Reloading Code from the Model Explorer
You can reload the code generated for a model from the Model Explorer.

1 Click the Code for model node in the Model Hierarchy pane.

2 In the Code pane, click the Refresh link.

2-126

Interacting with the Build Process

The Real-Time Workshop software reloads the code for the model from the
build directory.

Rebuilding Generated Code
If you update generated source code or makefiles manually to add
customizations, you can rebuild the files with the rtwrebuild command. This
command recompiles the modified files by invoking the generated makefile.
To use this command from the Model Explorer,

1 In theModel Hierarchy pane, expand the node for the model of interest.

2 Click the Code for model node.

3 In the Code pane, click run rtwrebuild, listed to the right of the label
Code Recompile Command.

Alternatively, you can use the command as follows:

2-127

2 Code Generation and the Build Process

If... Issue the Command...

Your current working directory is the
model’s build directory

rtwrebuild()

Your current working directory is one
level above the model’s build directory
(pwd when the Real-Time Workshop
build was initiated)

rtwrebuild(model)

You want to specify the path to the
model’s build directory

rtwrebuild(path)

If your model includes submodels, the Real-Time Workshop software builds
the submodels recursively before rebuilding the top model.

Profiling Generated Code
If you have a need to profile the generated code for a model, you can do so
with the TLC hook function interface demonstrated in rtwdemo_profile.
To use the profile hook interface, you

1 Set up a TLC file that defines the following TLC hook functions:

Function Input Arguments Description

ProfilerHeaders void Return an array of the header filenames
to be included in the generated code.

ProfilerTypedefs void Generate code statements for profiler
type definitions.

ProfilerGlobalData system Generate code statements that declare
global data.

ProfilerExternDataDecls system Generate code statements that create
global extern declarations.

ProfilerSysDecl system, functionType Generate code for variable declarations
that needed within the scope of an
atomic subsystem’s Output, Update,
OutputUpdate, or Derivatives
function.

2-128

Interacting with the Build Process

Function Input Arguments Description

ProfilerSysStart system, functionType Generate code that starts the
profiler within the scope of an
atomic subsystem’s Output, Update,
OutputUpdate, or Derivatives
function.

ProfilerSysEnd system, functionType Generate code that stops the profiler
within the scope of an atomic
subsystem’s Output, Update,
OutputUpdate, or Derivatives
function.

ProfilerSysTerminate system Generate code that terminates profiling
(and possibly reports results) for an
atomic subsystem.

For an example of a .tlc file that applies these functions, see
matlabroot/toolbox/rtw/rtwdemos/rtwdemo_profile_hook.tlc.

2 In your target.tlc file, define the following global variables:

Define... To Be...

ProfilerTLC The name of the TLC file you created in
step 1

ProfileGenCode TLC_TRUE

3 Build the model. The build process embeds the profiling code in appropriate
locations in the generated code for your model.

For details on the hook function interface, see the instructions and sample
.tlc file provided with rtwdemo_profile. For details on programming a
.tlc file and defining TLC configuration variables, see the Target Language
Compiler documentation.

2-129

2 Code Generation and the Build Process

Customizing the Build Process

In this section...

“Controlling the Compiling and Linking Phases of the Build Process” on
page 2-130
“Cross-Compiling Code Generated on a Microsoft Windows System” on
page 2-131
“Controlling the Location and Naming of Libraries During the Build
Process” on page 2-134
“Recompiling Precompiled Libraries” on page 2-139
“Customizing Post Code Generation Build Processing” on page 2-139

Controlling the Compiling and Linking Phases of the
Build Process
After generating code for a model, the Real-Time Workshop build process
determines whether or not to compile and link an executable program. This
decision is governed by the following:

• Generate code only option

When you select this option, the Real-Time Workshop software generates
code for the model, including a makefile.

• Generate makefile option

When you clear this option, the Real-Time Workshop software does
not generate a makefile for the model. You must specify any post code
generation processing, including compilation and linking, as a user-defined
command, as explained in “Customizing Post Code Generation Build
Processing” on page 2-139.

• Makefile-only target

The Microsoft Visual C++ Project Makefile versions of the grt, grt_malloc,
and Real-Time Workshop Embedded Coder target configurations generate
a Visual C++ project makefile (model.mak). To build an executable, you
must open model.mak in the Visual C++ IDE and compile and link the
model code.

2-130

Customizing the Build Process

• HOST template makefile variable

The template makefile variable HOST identifies the type of system upon
which your executable is intended to run. The variable can be set to one of
three possible values: PC, UNIX, or ANY.

By default, HOST is set to UNIX in template makefiles designed for use with
The Open Group UNIX platforms (such as grt_unix.tmf), and to PC in the
template makefiles designed for use with development systems for the
PC (such as grt_vc.tmf).

If the Simulink software is running on the same type of system as that
specified by the HOST variable, then the executable is built. Otherwise,

- If HOST = ANY, an executable is still built. This option is useful when
you want to cross-compile a program for a system other than the one the
Simulink software is running on.

- Otherwise, processing stops after generating the model code and the
makefile; the following message is displayed on the MATLAB command
line.

Make will not be invoked - template makefile is for a different host

• TGT_FCN_LIB template makefile variable

The template makefile variable TGT_FCN_LIB specifies compiler
command line options. The line in the makefile is TGT_FCN_LIB =
|>TGT_FCN_LIB<|. By default, the Real-Time Workshop software expands
the |>TGT_FCN_LIB<| token to match the setting of the Target function
library option on the Real-Time Workshop/Interface pane of the
Configuration Parameters dialog box. Possible values for this option
include ANSI_C, C99 (ISO), and GNU99 (GNU). You can use this token in a
makefile conditional statement to specify compiler options to be used. For
example, if you set the token to C99 (ISO), the compiler might need an
additional option set to support C99 library functions.

Cross-Compiling Code Generated on a Microsoft
Windows System
If you need to generate code with the Real-Time Workshop software on a
Microsoft Windows system but compile the generated code on a different
supported platform, you can do so by modifying your TMF and model
configuration parameters. For example, you would need to do this if you

2-131

2 Code Generation and the Build Process

develop applications with the MATLAB and Simulink products on a Windows
system, but you run your generated code on a Linux system.

To set up a cross-compilation development environment, do the following
(here a Linux system is the destination platform):

1 On your Windows system, copy the UNIX TMF for your target to a local
directory. This will be your working directory for initiating code generation.
For example, you might copy matlabroot/rtw/c/grt/grt_unix.tmf to
D:/work/my_grt_unix.tmf.

2 Make the following changes to your copy of the TMF:

• Add the following line near the SYS_TARGET_FILE = line:

MAKEFILE_FILESEP = /

• Search for the line 'ifeq ($(OPT_OPTS),$(DEFAULT_OPT_OPTS))' and,
for each occurrence, remove the conditional logic and retain only the
'else' code. That is, remove everything from the 'if' to the 'else',
inclusive, as well as the closing 'endif'. Only the lines from the 'else'
portion should remain. This forces the run-time libraries to build for
a Linux system.

3 Open your model and make the following changes in the Real-Time
Workshop pane of the Configuration Parameters dialog:

• Specify the name of your new TMF in the Template makefile text box
(for example, my_grt_unix.tmf).

• Select Generate code only and click Apply.

4 Generate the code.

5 If the build directory (directory from which the model was built)
is not already Linux accessible, copy it to a Linux accessible path.
For example, if your build directory for the generated code was
D:\work\mymodel_grt_rtw, copy that entire directory tree to a path such
as /home/user/mymodel_grt_rtw.

6 If the MATLAB directory tree on the Windows system is Linux
accessible, skip this step. Otherwise, you must copy all the include and
source directories to a Linux accessible drive partition, for example,

2-132

Customizing the Build Process

/home/user/myinstall. These directories appear in the makefile after
MATLAB_INCLUDES = and ADD_INCLUDES = and can be found by searching
for $(MATLAB_ROOT). Any path that contains $(MATLAB_ROOT) must be
copied. Here is an example list (your list will vary depending on your
model):

$(MATLAB_ROOT)/rtw/c/grt
$(MATLAB_ROOT)/extern/include
$(MATLAB_ROOT)/simulink/include
$(MATLAB_ROOT)/rtw/c/src
$(MATLAB_ROOT)/rtw/c/tools

Additionally, paths containing $(MATLAB_ROOT) in the build rules (lines
with %.o :) must be copied. For example, based on the build rule

%.o : $(MATLAB_ROOT)/rtw/c/src/ext_mode/tcpip/%.c

the following directory should be copied:

$(MATLAB_ROOT)/rtw/c/src/ext_mode/tcpip

Note The path hierarchy relative to the MATLAB root must be
maintained. For example, c:\MATLAB\rtw\c\tools* would be copied to
/home/user/mlroot/rtw/c/tools/*.

For some blocksets, it is easiest to copy a higher-level directory that
includes the subdirectories listed in the makefile. For example, the Signal
Processing Blockset product requires the following directories to be copied:

$(MATLAB_ROOT)/toolbox/dspblks
$(MATLAB_ROOT)/toolbox/rtw/dspblks

7 Make the following changes to the generated makefile:

• Set both MATLAB_ROOT and ALT_MATLAB_ROOT equal to the Linux
accessible path to matlabroot (for example, home/user/myinstall).

• Set COMPUTER to the appropriate computer value, such as GLNX86.
Enter help computer in the MATLAB Command Window for a list of
computer values.

2-133

2 Code Generation and the Build Process

• In the ADD_INCLUDES list, change the build directory (designating the
location of the generated code on the Windows system) and parent
directories to Linux accessible include directories. For example, change
D:\work\mymodel_grt_rtw\ to /home/user/mymodel_grt_rtw.

Additionally, if matlabroot is a UNC path, such as
\\my-server\myapps\matlab, replace the hard-coded MATLAB root
with $(MATLAB_ROOT).

8 From a Linux shell, compile the code you generated on the Windows
system. You can do this by running the generated model.bat file or by
typing the make command line as it appears in the .bat file.

Note If errors occur during makefile execution, you may need to run the
dos2unix utility on the makefile (for example, dos2unix mymodel.mk).

Controlling the Location and Naming of Libraries
During the Build Process
Two configuration parameters, TargetPreCompLibLocation and
TargetLibSuffix, are available for you to use to control values placed in
Real-Time Workshop generated makefiles during the token expansion from
template makefiles (TMFs). You can use these parameters to

• Specify the location of precompiled libraries, such as blockset libraries or
the Real-Time Workshop library. Typically, a target has cross-compiled
versions of these libraries and places them in a target-specific directory.

• Control the suffix applied to library file names (for example, _target.a
or _target.lib).

Targets can set the parameters inside the system target file (STF) select
callback. For example:

function mytarget_select_callback_handler(varargin)
hDig=varargin{1};
hSrc=varargin{2};
slConfigUISetVal(hDig, hSrc,...
'TargetPreCompLibLocation', 'c:\mytarget\precomplibs');
slConfigUISetVal(hDig, hSrc, 'TargetLibSuffix',...

2-134

Customizing the Build Process

'_diab.library');

The TMF has corresponding expansion tokens:

|>EXPAND_LIBRARY_LOCATION<|
|>EXPAND_LIBRARY_SUFFIX<|

Alternatively, you can use a call to the set_param function. For example:

set_param(model,'TargetPreCompLibLocation',...
'c:\mytarget\precomplibs');

Note If your model contains referenced models, you can use the make option
USE_MDLREF_LIBPATHS to control whether libraries used by the referenced
models are copied to the parent model’s build directory. For more information,
see “Controlling the Location of Model Reference Libraries” on page 2-136.

Specifying the Location of Precompiled Libraries
Use the TargetPreCompLibLocation configuration parameter to:

• Override the precompiled library location specified in the rtwmakecfg.m
file (see “Using the rtwmakecfg.m API to Customize Generated Makefiles”
on page 10-95 for details)

• Precompile and distribute target-specific versions of product libraries (for
example, the Signal Processing Blockset product)

For a precompiled library, such as a blockset library or the Real-Time
Workshop library, the location specified in rtwmakecfg.m is typically a
location specific to the blockset or the Real-Time Workshop product. It is
expected that the library will exist in this location and it is linked against
during Real-Time Workshop builds.

However, for some applications, such as custom targets, it is preferable to
locate the precompiled libraries in a target-specific or other alternate location
rather than in the location specified in rtwmakecfg.m. For a custom target,
the library is expected to be created using the target-specific cross-compiler
and placed in the target-specific location for use during the Real-Time

2-135

2 Code Generation and the Build Process

Workshop build process. All libraries intended to be supported by the target
should be compiled and placed in the target-specific location.

You can set up the TargetPreCompLibLocation parameter in its select
callback. The path that you specify for the parameter must be a fully qualified
absolute path to the library location. Relative paths are not supported. For
example:

slConfigUISetVal(hDlg, hSrc, 'TargetPreCompLibLocation',...
'c:\mytarget\precomplibs');

Alternatively, you set the parameter with a call to the set_param function.
For example:

set_param(model,'TargetPreCompLibLocation',...
'c:\mytarget\precomplibs');

During the TMF-to-makefile conversion, the Real-Time Workshop build
process replaces the token |>EXPAND_LIBRARY_LOCATION<| with the specified
location in the rtwmakecfg.m file. For example, if the library name specified
in the rtwmakecfg.m file is 'rtwlib', the TMF expands from:

LIBS += |>EXPAND_LIBRARY_LOCATION<|\|>EXPAND_LIBRARY_NAME<|\
|>EXPAND_LIBRARY_SUFFIX<|

to:

LIBS += c:\mytarget\precomplibs\rtwlib_diab.library

By default, TargetPreCompLibLocation is an empty string and the Real-Time
Workshop build process uses the location specified in rtwmakecfg.m for the
token replacement.

Controlling the Location of Model Reference Libraries
On platforms other than the Apple® Macintosh® platform, when building a
model that uses referenced models, the Real-Time Workshop build process by
default:

• Copies libraries used by the referenced models to the parent model’s build
directory

2-136

Customizing the Build Process

• Assigns the filenames of the libraries to MODELREF_LINK_LIBS in the
generated makefile

For example, if a model includes a referenced model sub, the Real-Time
Workshop build process assigns the library name sub_rtwlib.lib to
MODELREF_LINK_LIBS and copies the library file to the parent model’s build
directory. This definition is then used in the final link line, which links
the library into the final product (usually an executable). This technique
minimizes the length of the link line.

On the Macintosh platform, and optionally on other platforms, the Real-Time
Workshop build process:

• Does not copy libraries used by the referenced models to the parent model’s
build directory

• Assigns the relative paths and filenames of the libraries to
MODELREF_LINK_LIBS in the generated makefile

When using this technique, the Real-Time Workshop build process
assigns a relative path such as ../slprj/grt/sub/sub_rtwlib.lib to
MODELREF_LINK_LIBS and uses the path to gain access to the library file at
link time.

To change to the non-default behavior on platforms other than the Macintosh
platform, enter the following command in the Make command field of the
Real-Time Workshop pane of the Configuration Parameters dialog box:

make_rtw USE_MDLREF_LIBPATHS=1

If you specify other Make command arguments, such as OPTS="-g", you can
specify the multiple arguments in any order.

To return to the default behavior, set USE_MDLREF_LIBPATHS to 0, or remove it.

Controlling the Suffix Applied to Library File Names
Use the TargetLibSuffix configuration parameter to control the suffix
applied to library names (for example, _target.lib or _target.a).
The specified suffix string must include a period (.). You can apply
TargetLibSuffix to the following libraries:

2-137

2 Code Generation and the Build Process

• Libraries on which a target depends, as specified in the rtwmakecfg.m API.
You can use TargetLibSuffix to affect the suffix of both precompiled and
non-precompiled libraries configured from the rtwmakecfg API. For details,
see “Using the rtwmakecfg.m API to Customize Generated Makefiles” on
page 10-95.

In this case, a target can set the parameter in its select callback. For
example:

slConfigUISetVal(hDlg, hSrc, 'TargetLibSuffix',...
'_diab.library');

Alternatively, you can use a call to the set_param function. For example:

set_param(model,'TargetLibSuffix','_diab.library');

During the TMF-to-makefile conversion, the Real-Time Workshop build
process replaces the token |>EXPAND_LIBRARY_SUFFIX<| with the specified
suffix. For example, if the library name specified in the rtwmakecfg.m file
is 'rtwlib', the TMF expands from:

LIBS += |>EXPAND_LIBRARY_LOCATION<|\|>EXPAND_LIBRARY_NAME<|\
|>EXPAND_LIBRARY_SUFFIX<|

to:

LIBS += c:\mytarget\precomplibs\rtwlib_diab.library

By default, TargetLibSuffix is set to an empty string. In this
case, the Real-Time Workshop build process replaces the token
|>EXPAND_LIBRARY_SUFFIX<| with an empty string.

• Shared utility library and the model libraries created with model
reference. For these cases, associated makefile variables do not require the
|>EXPAND_LIBRARY_SUFFIX<| token. Instead, the Real-Time Workshop
build process includes TargetLibSuffix implicitly. For example, for a top
model named topmodel with submodels named submodel1 and submodel2,
the top model’s TMF is expanded from:

SHARED_LIB = |>SHARED_LIB<|
MODELLIB = |>MODELLIB<|
MODELREF_LINK_LIBS = |>MODELREF_LINK_LIBS<|

2-138

Customizing the Build Process

to:

SHARED_LIB = \
..\slprj\ert_sharedutils\rtwshared_diab.library
MODELLIB = topmodellib_diab.library
MODELREF_LINK_LIBS = \
submodel1_rtwlib_diab.library submodel2_rtwlib_diab.library

By default, the TargetLibSuffix parameter is an empty string. In this
case, the Real-Time Workshop build process chooses a default suffix
for these three tokens using a file extension of .lib on Windows hosts
and .a on UNIX hosts. (For model reference libraries, the default suffix
additionally includes _rtwlib.) For example, on a Windows host, the
expanded makefile values would be:

SHARED_LIB = ..\slprj\ert_sharedutils\rtwshared.lib
MODELLIB = topmodellib.lib
MODELREF_LINK_LIBS = submodel1_rtwlib.lib submodel2_rtwlib.lib

Recompiling Precompiled Libraries
You can recompile precompiled libraries included as part of the Real-Time
Workshop product, such as rtwlib or dsplib, by using a supplied M-file
function, rtw_precompile_libs. You might consider doing this if you need
to customize compiler settings for various platforms or environments. For
details on using rtw_precompile_libs, see “Precompiling S-Function
Libraries” on page 10-101.

Customizing Post Code Generation Build Processing
The Real-Time Workshop product provides a set of tools, including a build
information object, you can use to customize build processing that occurs after
code generation. You might use such customizations for target development
or the integration of third-party tools into your application development
environment. The next figure and the steps that follow show the general
workflow for setting up such customizations.

2-139

2 Code Generation and the Build Process

��+��
����"��	���
�

�����	����������

 ���
���
��!�
����"��	���
�

�����	����������

��""�������������

�����	���

����

������	�
����������%

,����	�
�-%

'��

&�

'��

&�

�����������"��	���
�

�����	����������

1 Program the post code generation command.

2 Define the post code generation command.

3 Suppress makefile generation, if appropriate for your application.

4 Build the model.

5 Modify the command, if necessary, and rebuild the model. Repeat this step
until the build results are acceptable.

Build Information Object
At the start of a model build, the Real-Time Workshop build process logs
the following build option and dependency information to a temporary build
information object:

2-140

Customizing the Build Process

• Compiler options

• Preprocessor identifier definitions

• Linker options

• Source files and paths

• Include files and paths

• Precompiled external libraries

You can retrieve information from and add information to this object by
using an extensive set of functions. For a list of available functions and
detailed function descriptions, see “Functions — Alphabetical List” in the
Real-Time Workshop documentation. “Programming a Post Code Generation
Command” on page 2-141 explains how to use the functions to control post
code generation build processing.

Programming a Post Code Generation Command
For certain applications, it might be necessary to control aspects of the build
process after the code generation. For example, this is necessary when
you develop your own target, or you want to apply an analysis tool to the
generated code before continuing with the build process. You can apply this
level of control to the build process by programming and then defining a post
code generation command.

A post code generation command is an M-file that typically calls functions
that get data from or add data to the model’s build information object. You
can program the command as a script or function.

If You Program the
Command as a...

Then the...

Script Script can gain access to the model name and
the build information directly

Function Function can pass the model name and the
build information as arguments

If your post code generation command calls user-defined functions, make sure
the functions are on the MATLAB path. If the Real-Time Workshop build

2-141

2 Code Generation and the Build Process

process cannot find a function you use in your command, the build process
errors out.

You can then call any combination of build information functions to customize
the model’s post code generation build processing.

The following example shows a fragment of a post code generation command
that gets the filenames and paths of the source and include files generated for
a model for analysis.

function analyzegencode(buildInfo)
% Get the names and paths of all source and include files
% generated for the model and then analyze them.

% buildInfo - build information for my model.

% Define cell array to hold data.
MyBuildInfo={};

% Get source file information.
MyBuildInfo.srcfiles=getSourceFiles(buildInfo, true, true);
MyBuildInfo.srcpaths=getSourcePaths(buildInfo, true);

% Get include (header) file information.
MyBuildInfo.incfiles=getIncludeFiles(buildInfo, true, true);
MyBuildInfo.incpaths=getIncludePaths(buildInfo, true);

% Analyze generated code.
.
.
.

For a list of available functions and detailed function descriptions, see
“Functions — Alphabetical List” in the Real-Time Workshop documentation.

Defining a Post Code Generation Command
After you program a post code generation command, you need to inform the
Real-Time Workshop build process that the command exists and to add it to
the model’s build processing. You do this by defining the command with the
PostCodeGenCommand model configuration parameter. When you define a post

2-142

Customizing the Build Process

code generation command, the Real-Time Workshop build process evaluates
the command after generating and writing the model’s code to disk and before
generating a makefile.

As the following syntax lines show, the arguments that you specify when
setting the configuration parameter varies depending on whether you program
the command as a script, function, or set of functions.

Note When defining the command as a function, you can specify an arbitrary
number of input arguments. To pass the model’s name and build information
to the function, specify identifiers modelName and buildInfo as arguments.

Script

set_param(model, 'PostCodeGenCommand',...
'pcgScriptName');

Function

set_param(model, 'PostCodeGenCommand',...
'pcgFunctionName(modelName)');

Multiple Functions

pcgFunctions=...
'pcgFunction1Name(modelName);...
pcgFunction2Name(buildInfo)';
set_param(model, 'PostCodeGenCommand',...
pcgFunctions);

The following call to set_param defines PostCodGenCommand to evaluate the
function analyzegencode.

set_param(model, 'PostCodeGenCommand',...
'analyzegencode(buildInfo)');

2-143

2 Code Generation and the Build Process

Suppressing Makefile Generation
The Real-Time Workshop product provides the ability to suppress makefile
generation during the build process. For example, you might do this to
integrate tools into the build process that are not driven by makefiles.

To instruct the Real-Time Workshop build process to not generate a makefile,
do one of the following:

• Clear the Generate makefile option on the Real-Time Workshop pane
of the Configuration Parameters dialog box.

• Set the value of the configuration parameter GenerateMakefile to off.

When you suppress makefile generation,

• You no longer can explicitly specify a make command or template makefile.

• You must specify your own instructions for any post code generation
processing, including compilation and linking, in a post code generation
command as explained in “Programming a Post Code Generation
Command” on page 2-141 and “Defining a Post Code Generation Command”
on page 2-142.

2-144

Validating Generated Code

Validating Generated Code

In this section...

“Viewing Generated Code” on page 2-145
“Tracing Generated Code Back to Your Simulink Model” on page 2-147

Viewing Generated Code
You can view generated code in HTML reports or in the Model Explorer.

Viewing Generated Code in Generated HTML Reports
One way to view the generated code is to set the Create code generation
report option on the Real-Time Workshop > Report pane of the
Configuration Parameters dialog box. When set, this option generates a
report that contains the following code generation details:

• A Summary section that lists version and date information, and a link to
open configuration settings used for generating the code, including TLC
options and Simulink model settings.

• A Generated Source Files section that contains a table of source code files
generated from your model. You can view the source code in the MATLAB
Help browser. When the Real-Time Workshop Embedded Coder product
is installed, hyperlinks are placed within the source code that let you
trace lines of code back to the blocks or subsystems from which the code
was generated. Click the hyperlinks to highlight the relevant blocks or
subsystems in a Simulink model window.

Note The report generated for various targets may vary slightly.

Viewing Generated Code in Model Explorer
Another way to view the HTML source code report is to use the Code Viewer
that is built into Model Explorer. You can browse generated files directly in
the Model Explorer.

2-145

2 Code Generation and the Build Process

When you generate code, or open a model that has generated code for its
current target configuration in your working directory, the Hierarchy (left)
pane of Model Explorer contains a node named Code for model. Under that
node are other nodes, typically called This Model and Shared Code. Clicking
This Model displays in the Contents (middle) pane a list of source code files
in the build directory of each model that is currently open. The next figure
shows code for the vdp model.

In this example, the file D:/work/test/vdp_grt_rtw/vdp.c is being viewed.
To view any file in the Contents pane, click it once.

The views in the Document (right) pane are read only. The code listings
there contain hyperlinks to functions and macros in the generated code. A
hyperlink for the source file (not the HTML version you are looking at) being
viewed sits above it. Clicking it opens that file in a text editing window where
you can modify its contents. This is not something you typically do with
generated source code, but in the event you have placed custom code files in
the build directory, you can edit them as well in this fashion. You can also
take advantage of your editor’s features such as multipane display or custom
syntax coloring.

2-146

Validating Generated Code

If an open model contains Model blocks, and if generated code for any of these
models exists in the current slprj directory, nodes for the referenced models
appear in the Hierarchy pane one level below the node for the top model.
Such referenced models do not need to be open for you to browse and read
their generated source files.

If the Real-Time Workshop software generates shared utility code for
a model, a node named Shared Code appears directly under the This
Model node. It collects any source files that exist in the appropriate
./slprj/target/_sharedutils subdirectory.

Note Currently, you cannot use the Search tool built into Model Explorer’s
toolbar to search generated code displayed in the Code Viewer. On PCs, typing
Ctrl+F when focused on the Document pane opens a Find dialog box you can
use to search for strings in the currently displayed file. You can also search for
text in the HTML report window, and can open any of the files in the editor.

Tracing Generated Code Back to Your Simulink Model
The Real-Time Workshop code generator writes system/block identification
tags in the generated code. The tags are designed to help you identify the block
in your source model that generated a given line of code. Tags are located
in comment lines above each line of generated code, and are provided with
hyperlinks in HTML code generation reports that you can optionally generate.

The tag format is <system>/block_name, where

• system is either

- The string 'root', or

- A unique system number assigned by the Simulink engine

• block_name is the name of the block.

The following code shows a tag comment adjacent to a line of code generated
by a Gain block at the root level of the source model:

/* Gain: '<Root>/UnDeadGain1' */
rtb_UnDeadGain1_h = dead_gain_U.In1 *

2-147

2 Code Generation and the Build Process

dead_gain_P.UnDeadGain1_Gain;

The following code shows a tag comment adjacent to a line of code generated
by a Gain block within a subsystem one level below the root level of the
source model:

/* Gain Block: <S1>/Gain */
dead_gain_B.temp0 *= (dead_gain_P.s1_Gain_Gain);

In addition to the tags, the Real-Time Workshop code generator documents
the tags for each model in comments in the generated header file model.h.
The following code illustrates such a comment, generated from a source
model, foo, that has a subsystem Outer with a nested subsystem Inner:

/* Here is the system hierarchy for this model.
*
* <Root> : foo
* <S1> : foo/Outer
* <S2> : foo/Outer/Inner
*/

There are two ways to trace code back to subsystems, blocks, and parameters
in your model:

• Through HTML code generation reports by using the Help browser

• By typing the appropriate hilite_system commands

When you are licensed for the Real-Time Workshop Embedded Coder product,
the HTML report for your model.c or model.cpp file displays hyperlinks
in “Regarding,” “Outport,” and other comment lines. Clicking such links in
comments causes the associated block or subsystem to be highlighted in
the model. For more information, see “HTML Code Generation Reports” in
Getting Started.

Using HTML reports is generally the fastest way to trace code back to the
model, but when you know what you are looking for you might achieve
the same result at the command line. To manually trace a tag back to the
generating block using the hilite_system command,

1 Open the source model.

2-148

Validating Generated Code

2 Close any other model windows that are open.

3 Use the hilite_system command to view the desired system and block.

As an example, consider the model foo mentioned above. If foo is open,

hilite_system('<S1>')

opens the subsystem Outer and

hilite_system('<S2>/Gain1')

opens the subsystem Outer and selects and highlights the Gain block Gain1
within that subsystem.

2-149

2 Code Generation and the Build Process

Integrating Legacy and Custom Code

In this section...

“Introduction” on page 2-150
“Block-Based Integration” on page 2-150
“Model or Target-Based Integration” on page 2-152

Introduction
The Real-Time Workshop product includes mechanisms for integrating
generated code with legacy or custom code. Legacy code is existing C or C++
hand code or code for environments that needs to be integrated with code
generated by the Real-Time Workshop software. Custom code can be legacy
code or any other user-specified lines of code that need to be included in the
Real-Time Workshop build process.

You can achieve code integration from either of two contexts. You can
integrate

• Code generated by the Real-Time Workshop software into an existing code
base for a larger system. For example, you might want to use generated
code as a plug-in function. For this type of integration, you should use the
Real-Time Workshop Embedded Coder product. The Real-Time Workshop
Embedded Coder documentation explains how to use entry points and
header files to interface your existing code with generated code.

• Existing code into code generated by the Real-Time Workshop software.
This type of integration can be either block based or model based.
“Block-Based Integration” on page 2-150 and “Model or Target-Based
Integration” on page 2-152 list available code integration mechanisms
based on various application requirements.

Block-Based Integration
The following table lists available block-based integration mechanisms based
on application requirements. The table also provides information on where
to find details on how to apply each mechanism.

2-150

Integrating Legacy and Custom Code

If You Need or Prefer to... Consider Using... For Details, See...

• Simulate and generate code
such that block behavior is the
same or unique for the two
environments.

• Develop a complete interface to
all Simulink block functions,
block memory, and block
capabilities.

• Use input and output ports
for interaction between and
placement with respect to other
blocks.

• Use Simulink parameters (for
example, run-time parameters).

• Apply code generation
optimizations, such as
expression folding and the
use of local block output ports.

• Add file and path information for
existing code into the Real-Time
Workshop build process.
An extensive, block-based
rtwmakecfg API is available.

• Control the location of generated
code through block placement.

• Use TLC library functions for
the block or overall model code.

• Maximize ease-of-use for model
designers.

User written
S-Function blocks

• “Integrating Existing C
Functions into Simulink
Models with the Legacy Code
Tool”

• “Automating the Generation
of Files for Fully Inlined
S-Functions Using Legacy
Code Tool” on page 10-25

• Chapter 10, “Writing
S-Functions for Real-Time
Workshop Code Generation”

• “Build Support for
S-Functions” on page 10-92
— information on specifying
additional dependencies for
the Real-Time Workshop build
process

• Target Language Compiler
documentation — information
on inlining S-functions

• Writing S-Functions
documentation

2-151

2 Code Generation and the Build Process

If You Need or Prefer to... Consider Using... For Details, See...

• Use a graphical user interface to
create S-Function blocks.

• Specify build information
through a graphical user
interface.

S-Function Builder
block

Information on the S-Function
Builder block in the Simulink
documentation

• Not affect simulation or
simulation-based targets,
such as S-function targets,
accelerated simulation targets,
and model reference simulation
targets.

• Insert lines of code into functions
at the atomic system or model
level.

• Minimize development effort by
just typing in lines of custom
code.

Real-Time Workshop
Custom Code blocks

Chapter 14, “Inserting Custom
Code Into Generated Code”

S-Function blocks offer the most capable and flexible means of integrating
code and specifying additional build information. Their use in a model carries
the build information as well.

Model or Target-Based Integration
The following table lists available model or target-based integration
mechanisms based on application requirements. The table also provides
information on where to find details on how to apply each mechanism.

2-152

Integrating Legacy and Custom Code

If You Need or Prefer to... Consider Using... For Details, See...

• Not affect simulation or
simulation-based targets, such
as S-function targets, accelerated
simulation targets, and model
reference simulation targets.

• Add lines of custom code in the
generated model header or source
file.

• Add lines of custom code to
generated initialization and
termination functions.

• Specify the files and path to be
used for the Real-Time Workshop
build process.

• Minimize development effort by
just typing in lines of custom code,
paths, or filenames.

• Use a modeling approach;
include model information as
configuration parameters.

Custom Code pane of the
Configuration Parameters
dialog box

Chapter 2, “Code
Generation and the Build
Process”

• Use a mechanism that affects all
model builds for a given target —
model and block independent.

• Include paths, source file rules,
and libraries in the makefile.

• Control the build process by
selecting a custom Real-Time
Workshop system target file.

Custom target template
makefile

Real-Time Workshop
Embedded Coder
documentation — details
on makefiles

2-153

2 Code Generation and the Build Process

Note It is also possible to affect the Real-Time Workshop build process by
specifying libraries or sources in theMake command field on the Real-Time
Workshop pane of the Configuration Parameters dialog box. This approach
requires knowledge of the make variables used in a target template makefile
and is not generally recommended.

2-154

Relocating Code to Another Development Environment

Relocating Code to Another Development Environment

In this section...

“Introduction” on page 2-155
“Deciding on a Structure for the Zip File” on page 2-155
“Deciding on a Name for the Zip File” on page 2-156
“Packaging Model Code Files in a Zip File” on page 2-157
“Inspecting the Generated Zip File” on page 2-158
“Relocating and Unpacking the Zip File” on page 2-158
“Code Packaging Example” on page 2-158
“packNGo Function Limitations” on page 2-159

Introduction
If you need to relocate the static and generated code files for a model to
another development environment, such as a secure system or an integrated
development environment (IDE) that does not include MATLAB and Simulink
products, use the Real-Time Workshop pack-and-go utility. This utility
uses the tools for customizing the build process after code generation and a
packNGo function to find and package all files needed to build an executable
image. The files are packaged in a compressed file that you can relocate and
unpack using a standard zip utility.

To relocate a model’s code files,

1 Decide on a structure of the zip file.

2 Decide on a name for the zip file.

3 Package the model code files in the zip file.

4 Relocate and unpack the zip file.

Deciding on a Structure for the Zip File
Before you generate and package the files for a model build, decide whether
you want the files to be packaged in a flat or hierarchical directory structure.

2-155

2 Code Generation and the Build Process

By default, the packNGo function packages all the necessary files in single,
flat directory structure. This is the simplest approach and might be the
optimal choice.

If... Then Use a...

You are relocating files to an IDE
that does not use the generated
makefile or the code is not dependent
on the relative location of required
static files

Single, flat directory structure

The target development environment
must maintain the directory
structure of the source environment
because it uses the generated
makefile or the code is dependent on
the relative location of files

Hierarchical structure

If you use a hierarchical structure, the packNGo function creates two levels of
zip files, a primary zip file, which in turn contains the following secondary
zip files:

• mlrFiles.zip — files in your matlabroot directory tree

• sDirFiles.zip — files in and under your build directory where you
initiated the model’s code generation

• otherFiles.zip— required files not in the matlabroot or start directory
trees

Paths for the secondary zip files are relative to the root directory of the
primary zip file, maintaining the source development directory structure.

Deciding on a Name for the Zip File
By default, the packNGo function names the primary zip file model.zip. You
have the option of specifying a different name. If you specify a file name
and omit the file type extension, the function appends .zip to the name you
specify.

2-156

Relocating Code to Another Development Environment

Packaging Model Code Files in a Zip File
You package model code files by using the PostCodeGenCommand configuration
parameter, packNGo function, and the model’s build information object. You
can set up the packaging operation to use

• A system generated build information object.

In this case, use set_param to set the configuration parameter
PostCodeGenCommand to an explicit call to the packNGo function before
generating the model code. For example:

set_param(bdroot, 'PostCodeGenCommand', 'packNGo(buildInfo);');

This command instructs the Real-Time Workshop build process to evaluate
the call to packNGo, using the system generated build information object for
the currently selected model, after generating and writing the model’s code
to disk and before generating a makefile.

• A build information object that you construct programmatically, as
explained in “Customizing Post Code Generation Build Processing” on
page 2-139.

In this case, you might use other build information functions to selectively
include paths and files in the build information object that you then specify
with the packNGo function. For example:

.

.

.

myModelBuildInfo = RTW.BuildInfo;

addSourceFiles(myModelBuildInfo, {'test1.c' 'test2.c' 'driver.c'});

.

.

.

packNGo(myModelBuildInfo);

To change the default behavior of packNGo, see the following examples:

To... Specify...

Change the structure of the
file packaging to hierarchical

packNGo(buildInfo, {'packType'
'hierarchical'});

2-157

2 Code Generation and the Build Process

To... Specify...

Rename the primary zip file packNGo(buildInfo, {'fileName'
'zippedsrcs'});

Change the structure of the
file packaging to hierarchical
and rename the primary zip
file

packNGo(buildInfo, {'packType'
'hierarchical'...
'fileName' 'zippedsrcs'});

Inspecting the Generated Zip File
Inspect the resulting zip file in your working directory on the source system
to verify that it is ready for relocation to the destination system. Depending
on the zip tool you use you might be able to open and inspect the file without
unpacking it. If you need to unpack the file and you packaged the model code
files as a hierarchical structure, you will need to unpack the primary and
secondary zip files. When you unpack the secondary zip files, relative paths of
all files are preserved.

Relocating and Unpacking the Zip File
Relocate the resulting zip file to the destination development environment
and unpack the file.

Code Packaging Example
The following example guides you through the steps for packaging code files
generated for the demo model rtwdemo_f14.

1 Set your working directory to a writable directory.

2 Open the model rtwdemo_f14 and save a copy to your working directory.

3 Enter the following command in the MATLAB Command Window:

set_param('rtwdemo_f14', 'PostCodeGenCommand',...
'packNGo(buildInfo, {''packType'' ''hierarchical''})');

2-158

Relocating Code to Another Development Environment

Note that it is necessary to double the single-quotes due to the nesting of
character arrays 'packType' and 'hierarchical' within the character
array that specifies the call to packNGo.

4 Generate code for the model.

5 Inspect the generated zip file, rtwdemo_f14.zip. The zip file contains the
two secondary zip files, mlrFiles.zip and sDirFiles.zip.

6 Inspect the zip files mlrFiles.zip and sDirFiles.zip.

7 Relocate the zip file to a destination environment and unpack it.

packNGo Function Limitations
The following limitations apply to use of the packNGo function:

• The function operates on source files, such as *.c, *.cpp, *.h files, only.
The function does not support compile flags, defines, or makefiles.

• Unnecessary files may be included. For example, the function includes all
S-function libraries in an all-or-nothing manner and all header files from
every include directory, even if they are not used.

2-159

2 Code Generation and the Build Process

2-160

3

Generated Code Formats

• “Introduction” on page 3-2

• “Targets and Code Formats” on page 3-3

• “Choosing a Code Format for Your Application” on page 3-10

• “Real-Time Code Format” on page 3-14

• “Real-Time malloc Code Format” on page 3-16

• “S-Function Code Format” on page 3-18

• “Embedded Code Format” on page 3-18

3 Generated Code Formats

Introduction
The Real-Time Workshop product provides five different code formats. Each
code format specifies a framework for code generation suited for specific
applications. The five code formats and corresponding application areas are

• Real-time — Rapid prototyping

• Real-time malloc — Rapid prototyping

• S-function — Creating proprietary S-function MEX-file objects, code
reuse, and speeding up your simulation

• Model reference — Creating MEX-file objects from entire models that
other models can use, sometimes in place of S-functions

• Embedded C — Deeply embedded systems

This chapter discusses the relationship of code formats to the available target
configurations, and factors you should consider when choosing a code format
and target. This chapter also summarizes the real-time, real-time malloc,
S-function, model referencing, and embedded C/C++ code formats.

3-2

Targets and Code Formats

Targets and Code Formats

In this section...

“Introduction” on page 3-3
“Backwards Compatibility of Code Formats” on page 3-4
“How Symbols Are Formatted in Generated Code” on page 3-7

Introduction
A target (such as the GRT target) is an environment for generating and
building code intended for execution on a certain hardware or operating
system platform. A target is defined at the top level by a system target file,
which in turn invokes other target-specific files.

A code format (such as embedded or real-time) is one property of a target.
The code format controls decisions made at several points in the code
generation process. These include whether and how certain data structures
are generated (for example, SimStruct or rtModel), whether or not static
or dynamic memory allocation code is generated, and the calling interface
used for generated model functions. In general, the Embedded-C code format
is more efficient than the RealTime code format. Embedded-C code format
provides more compact data structures, a simpler calling interface, and static
memory allocation. These characteristics make the Embedded-C code format
the preferred choice for production code generation.

In prior releases, only the ERT target and targets derived from the ERT
target used the Embedded-C code format. Non-ERT targets used other code
formats (for example, RealTime or RealTimeMalloc).

In Release 14, the GRT target uses the Embedded-C code format for back end
code generation. This includes generation of both algorithmic model code
and supervisory timing and task scheduling code. The GRT target (and
derived targets) generates a RealTime code format wrapper around the
Embedded-C code. This wrapper provides a calling interface that is backward
compatible with existing GRT-based custom targets. The wrapper calls are
compatible with the main program module of the GRT target (grt_main.c
or grt_main.cpp). This use of wrapper calls incurs some calling overhead;

3-3

3 Generated Code Formats

the pure Embedded-C calling interface generated by the ERT target is more
highly optimized.

For a description of the calling interface generated by the ERT target, see
“Data Structures, Code Modules, and Program Execution” in the Real-Time
Workshop Embedded Coder documentation. The calling interface generated
by the GRT target is described in Chapter 7, “Program Architecture”.

Code format unification simplifies the conversion of GRT-based custom targets
to ERT-based targets. See “Making GRT-Based Targets ERT-Compatible” on
page 3-21 for a discussion of target conversion issues.

Backwards Compatibility of Code Formats
Because GRT targets now use Embedded-C code format, existing applications
that depend on the RealTime code format’s calling interface could have
compatibility issues. To address this, a set of macros is generated (in model.h)
that maps Embedded-C data structures to the identifiers that RealTime code
format used. The following, which can be found in any model.h file created for
a GRT target, describes these identifier mappings:

/* Backward compatible GRT Identifiers */
#define rtB model_B
#define BlockIO BlockIO_model
#define rtXdot model_Xdot
#define StateDerivatives StateDerivatives_model
#define tXdis model_Xdis
#define StateDisabled StateDisabled_model
#define rtY model_Y
#define ExternalOutputs ExternalOutputs_model
#define rtP model_P
#define Parameters Parameters_model

Since the GRT target now uses the Embedded-C code format for back end code
generation, many Embedded-C optimizations are available to all Real-Time
Workshop users. In general, the GRT and ERT targets now have many
more common features, but the ERT target offers additional controls for
common features. The availability of features is now determined by licensing,
rather than being tied to code format. The following table compares features

3-4

Targets and Code Formats

available with a Real-Time Workshop license with those available under a
Real-Time Workshop Embedded Coder license:

Comparison of Features Licensed with the Real-Time Workshop Product Versus the
Real-Time Workshop Embedded Coder Product

Feature Real-Time Workshop License
Real-Time Workshop
Embedded Coder License

rtModel data
structure

Full rtModel structure generated.
GRT variable declaration:
rtModel_model model_M_;

rtModel is optimized for the
model. Suppression of error status
field, data logging fields, and in the
structure is optional. ERT variable
declaration:
RT_MODEL_model model_M_;

Custom storage
classes (CSCs)

Code generation ignores CSCs;
objects are assigned a CSC default
to Auto storage class.

Code generation with CSCs is
supported.

HTML code
generation report

Basic HTML code generation
report

Enhanced report with additional
detail and hyperlinks to the model.

Symbol formatting Symbols (for signals, parameters
and so on) are generated in
accordance with hard-coded
default.

Detailed control over generated
symbols.

User-defined
maximum identifier
length for generated
symbols

Supported Supported

Generation of
terminate function

Always generated Option to suppress terminate
function

Combined
output/update
function

Separate output/update functions
are generated.

Option to generate combined
output/update function

Optimized data
initialization

Not available Options to suppress generation of
unnecessary initialization code for
zero-valued memory, I/O ports, and
so on

3-5

3 Generated Code Formats

Comparison of Features Licensed with the Real-Time Workshop Product Versus the
Real-Time Workshop Embedded Coder Product (Continued)

Feature Real-Time Workshop License
Real-Time Workshop
Embedded Coder License

Comments generation Basic options to include or suppress
comment generation

Options to include Simulink block
descriptions, Stateflow object
descriptions, and Simulink data
object descriptions in comments

Module Packaging
Features (MPF)

Not supported Extensive code customization
features. See the Real-Time
Workshop Embedded Coder
documentation.

Target-optimized
data types header file

Requires full tmwtypes.h header
file.

Generates optimized rtwtypes.h
header file, including only the
necessary definitions required by
the target.

User-defined types User-defined types default to base
types in code generation

User defined data type aliases are
supported in code generation.

Simplified call
interface

Non-ERT targets default to GRT
interface.

ERT and ERT-based targets
generate simplified interface.

Rate grouping Not supported Supported
Auto-generation of
main programmodule

Not supported; static main
program module is provided.

Automated and customizable
generation of main program
module is supported. Static main
program also available.

MAT-file logging No option to suppress MAT-file
logging data structures

Option to suppress MAT-file
logging data structures

Reusable
(multi-instance) code
generation with static
memory allocation

Not supported Option to generate reusable code

Software constraint
options

Support for floating point, complex,
and nonfinite numbers is always
enabled.

Options to enable or disable
support for floating-point, complex,
and nonfinite number

3-6

Targets and Code Formats

Comparison of Features Licensed with the Real-Time Workshop Product Versus the
Real-Time Workshop Embedded Coder Product (Continued)

Feature Real-Time Workshop License
Real-Time Workshop
Embedded Coder License

Application life span Defaults to inf User-specified; determines most
efficient word size for integer
timers.

Software-in-the-loop
(SIL) testing

Model reference simulation target
can be used for SIL testing.

Additional SIL testing support
by using auto-generation of
S-Function block

ANSI17-C/C++ code
generation

Supported Supported

ISO18-C/C++ code
generation

Supported Supported

GNU19-C/C++ code
generation

Supported Supported

Generate scalar
inlined parameters as
#DEFINE statements

Not supported Supported

MAT-file variable
name modifier

Supported Supported

Data exchange: C
API, external mode,
ASAP2

Supported Supported

How Symbols Are Formatted in Generated Code
The Real-Time Workshop code generator constructs identifiers automatically
for GRT targets. The symbols that are so constructed include those for

17. ANSI® is a registered trademark of the American National Standards Institute, Inc.

18. ISO® is a registered trademark of the International Organization for Standardization.

19. GNU® is a registered trademark of the Free Software Foundation.

3-7

3 Generated Code Formats

• Signals and parameters that have Auto storage class

• Subsystem function names that are not user defined

• All Stateflow names

Prior to Release 14, you could exercise these options (on the Configuration
Parameters dialog box Code appearance pane) to format identifiers:

• Prefix model name to global identifiers

• Include System Hierarchy Number in Identifiers

• Include data type acronym in identifier

These options have been removed from the Real-Time Workshop GUI and
replaced by a default symbol formatting specification. The components of a
generated symbol are

• The root model name, followed by

• The name of the generating object (signal, parameter, state, and so on),
followed by

• A unique name mangling string (if required)

The number of characters that any generated symbol can have is limited by
theMaximum identifier length parameter specified on the Symbols pane
of the Configuration Parameters dialog box. When there is a potential name
collision between two symbols, a name mangling string is generated. The
string has the minimum number of characters required to avoid the collision.
The other symbol components are then inserted. If theMaximum identifier
length parameter is not large enough to accommodate full expansions of
the other components, they are truncated. To avoid this outcome, it is good
practice to

• Avoid name collisions in general. One way to do this is to avoid using
default block names (for example, Gain1, Gain2...) when there are many
blocks of the same type in the model. Also, whenever possible, make
subsystems atomic and reusable.

3-8

Targets and Code Formats

• Where possible, increase theMaximum identifier length to accommodate
the length of the symbols you expect to generate. The maximum length
you can specify is 256 characters.

Model Referencing Considerations
Within a model that uses model referencing, there can be no collisions
between the names of the constituent models. When you generate code from
a model that uses model referencing, the Maximum identifier length
parameter must be large enough to accommodate the root model name and
the name mangling string (if needed). A code generation error occurs if
Maximum identifier length is not large enough.

When a name conflict occurs between a symbol within the scope of a
higher-level model and a symbol within the scope of a referenced model, the
symbol from the referenced model is preserved. Name mangling is performed
on the symbol from the higher-level model.

The Real-Time Workshop Embedded Coder product provides a Symbol
format field that lets you control the formatting of generated symbols in
much greater detail. See “Code Generation Options and Optimizations” in the
Real-Time Workshop Embedded Coder documentation for more information.

3-9

3 Generated Code Formats

Choosing a Code Format for Your Application
Your choice of code format is the most important code generation option.
The code format specifies the overall framework of the generated code and
determines its style.

When you choose a target, you implicitly choose a code format. Typically, the
system target file will specify the code format by assigning the TLC variable
CodeFormat. The following example is from ert.tlc.

%assign CodeFormat = "Embedded-C"

If the system target file does not assign CodeFormat, the default is RealTime
(as in grt.tlc).

If you are developing a custom target, you must consider which code format is
best for your application and assign CodeFormat accordingly.

Choose the RealTime or RealTime malloc code format for rapid prototyping.
If your application does not have significant restrictions in code size, memory
usage, or stack usage, you might want to continue using the generic real-time
(GRT) target throughout development.

For production deployment, and when your application demands that you
limit source code size, memory usage, or maintain a simple call structure,
the Embedded-C code format is appropriate. Consider using the Real-Time
Workshop Embedded Coder product, if you need added flexibility to configure
and optimize code.

Finally, you should choose the Model Reference or the S-function formats if
you are not concerned about RAM and ROM usage and want to

• Use a model as a component, for scalability

• Create a proprietary S-function MEX-file object

• Interface the generated code using the S-function C API

• Speed up your simulation

The following table summarizes how different targets support applications:

3-10

Choosing a Code Format for Your Application

Application Targets

Fixed- or variable-step
acceleration

RSIM, S-Function, Model Reference

Fixed-step real-time
deployment

GRT, GRT-Malloc, ERT, xPC Target,
Wind River Systems Tornado, Real-Time
Windows Target, Texas Instruments™
DSP, Freescale™ MPC5xx, ...

The following table summarizes the various options available for each
Real-Time Workshop code format/target, with the exceptions noted.

Features Supported by Real-Time Workshop Targets and Code Formats

Feature GRT

Real-
time
malloc ERT

ERT
Shared
Library

Wind
River
Systems
VxWorks
/Tornado

S-
Func RSIM

RT
Win xPC

Other
Supported
Targets1

Static
memory
allocation

X X X X X X

Dynamic
memory
allocation

X X X X

Continuous
time

X X X X X X X X

C/C++ MEX
S-functions
(noninlined)

X X X X X X X X

S-function
(inlined)

X X X X X X X X X

Minimize
RAM/ROM
usage

X X2 X2 X

3-11

3 Generated Code Formats

Features Supported by Real-Time Workshop Targets and Code Formats (Continued)

Feature GRT

Real-
time
malloc ERT

ERT
Shared
Library

Wind
River
Systems
VxWorks
/Tornado

S-
Func RSIM

RT
Win xPC

Other
Supported
Targets1

Supports
external
mode

X X X X X X X

Rapid
prototyping

X X X X X X

Production
code

X X2 X2 X3

Batch
parameter
tuning
and Monte
Carlo
methods

X X

System-level
Simulator

X

Executes in
hard real
time

X4 X4 X4 X X X X5

Non
real-time
executable
included

X X X X

Multiple
instances
of model

X6 X6,
7

X6 X2, 6,
7

X2, 6, 7

3-12

Choosing a Code Format for Your Application

Features Supported by Real-Time Workshop Targets and Code Formats (Continued)

Feature GRT

Real-
time
malloc ERT

ERT
Shared
Library

Wind
River
Systems
VxWorks
/Tornado

S-
Func RSIM

RT
Win xPC

Other
Supported
Targets1

Supports
variable-step
solvers

X X

Supports
SIL/PIL

X X

1The products that support other targets are: Embedded IDE Link CC, Target
Support Package TC2, Target Support Package TC6, Embedded IDE Link TS,
Target Support Package IC1, and Target Support Package FM5.

2Does not apply to GRT based targets. Applies only to an ERT based target.

3Except MPC5xx (algorithm export) targets

4The default GRT, GRT malloc, and ERT rt_main files emulate execution of
hard real time, and when explicitly connected to a real-time clock execute
in hard real time.

5Except MPC5xx (processor-in-the-loop) and MPC5xx (algorithm export)
targets

6You can generate code for multiple instances of a Stateflow chart or
subsystem containing a chart, except when the chart contains exported
graphical functions or the Stateflow model contains machine parented events.

7You must enable Generate reusable code in the Configuration Parameters
Real-Time Workshop – Interface pane.

3-13

3 Generated Code Formats

Real-Time Code Format

In this section...

“Introduction” on page 3-14
“Unsupported Blocks” on page 3-14
“System Target Files” on page 3-15
“Template Makefiles” on page 3-15

Introduction
The real-time code format (corresponding to the generic real-time target) is
useful for rapid prototyping applications. If you want to generate real-time
code while iterating model parameters rapidly, you should begin the design
process with the generic real-time target. The real-time code format supports:

• Continuous time

• Continuous states

• C/C++ MEX S-functions (inlined and noninlined)

For more information on inlining S-functions, see Chapter 10, “Writing
S-Functions for Real-Time Workshop Code Generation”, and the Target
Language Compiler documentation.

The real-time code format declares memory statically, that is, at compile time.

Unsupported Blocks
The real-time format does not support the following built-in user-defined
blocks:

• MATLAB Fcn block (note that Fcn blocks are supported)

• S-Function block — M-file S-functions, Fortran S-functions, or C/C++ MEX
S-functions that call into the MATLAB environment (Fcn block calls are
supported)

3-14

Real-Time Code Format

System Target Files

• grt.tlc - Generic Real-Time Target

• rsim.tlc - Rapid Simulation Target

• tornado.tlc - Tornado (VxWorks) Real-Time Target

Template Makefiles

• grt

- grt_lcc.tmf — Lcc compiler

- grt_unix.tmf — The Open Group UNIX host

- grt_vc.tmf — Microsoft Visual C++

- grt_watc.tmf — Watcom C

• rsim

- rsim_lcc.tmf — Lcc compiler

- rsim_unix.tmf — UNIX host

- rsim_vc.tmf — Visual C++

- rsim_watc.tmf — Watcom C

• tornado.tmf

• win_watc.tmf

3-15

3 Generated Code Formats

Real-Time malloc Code Format

In this section...

“Introduction” on page 3-16
“Unsupported Blocks” on page 3-16
“System Target Files” on page 3-17
“Template Makefiles” on page 3-17

Introduction
The real-time malloc code format (corresponding to the generic real-time
malloc target) is very similar to the real-time code format. The differences are

• Real-time malloc declares memory dynamically.

For blocks provided by The MathWorks, malloc calls are limited to the
model initialization code. Generated code is designed to be free from
memory leaks, provided that the model termination function is called.

• Real-time malloc allows you to deploy multiple instances of the same
model with each instance maintaining its own unique data.

• Real-time malloc allows you to combine multiple models together in
one executable. For example, to integrate two models into one larger
executable, real-time malloc maintains a unique instance of each of the
two models. If you do not use the real-time malloc format, the Real-Time
Workshop code generator will not necessarily create uniquely named data
structures for each model, potentially resulting in name clashes.

grt_malloc_main.c (or .cpp), the main routine for the generic
real-time malloc (grt_malloc) target, supports one model by default.
See “Combining Multiple Models” on page 17-49 for information on
modifying grt_malloc_main.c (or .cpp) to support multiple models.
grt_malloc_main.c and grt_malloc_main.cpp are located in the directory
matlabroot/rtw/c/grt_malloc.

Unsupported Blocks
The real-time malloc format does not support the following built-in blocks,
as shown:

3-16

Real-Time malloc Code Format

• Functions & Tables

- MATLAB Fcn block (note that Fcn blocks are supported)

- S-Function block — M-file S-functions, Fortran S-functions, or C/C++
MEX S-functions that call into the MATLAB environment (Fcn block
calls are supported)

System Target Files

• grt_malloc.tlc - Generic Real-Time Target with dynamic memory
allocation

• tornado.tlc - Tornado (VxWorks) Real-Time Target

Template Makefiles

• grt_malloc

- grt_malloc_lcc.tmf — Lcc compiler

- grt_malloc_unix.tmf — The Open Group UNIX host

- grt_malloc_vc.tmf — Microsoft Visual C++

- grt_malloc_watc.tmf — Watcom C

• tornado.tmf

3-17

3 Generated Code Formats

S-Function Code Format
The S-function code format (corresponding to the S-function target) generates
code that conforms to the Simulink MEX S-function API. Using the S-function
target, you can build an S-function component and use it as an S-Function
block in another model.

The S-function code format is also used by the accelerated simulation target
to create the Accelerator MEX-file.

In general, you should not use the S-function code format in a system target
file. However, you might need to do special handling in your inlined TLC
files to account for this format. You can check the TLC variable CodeFormat
to see if the current target is a MEX-file. If CodeFormat = "S-Function"
and the TLC variable Accelerator is set to 1, the target is an accelerated
simulation MEX-file.

See Chapter 11, “S-Function Target”, for more information.

Embedded Code Format

In this section...

“Introduction” on page 3-18
“Using the Real-Time Model Data Structure” on page 3-19
“Making GRT-Based Targets ERT-Compatible” on page 3-21

Introduction
The Embedded-C code format corresponds to the Real-Time Workshop
Embedded Coder target (ERT), and targets derived from ERT. This code
format includes a number of memory-saving and performance optimizations.
See the Real-Time Workshop Embedded Coder documentation for details.

3-18

Embedded Code Format

Using the Real-Time Model Data Structure
The Embedded-C format uses the real-time model (RT_MODEL) data
structure. This structure is also referred to as the rtModel data structure.
You can access rtModel data by using a set of macros analogous to the
ssSetxxx and ssGetxxxmacros that S-functions use to access SimStruct data,
including noninlined S-functions compiled by the Real-Time Workshop code
generator, and are documented in the Writing S-Functions documentation.

You need to use the set of macros rtmGetxxx and rtmSetxxx to access the
real-time model data structure, which is specific to the Real-Time Workshop
product. The rtModel is an optimized data structure that replaces SimStruct
as the top level data structure for a model. The rtmGetxxx and rtmSetxxx
macros are used in the generated code as well as from the main.c or main.cpp
module. If you are customizing main.c or main.cpp (either a static file or a
generated file), you need to use rtmGetxxx and rtmSetxxx instead of the
ssSetxxx and ssGetxxx macros.

Usage of rtmGetxxx and rtmSetxxx macros is the same as for the ssSetxxx
and ssGetxxx versions, except that you replace SimStruct S by real-time
model data structure rtM. The following table lists rtmGetxxx and rtmSetxxx
macros that are used in grt_main.c, grt_main.cpp, grt_malloc_main.c,
and grt_malloc_main.cpp.

Macros for Accessing the Real-Time Model Data Structure

rtm Macro Syntax Description

rtmGetdX(rtm) Get the derivatives of a block’s continuous
states

rtmGetOffsetTimePtr(RT_MDL rtM) Return the pointer of vector that store all
sample time offset of the model associated
with rtM

rtmGetNumSampleTimes(RT_MDL rtM) Get the number of sample times that a block
has

rtmGetPerTaskSampleHitsPtr(RT_MDL) Return a pointer of NumSampleTime ×
NumSampleTime matrix

3-19

3 Generated Code Formats

Macros for Accessing the Real-Time Model Data Structure (Continued)

rtm Macro Syntax Description

rtmGetRTWExtModeInfo(RT_MDL rtM) Return an external mode information data
structure of the model. This data structure is
used internally for external mode.

rtmGetRTWLogInfo(RT_MDL) Return a data structure used by Real-Time
Workshop logging. Internal use.

rtmGetRTWRTModelMethodsInfo(RT_MDL) Return a data structure of Real-Time
Workshop real-time model methods
information. Internal use.

rtmGetRTWSolverInfo(RT_MDL) Return data structure containing solver
information of the model. Internal use.

rtmGetSampleHitPtr(RT_MDL) Return a pointer of Sample Hit flag vector
rtmGetSampleTime(RT_MDL rtM, int TID) Get a task’s sample time
rtmGetSampleTimePtr(RT_MDL rtM) Get pointer to a task’s sample time
rtmGetSampleTimeTaskIDPtr(RT_MDL rtM) Get pointer to a task’s ID
rtmGetSimTimeStep(RT_MDL) Return simulation step type ID

(MINOR_TIME_STEP, MAJOR_TIME_STEP)
rtmGetStepSize(RT_MDL) Return the fundamental step size of the model
rtmGetT(RT_MDL,t) Get the current simulation time
rtmSetT(RT_MDL,t) Set the time of the next sample hit
rtmGetTaskTime(RT_MDL,tid) Get the current time for the current task
rtmGetTFinal(RT_MDL) Get the simulation stop time
rtmSetTFinal(RT_MDL,finalT) Set the simulation stop time
rtmGetTimingData(RT_MDL) Return a data structure used by timing engine

of the model. Internal use.
rtmGetTPtr(RT_MDL) Return a pointer of the current time
rtmGetTStart(RT_MDL) Get the simulation start time
rtmIsContinuousTask(rtm) Determine whether a task is continuous

3-20

Embedded Code Format

Macros for Accessing the Real-Time Model Data Structure (Continued)

rtm Macro Syntax Description

rtmIsMajorTimeStep(rtm) Determine whether the simulation is in a
major step

rtmIsSampleHit(RT_MDL,tid) Determine whether the sample time is hit

For additional details on usage, see “SimStruct Functions — Alphabetical
List” in the Writing S-Functions documentation.

Making GRT-Based Targets ERT-Compatible
If you have developed a GRT-based custom target, it is simple to make
your target ERT compatible. By doing so, you can take advantage of many
efficiencies.

There are several approaches to ERT compatibility:

• If your installation does not include a Real-Time Workshop Embedded
Coder license, you can convert a GRT-based target as described in
“Converting Your Target to Use rtModel” on page 3-22. This enables your
custom target to support all current GRT features, including back end
Embedded-C code generation.

• You can create an ERT-based target, but continue to use your customized
version of the grt_main.c or grt_main.cpp module. To do this, you can
configure the ERT target to generate a GRT-compatible calling interface,
as described in “Generating GRT Wrapper Code from the ERT target” on
page 3-23. This lets your target support the full ERT feature set, without
changing your GRT-based run-time interface. This approach requires that
your installation has a Real-Time Workshop Embedded Coder license.

• If your installation includes a Real-Time Workshop Embedded Coder
license, you can reimplement your custom target as a completely ERT-based
target, including use of an ERT generated main program. This approach
lets your target support the full ERT feature set, without the overhead
caused by wrapper calls.

3-21

3 Generated Code Formats

Note If you intend to use custom storage classes (CSCs) with a custom
target, you must use an ERT-based target. See “Custom Storage Classes”
in the Real-Time Workshop Embedded Coder documentation for detailed
information on CSCs.

For details on how GRT targets are made call-compatible with previous
Real-Time Workshop product versions, see “The Real-Time Model Data
Structure” on page 7-31.

Converting Your Target to Use rtModel
The real-time model data structure (rtModel) encapsulates model-specific
information in a much more compact form than the SimStruct. Many
ERT-related efficiencies depend on generation of rtModel rather than
SimStruct, including

• Integer absolute and elapsed timing services

• Independent timers for asynchronous tasks

• Generation of improved C API code for signal and parameter monitoring

• Pruning the data structure to minimize its size (ERT-derived targets only)

To take advantage of such efficiencies, you must update your GRT-based
target to use the rtModel (unless you already did so for Release 13). The
conversion requires changes to your system target file, template makefile,
and main program module.

The following changes to the system target file and template makefile are
required to use rtModel instead of SimStruct:

• In the system target file, add the following global variable assignment:

%assign GenRTModel = TLC_TRUE

• In the template makefile, define the symbol USE_RTMODEL. See one of the
GRT template makefiles for an example.

3-22

Embedded Code Format

The following changes to your main program module (that is, your customized
version of grt_main.c or grt_main.cpp) are required to use rtModel instead
of SimStruct:

• Include rtmodel.h instead of simstruc.h.

• Since the rtModel data structure has a type that includes the model name,
define the following macros at the top of the main program file:

#define EXPAND_CONCAT(name1,name2) name1 ## name2
#define CONCAT(name1,name2) EXPAND_CONCAT(name1,name2)
#define RT_MODEL CONCAT(MODEL,_rtModel)

• Change the extern declaration for the function that creates and initializes
the SimStruct to

extern RT_MODEL *MODEL(void);

• Change the definitions of rt_CreateIntegrationData and
rt_UpdateContinuousStates to be as shown in the Release 14 version
of grt_main.c.

• Change all function prototypes to have the argument 'RT_MODEL' instead
of the argument 'SimStruct'.

• The prototypes for the functions rt_GetNextSampleHit,
rt_UpdateDiscreteTaskSampleHits, rt_UpdateContinuousStates,
rt_UpdateDiscreteEvents, rt_UpdateDiscreteTaskTime, and
rt_InitTimingEngine have changed. Change their names to use the prefix
rt_Sim instead of rt_ and then change the arguments you pass in to them.

See the Release 14 version of grt_main.c for the list of arguments passed
in to each function.

• Modify all macros that refer to the SimStruct to now refer to the rtModel.
SimStruct macros begin with the prefix ss, whereas rtModel macros
begin with the prefix rtm. For example, change ssGetErrorStatus to
rtmGetErrorStatus.

Generating GRT Wrapper Code from the ERT target
The Real-Time Workshop Embedded Coder product supports the GRT
compatible call interface option. When this option is selected, the

3-23

3 Generated Code Formats

Real-Time Workshop Embedded Coder product generates model function
calls that are compatible with the main program module of the GRT target
(grt_main.c or grt_main.cpp). These calls act as wrappers that interface to
ERT (Embedded-C format) generated code.

This option provides a quick way to use ERT target features with a GRT-based
custom target that has a main program module based on grt_main.c or
grt_main.cpp.

See the “Code Generation Options and Optimizations” in the Real-Time
Workshop Embedded Coder documentation for detailed information on the
GRT compatible call interface option.

3-24

4

Building Subsystems and
Working with Referenced
Models

• “Nonvirtual Subsystem Code Generation” on page 4-2

• “Generating Code and Executables from Subsystems” on page 4-23

• “Generating Code for Model Referencing” on page 4-26

• “Sharing Utility Functions” on page 4-51

• “Supporting Shared Utility Directories in the Build Process” on page 4-57

4 Building Subsystems and Working with Referenced Models

Nonvirtual Subsystem Code Generation

In this section...

“Introduction” on page 4-2
“Nonvirtual Subsystem Code Generation Options” on page 4-3
“Modularity of Subsystem Code” on page 4-14
“Code Reuse Limitations” on page 4-15
“Determining Why Subsystem Code Is Not Reused” on page 4-16

Introduction
The Real-Time Workshop product allows you to control how code is generated
for any nonvirtual subsystem. The categories of nonvirtual subsystems are:

• Conditionally executed subsystems: execution depends upon a control signal
or control block. These include triggered subsystems, enabled subsystems,
action and iterator subsystems, subsystems that are both triggered
and enabled, and function call subsystems. See “Creating Conditional
Subsystems” in the Simulink documentation for more information.

• Atomic subsystems: Any virtual subsystem can be declared atomic (and
therefore nonvirtual) by using the Treat as atomic unit option in the
Block Parameters dialog box.

Note You should declare virtual subsystems as atomic subsystems to ensure
consistent simulation and execution behavior for your model. If you generate
code for a virtual subsystem, the Real-Time Workshop software treats the
subsystem as atomic and generates the code accordingly. The resulting code
can change the execution behavior of your model, for example, by applying
algebraic loops, and introduce inconsistencies with the simulation behavior.

See “Systems and Subsystems” in the Simulink documentation, and run the
sl_subsys_semantics demo for more information on nonvirtual subsystems
and atomic subsystems.

4-2

Nonvirtual Subsystem Code Generation

You can control the code generated from nonvirtual subsystems as follows:

• You can instruct the Real-Time Workshop code generator to generate
separate functions, within separate code files if desired, for selected
nonvirtual systems. You can control both the names of the functions and of
the code files generated from nonvirtual subsystems.

• You can cause multiple instances of a subsystem to generate reusable code,
that is, as a single reentrant function, instead of replicating the code for
each instance of a subsystem or each time it is called.

• You can generate inlined code from selected nonvirtual subsystems within
your model. When you inline a nonvirtual subsystem, a separate function
call is not generated for the subsystem.

Nonvirtual Subsystem Code Generation Options
For any nonvirtual subsystem, you can choose the following code generation
options from the Real-Time Workshop system codemenu in the subsystem
Block parameters dialog box:

• Auto: This is the default option, and provides the greatest flexibility in
most situations. See “Auto Option” on page 4-4 below.

• Inline: This option explicitly directs the Real-Time Workshop code
generator to inline the subsystem unconditionally.

• Function: This option explicitly directs the Real-Time Workshop code
generator to generate a separate function with no arguments, and
(optionally), place the subsystem in a separate file. You can name the
generated function and file. As functions created with this option rely on
global data, they are not reentrant.

• Reusable function: Generates a function with arguments that allows
the subsystem’s code to be shared by other instances of it in the model.
To enable sharing, the Real-Time Workshop software must be able to
determine (by using checksums) that subsystems are identical. The
generated function will have arguments for block inputs and outputs
(rtB_*), continuous states (rtDW_*), parameters (rtP_*), and so on.

4-3

4 Building Subsystems and Working with Referenced Models

Note You should not directly call reusable functions generated by the
Real-Time Workshop product. The call interface is subject to change.

The following sections discuss these options further.

Auto Option
The Auto option is the default, and is generally appropriate. Auto causes the
Real-Time Workshop code generator to inline the subsystem when there is
only one instance of it in the model. When multiple instances of a subsystem
exist, the Auto option results in a single copy of the function whenever
possible (as a reusable function). Otherwise, the result is as though you
selected Inline (except for function call subsystems with multiple callers,
which is handled as if you specified Function). Choose Inline to always
inline subsystem code, or Function when you specifically want to generate
a separate function without arguments for each instance, optionally in a
separate file.

Note When you want multiple instances of a subsystem to be represented
as one reusable function, you can designate each one of them as Auto or as
Reusable function. It is best to use one or the other, as using both creates
two reusable functions, one for each designation. The outcomes of these
choices differ only when reuse is not possible.

To use the Auto option,

1 Select the subsystem block. Then select Subsystem Parameters from
the Simulink model editor Edit menu. The Block Parameters dialog box
opens, as shown in the next figure.

Alternatively, you can open the Block Parameters dialog box by

• Shift-double-clicking the subsystem block

• Right-clicking the subsystem block and selecting Block parameters
from the menu

4-4

Nonvirtual Subsystem Code Generation

2 If the subsystem is virtual, select Treat as atomic unit as shown in the
next figure. This makes the subsystem nonvirtual, and the Real-Time
Workshop system code option becomes enabled.

If the system is already nonvirtual, the Real-Time Workshop system
code option is already enabled.

3 Select Auto from the Real-Time Workshop system code menu as shown
in the figure below.

4 Click Apply and close the dialog box.

The border of the subsystem thickens, indicating that it is nonvirtual.

4-5

4 Building Subsystems and Working with Referenced Models

Auto Optimization for Special Cases. Rather than reverting to Inline,
the Auto option can optimize code in special situations in which identical
subsystems contain other identical subsystems, by both reusing and inlining
generated code. Suppose a model, such as the one shown in Reuse of
Identical Nested Subsystems with the Auto Option on page 4-6, contains
identical subsystems A1 and A2. A1 contains subsystem B1, and A2 contains
subsystem B2, which are themselves identical. In such cases, the Auto option
causes one function to be generated which is called for both A1 and A2, and
this function contains one piece of inlined code to execute B1 and B2, ensuring
that the resulting code will run as efficiently as possible.

Reuse of Identical Nested Subsystems with the Auto Option

Inline Option
As noted above, you can choose to inline subsystem code when the subsystem
is nonvirtual (virtual subsystems are always inlined).

Exceptions to Inlining. There are certain cases in which the Real-Time
Workshop code generator does not inline a nonvirtual subsystem, even though
the Inline option is selected. These cases are

• If the subsystem is a function-call subsystem that is called by a noninlined
S-function, the Inline option is ignored. Noninlined S-functions make such

4-6

Nonvirtual Subsystem Code Generation

calls by using function pointers; therefore the function-call subsystem must
generate a function with all arguments present.

• In a feedback loop involving function-call subsystems, the Real-Time
Workshop code generator forces one of the subsystems to be generated as
a function instead of inlining it. The product selects the subsystem to be
generated as a function based on the order in which the subsystems are
sorted internally.

• If a subsystem is called from an S-Function block that sets the option
SS_OPTION_FORCE_NONINLINED_FCNCALL to TRUE, it is not inlined. This
might be the case when user-defined Asynchronous Interrupt blocks or Task
Synchronization blocks are required. Such blocks must be generated as
functions. The Asynchronous Interrupt and Task Synchronization blocks,
located in the VxWorks block library shipped with the Real-Time Workshop
product, use the SS_OPTION_FORCE_NONINLINED_FCNCALL option.20

To generate inlined subsystem code,

1 Select the subsystem block. Then select Subsystem Parameters from the
Simulink model editor Edit menu. The Block Parameters dialog box opens.

Alternatively, you can open the Block Parameters dialog box by

• Shift-double-clicking the subsystem block

• Right-clicking the subsystem block and selecting Block parameters
from the menu

2 If the subsystem is virtual, select Treat as atomic unit as shown in
the next figure. This makes the subsystem atomic, and the Real-Time
Workshop system code menu becomes enabled.

If the system is already nonvirtual, the Real-Time Workshop system
code menu is already enabled.

3 Select Inline from the Real-Time Workshop system code menu as
shown in the figure below.

20. VxWorks® is a registered trademark of Wind River® Systems, Inc.

4-7

4 Building Subsystems and Working with Referenced Models

4 Click Apply and close the dialog box.

When you generate code from your model, the Real-Time Workshop code
generator writes inline code within model.c or model.cpp (or in its parent
system’s source file) to perform subsystem computations. You can identify
this code by system/block identification tags, such as the following.

/* Atomic SubSystem Block: <Root>/AtomicSubsys1 */

See “Tracing Generated Code Back to Your Simulink Model” on page 2-147 for
more information on system/block identification tags.

Function Option
Choosing the Function or Reusable function option lets you direct the
Real-Time Workshop code generator to generate a separate function and
optionally a separate file for the subsystem. When you select the Function
option, two additional options are enabled:

• The Real-Time Workshop function name options menu lets you
control the naming of the generated function.

4-8

Nonvirtual Subsystem Code Generation

• The Real-Time Workshop file name options menu lets you control the
naming of the generated file (if a separate file is generated and you select
the User specified option).

The figure below shows the Block Parameters dialog box with the Function
option selected, with Real-Time Workshop file name options set to User
specified, and with a name specified for the generated file.

Subsystem Function Code Generation Option with User-Specified File Name

Real-Time Workshop Function Name Options Menu. This menu offers
the following choices, but the resulting identifiers are also affected by which
General code appearance options are in effect for the model:

• Auto: By default, the Real-Time Workshop code generator assigns a unique
function name using the default naming convention: model_subsystem(),
where subsystem is the name of the subsystem (or that of an identical one
when code is being reused).

4-9

4 Building Subsystems and Working with Referenced Models

• Use subsystem name: the Real-Time Workshop code generator uses the
subsystem name as the function name.

Note When a subsystem is a library block, the Use subsystem name option
causes its function identifier (and file name, see below) to be that of the
library block, regardless of the names used for that subsystem in the model.

• User specified: When this option is selected, the Real-Time Workshop
function name field is enabled. Enter any legal C or C++ function name
(which must be unique).

Real-Time Workshop File Name Options Menu. This menu offers the
following choices:

• Use subsystem name: the Real-Time Workshop software generates a
separate file, using the subsystem (or library block) name as the file name.

Note When a subsystem’s Real-Time Workshop file name options is set
to Use subsystem name, the subsystem file name is mangled if the model
contains Model blocks, or if a model reference target is being generated for
the model. In these situations, the file name for the subsystem consists of
the subsystem name prefixed by the model name.

• Use function name: the Real-Time Workshop software generates a
separate file, using the function name (as specified by the Real-Time
Workshop function name options) as the file name.

• User specified: When this option is selected, the Real-Time Workshop
file name (no extension) text entry field is enabled. The Real-Time
Workshop software generates a separate file, using the name you enter as
the file name. Enter any file name, but do not include the .c or .cpp (or
any other) extension. This file name need not be unique.

4-10

Nonvirtual Subsystem Code Generation

Note While a subsystem source file name need not be unique, you must
avoid giving nonunique names that result in cyclic dependencies (for
example, sys_a.h includes sys_b.h, sys_b.h includes sys_c.h, and
sys_c.h includes sys_a.h).

• Auto: The Real-Time Workshop software does not generate a separate file
for the subsystem. Code generated from the subsystem is generated within
the code module generated from the subsystem’s parent system. If the
subsystem’s parent is the model itself, code generated from the subsystem
is generated within model.c or model.cpp.

To generate both a separate subsystem function and a separate file,

1 Select the subsystem block. Then select Subsystem Parameters from the
Simulink model editor Editmenu, to open the Block Parameters dialog box.

Alternatively, you can open the Block Parameters dialog box by

• Shift-double-clicking the subsystem block

• Right-clicking the subsystem block and selecting Block parameters
from the menu.

2 If the subsystem is virtual, select Treat as atomic unit. The Real-Time
Workshop system code menu becomes enabled.

If the system is already nonvirtual, the Real-Time Workshop system
code menu is already enabled.

3 Select Function from the Real-Time Workshop system code menu as
shown in Subsystem Function Code Generation Option with User-Specified
File Name on page 4-9.

4 Set the function name, using the Real-Time Workshop function name
options described in “Real-Time Workshop Function Name Options Menu”
on page 4-9.

5 Set the file name, using any Real-Time Workshop file name option
other than Auto (options are described in “Real-Time Workshop File Name
Options Menu” on page 4-10).

4-11

4 Building Subsystems and Working with Referenced Models

Subsystem Function Code Generation Option with User-Specified File
Name on page 4-9 shows the use of the User Specified file name option.

6 Click Apply and close the dialog box.

Reusable Function Option
The difference between functions and reusable functions is that the latter
have data passed to them as arguments (enabling them to be reentrant),
while the former communicate by using global data. Choosing the Reusable
function option directs the Real-Time Workshop code generator to generate
a single function (optionally in a separate file) for the subsystem, and to call
that code for each identical subsystem in the model, if possible.

Note The Reusable function option yields code that is called from multiple
sites (hence reused) only when the Auto option would also do so. The
difference between these options’ behavior is that when reuse is not possible,
selecting Auto yields inlined code (or if circumstances prohibit inlining,
creates a function without arguments), while choosing Reusable function
yields a separate function (with arguments) that is called from only one site.

For a summary of code reuse limitations, see “Code Reuse Limitations” on
page 4-15.

Generating Reusable Code from Stateflow Charts. You can generate
reusable code from a Stateflow chart, or from a subsystem containing a chart,
except in the following cases:

• The Stateflow chart contains exported graphical functions.

• The Stateflow model contains machine parented events.

Generating Reusable Code for Subsystems Containing S-Function
Blocks. Regarding S-Function blocks, there are several requirements that
need to be met in order for subsystems containing them to be reused. See
“Writing S-Functions That Support Code Reuse” on page 10-81 for the list
of requirements.

4-12

Nonvirtual Subsystem Code Generation

When you select the Reusable function option, two additional options are
enabled, Real-Time Workshop function name options and Real-Time
Workshop file name options. See the explanation of “Function Option” on
page 4-8 for descriptions of these options and fields. If you use these fields to
enter a function name and/or a file name, you must specify exactly the same
function name and file name for each instance of identical subsystems for the
Real-Time Workshop software to be able to reuse the subsystem code.

Subsystem Reusable Function Code Generation Option

To request that the Real-Time Workshop software generate reusable
subsystem code,

1 Select the subsystem block. Then select Subsystem Parameters from the
Simulink model editor Edit menu. The Block Parameters dialog box opens.

Alternatively, you can open the Block Parameters dialog box by:

• Shift-double-clicking the subsystem block

• Right-clicking the subsystem block and selecting Block parameters
from the menu.

4-13

4 Building Subsystems and Working with Referenced Models

2 If the subsystem is virtual, select Treat as atomic unit. The Real-Time
Workshop system code menu becomes enabled.

If the system is already nonvirtual, the Real-Time Workshop system
code menu is already enabled.

3 Select Reusable function from the Real-Time Workshop system code
menu as shown in Subsystem Reusable Function Code Generation Option
on page 4-13.

4 If you want to give the function a specific name, set the function name,
using the Real-Time Workshop function name options described in
“Real-Time Workshop Function Name Options Menu” on page 4-9.

If you do not choose the Real-Time Workshop function name Auto
option, and want code to be reused, you must assign exactly the same
function name to all other subsystem blocks that you want to share this
code.

5 If you want to direct the generated code to a specific file, set the file name
using any Real-Time Workshop file name option other than Auto
(options are described in “Real-Time Workshop File Name Options Menu”
on page 4-10).

In order for code to be reused, you must repeat this step for all other
subsystem blocks that you want to share this code, using the same file
name.

6 Click Apply and close the dialog box.

Modularity of Subsystem Code
Code generated from nonvirtual subsystems, when written to separate
files, is not completely independent of the generating model. For example,
subsystem code may reference global data structures of the model. Each
subsystem code file contains appropriate include directives and comments
explaining the dependencies. the Real-Time Workshop software checks for
cyclic file dependencies and warns about them at build time. For descriptions
of how generated code is packaged, see “Generated Source Files and File
Dependencies” on page 2-107.

4-14

Nonvirtual Subsystem Code Generation

Code Reuse Limitations
The Real-Time Workshop software uses a checksum to determine whether
subsystems are identical. You cannot reuse subsystem code if:

• Multiple ports of a subsystem share the same source.

• A port used by multiple instances of a subsystem has different sample
times, data types, complexity, frame status, or dimensions across the
instances.

• The output of a subsystem is marked as a global signal.

• Subsystems contain identical blocks with different names or parameter
settings.

• The output of a subsystem is connected to a Merge block, and the output of
the Merge block is a custom storage class that is implemented in the C code
as memory that is nonaddressable (for example, BitField).

• The input of a subsystem is nonscalar and has a custom storage class that
is implemented in the C code as memory that is nonaddressable.

• A masked subsystem has a parameter that is nonscalar and has a custom
storage class that is implemented in the C code as memory that is
nonaddressable.

Some of these situations can arise even when you copy and paste subsystems
within or between models or you construct them manually such that they are
identical. If you select Reusable function and the Real-Time Workshop
software determines that code for a subsystem cannot be reused, it generates
a separate function that is not reused. The code generation report can show
that the separate function is reusable, even if it is used by only one subsystem.
If you prefer that subsystem code be inlined in such circumstances rather
than deployed as functions, you choose Auto for the Real-Time Workshop
system code option.

Use of the following blocks in a subsystem can also prevent its code from
being reused:

• Scope blocks (with data logging enabled)

• S-Function blocks that fail to meet certain criteria

• To File blocks (with data logging enabled)

4-15

4 Building Subsystems and Working with Referenced Models

• To Workspace blocks (with data logging enabled)

Determining Why Subsystem Code Is Not Reused
Due to the limitations noted in “Code Reuse Limitations” on page 4-15, the
Real-Time Workshop software might not reuse generated code as you expect.
To determine why code generated for a subsystem is not reused,

1 Review the Subsystems section of the HTML code generation report

2 If you cannot determine why based on the report, compare subsystem
checksum data

Reviewing the Subsystems Section of the HTML Code
Generation Report
If you determine that the Real-Time Workshop code generator does not
generate code for a subsystem as reusable code and you specified the
subsystem as reusable, examine the Subsystems section of the HTML code
generation report (see “Configuring Report Generation” on page 2-64). The
Subsystems section contains

• A table that summarizes how nonvirtual subsystems were converted to
generated code

• Diagnostic information that explains why the contents of some subsystems
were not generated as reusable code

In addition to diagnosing exceptions, the Subsections section also indicates
the mapping of each noninlined subsystem in the model to functions or
reused functions in the generated code. For an example, open and build the
rtwdemo_atomic demo model.

Comparing Subsystem Checksum Data
If the HTML code generation report indicates that no code reuse exceptions
occurred and code for a subsystem you expect to be reused is not reused,
you can determine why by accessing and comparing subsystem checksum
data. The Real-Time Workshop software determines whether subsystems
are identical by comparing subsystem checksums, as noted in “Code Reuse
Limitations” on page 4-15.

4-16

Nonvirtual Subsystem Code Generation

Consider the demo model, rtwdemo_ssreuse.

SS1 and SS2 are instances of the same subsystem, and in both instances
the subsystem parameter Real-Time Workshop system code is set to
Reusable function.

The following example demonstrates how to use the method
Simulink.SubSystem.getChecksum to get the checksum for a subsystem and
compare the results to determine why code is not reused.

1 Open the model rtwdemo_ssreuse and save a copy of the demo in a
directory where you have write access.

2 Select subsystem SS1 in the model window and in the command window
enter

SS1 = gcb;

3 Select subsystem SS2 in the model window and in the command window
enter

SS2 = gcb;

4 Use the method Simulink.SubSystem.getChecksum to get the checksum
for each subsystem. This method returns two output values: the checksum
value and details on the input used to compute the checksum.

[chksum1, chksum1_details] = ...
Simulink.SubSystem.getChecksum(SS1);
[chksum2, chksum2_details] = ...

4-17

4 Building Subsystems and Working with Referenced Models

Simulink.SubSystem.getChecksum(SS2);

5 Compare the two checksum values. They should be equal based on the
subsystem configurations.

isequal(chksum1, chksum2)
ans =

1

6 To see how you can use Simulink.SubSystem.getChecksum to determine
why the checksums of two subsystems differ, change the data type mode of
the output port of SS1 such that it differs from that of SS2.

a Look under the mask of SS1 by right-clicking the subsystem and
selecting Look Under Mask in the context menu. A block diagram of the
subsystem appears.

b Double click the Lookup Table block to open the Block Parameters dialog
box.

c Click Signal Data Types.

d Select int8 for Output data type mode and click OK.

7 Get the checksum for SS1 again and compare the checksums for the two
subsystems again. This time, the checksums should not be equal.

[chksum1, chksum1_details] = ...
Simulink.SubSystem.getChecksum(SS1);
isequal(chksum1, chksum2)
ans =

0

8 After you determine that the checksums are different, find out why. The
Simulink engine uses information, such as signal data types, some block
parameter values, and block connectivity information, to compute the
checksums. To determine why checksums are different, you compare the
data used to compute the checksum values. You can get this information
from the second value returned by Simulink.SubSystem.getChecksum,
which is a structure array with four fields.

Look at the structure chksum1_details.

4-18

Nonvirtual Subsystem Code Generation

chksum1_details

chksum1_details =
ContentsChecksum: [1x1 struct]

InterfaceChecksum: [1x1 struct]
ContentsChecksumItems: [221x1 struct]

InterfaceChecksumItems: [91x1 struct]

ContentsChecksum and InterfaceChecksum are component
checksums of the subsystem checksum. The remaining two fields
ContentsChecksumItems and InterfaceChecksumItems contain the
checksum details.

9 Determine whether a difference exists in the subsystem contents, interface,
or both. For example:

isequal(chksum1_details.ContentsChecksum.Value,...
chksum2_details.ContentsChecksum.Value)

ans =
0

isequal(chksum1_details.InterfaceChecksum.Value,...
chksum2_details.InterfaceChecksum.Value)

ans =
0

In this case, differences exist in both the contents and interface.

10 Write a script like the following to find the differences.

idxForCDiffs=[];

for idx = 1:length(chksum1_details.ContentsChecksumItems)

if (~strcmp(chksum1_details.ContentsChecksumItems(idx).Identifier, ...

chksum2_details.ContentsChecksumItems(idx).Identifier))

disp(['Identifiers different for contents item ', num2str(idx)]);

idxForCDiffs=[idxForCDiffs, idx];

end

if (ischar(chksum1_details.ContentsChecksumItems(idx).Value))

if (~strcmp(chksum1_details.ContentsChecksumItems(idx).Value, ...

chksum2_details.ContentsChecksumItems(idx).Value))

disp(['String values different for contents item ', num2str(idx)]);

idxForCDiffs=[idxForCDiffs, idx];

4-19

4 Building Subsystems and Working with Referenced Models

end

end

if (isnumeric(chksum1_details.ContentsChecksumItems(idx).Value))

if (chksum1_details.ContentsChecksumItems(idx).Value ~= ...

chksum2_details.ContentsChecksumItems(idx).Value)

disp(['Numeric values different for contents item ', num2str(idx)]);

idxForCDiffs=[idxForCDiffs, idx];

end

end

end

idxForIDiffs=[];

for idx = 1:length(chksum1_details.InterfaceChecksumItems)

if (~strcmp(chksum1_details.InterfaceChecksumItems(idx).Identifier, ...

chksum2_details.InterfaceChecksumItems(idx).Identifier))

disp(['Identifiers different for interface item ', num2str(idx)]);

idxForIDiffs=[idxForIDiffs, idx];

end

if (ischar(chksum1_details.InterfaceChecksumItems(idx).Value))

if (~strcmp(chksum1_details.InterfaceChecksumItems(idx).Value, ...

chksum2_details.InterfaceChecksumItems(idx).Value))

disp(['String values different for interface item ', num2str(idx)]);

idxForIDiffs=[idxForIDiffs, idx];

end

end

if (isnumeric(chksum1_details.InterfaceChecksumItems(idx).Value))

if (chksum1_details.InterfaceChecksumItems(idx).Value ~= ...

chksum2_details.InterfaceChecksumItems(idx).Value)

disp(['Numeric values different for interface item ', num2str(idx)]);

idxForIDiffs=[idxForIDiffs, idx];

end

end

end

11 Run the script. The following example assumes you named the script
check_details.

check_details
String values different for contents item 64
String values different for contents item 75

4-20

Nonvirtual Subsystem Code Generation

String values different for contents item 81
String values different for interface item 46

The results indicate that differences exist for index items 64, 75, and 81 in
the subsystem contents and for item 46 in the subsystem interfaces.

12 Use the returned index values to get the handle , identifier, and value
details for each difference found.

chksum1_details.ContentsChecksumItems(64)
ans =

Handle: 'my_ssreuse/SS1/Lookup Table Output1'
Identifier: 'CompiledPortAliasedThruDataType'

Value: 'int8'
chksum2_details.ContentsChecksumItems(64)
ans =

Handle: 'my_ssreuse/SS2/Lookup Table Output1'
Identifier: 'CompiledPortAliasedThruDataType'

Value: 'double'
chksum1_details.ContentsChecksumItems(75)
ans =

Handle: 'my_ssreuse/SS1/Lookup Table'
Identifier: 'RunTimeParameter{'OutputValues'}.DataType'

Value: 'int8'
chksum2_details.ContentsChecksumItems(75)
ans =

Handle: 'my_ssreuse/SS2/Lookup Table'
Identifier: 'RunTimeParameter{'OutputValues'}.DataType'

Value: 'double'
chksum1_details.ContentsChecksumItems(81)
ans =

Handle: 'my_ssreuse/SS1/Lookup Table'
Identifier: 'OutDataTypeMode'

Value: 'int8'
chksum2_details.ContentsChecksumItems(81)
ans =

Handle: 'my_ssreuse/SS2/Lookup Table'
Identifier: 'OutDataTypeMode'

Value: 'Same as input'
chksum1_details.InterfaceChecksumItems(46)

4-21

4 Building Subsystems and Working with Referenced Models

ans =
Handle: 'my_ssreuse/SS1'

Identifier: 'CanonicalParameter(1).DataType'
Value: 'int8'

chksum2_details.InterfaceChecksumItems(46)
ans =

Handle: 'my_ssreuse/SS2'
Identifier: 'CanonicalParameter(1).DataType'

Value: 'double'

As expected, the details identify the Lookup Table block and data type
parameters as areas on which to focus for debugging a subsystem reuse
issue.

13 Correct the problem by changing the output data type mode for the
subsystems such that they match.

4-22

Generating Code and Executables from Subsystems

Generating Code and Executables from Subsystems
The Real-Time Workshop software can generate code and build an executable
from any subsystem within a model. The code generation and build process
uses the code generation and build parameters of the root model.

To generate code and build an executable from a subsystem,

1 Set up the desired code generation and build parameters in the
Configuration Parameters dialog box, just as you would for code generation
from a model.

2 Select the desired subsystem block.

3 Right-click the subsystem block and select Build Subsystem from the
Real-Time Workshop submenu of the subsystem block’s context menu.

Note When you right-click build a subsystem that includes an Outport
block for which the signal specification Specify properties via bus
object is selected, Real Time Workshop requires that you set the Signal
label mismatch option on the Diagnostics > Connectivity pane of the
Configuration Parameters dialog box for the parent model to error. You
need to address any errors that occur by properly setting signal labels.

Alternatively, you can select Build Subsystem from the Real-Time
Workshop submenu of the Tools menu. This menu item is enabled when
a subsystem is selected in the current model.

Note If the model is operating in external mode when you select Build
Subsystem, the Real-Time Workshop build process automatically turns off
external mode for the duration of the build, then restores external mode
upon its completion.

4-23

4 Building Subsystems and Working with Referenced Models

4 The Build Subsystem window opens. This window displays a list of the
subsystem parameters. The upper pane displays the name, class, and
storage class of each variable (or data object) that is referenced as a block
parameter in the subsystem. When you select a parameter in the upper
pane, the lower pane shows all the blocks that reference the parameter and
the parent system of each such block.

The StorageClass column contains a popup menu for each row. The menu
lets you set the storage class of any parameter or inline the parameter. To
inline a parameter, select the Inline option from the menu. To declare
a parameter to be tunable, set the storage class to any value other than
Inline.

In the previous figure, the parameter K2 is inlined, while the other
parameters are tunable and have various storage classes.

See “Parameter Storage, Interfacing, and Tuning” on page 5-2 and
“Simulink Data Objects and Code Generation” on page 5-46 for more
information on tunable and inlined parameters and storage classes.

5 After selecting tunable parameters, click the Build button. This initiates
the code generation and build process.

4-24

Generating Code and Executables from Subsystems

6 The build process displays status messages in the MATLAB Command
Window. When the build completes, the generated executable is in your
working directory. The name of the generated executable is subsystem.exe
(on PC platforms) or subsystem (on The Open Group UNIX platforms),
where subsystem is the name of the source subsystem block.

The generated code is in a build subdirectory, named
subsystem_target_rtw, where subsystem is the name of the
source subsystem block and target is the name of the target configuration.

When you generate code for a subsystem, you can generate an S-function by
selecting Tools > Real-Time Workshop > Generate S-function, or you can
use a right-click subsystem build. See “Automated S-Function Generation” on
page 11-14 and “Automatic S-Function Wrapper Generation” for more details.

4-25

4 Building Subsystems and Working with Referenced Models

Generating Code for Model Referencing

In this section...

“Introduction” on page 4-26
“Overview of Referenced Model Code Generation” on page 4-26
“Project Directory Structure for Model Reference Targets” on page 4-28
“Building Model Reference Targets” on page 4-29
“Real-Time Workshop Model Referencing Requirements” on page 4-30
“Storage Classes for Signals Used with Model Blocks” on page 4-37
“Inherited Sample Time for Referenced Models” on page 4-41
“Reusable Code and Referenced Models” on page 4-42
“Customizing the Library File Suffix, Including the File Type Extension”
on page 4-46
“Real-Time Workshop Model Referencing Limitations” on page 4-46

Introduction
This section describes model referencing considerations that apply specifically
to code generation by the Real-Time Workshop software with GRT and ERT
system targets. This section assumes that you understand referenced models
and their terminology and requirements, as described in “Referencing a
Model”. This section does not repeat information that appears in that chapter.

Overview of Referenced Model Code Generation
When generating code for a referenced model hierarchy, the Real-Time
Workshop software generates a stand-alone executable for the top model, and
a library module called a model reference target for each referenced model.
When the code executes, the top executable invokes the model reference
targets as needed to compute the referenced model outputs. Model reference
targets are sometimes called Real-Time Workshop targets.

Be careful not to confuse a model reference target (Real-Time Workshop
target) with any of these other types of targets:

4-26

Generating Code for Model Referencing

• Hardware target — A platform for which the Real-Time Workshop software
generates code

• System target — A file that tells the Real-Time Workshop software how to
generate code for particular purpose

• Rapid Simulation target (RSim) — A system target file supplied with the
Real-Time Workshop product

• Simulation target — A MEX-file that implements a referenced model that
executes with Simulink® Accelerator™ software

The Real-Time Workshop code generator places the code for the top model of a
hierarchy in the current working directory, and the code for submodels in a
directory named slprj within the current working directory. Subdirectories
in slprj provide separate places for different types of files. See “Project
Directory Structure for Model Reference Targets” on page 4-28 for details.

By default, the product uses incremental code generation. When generating
code, it compares the date, and optionally, the structure of referenced
model files with the generated code files to determine whether it is
necessary to regenerate model reference targets. You can also force or
prevent code generation by using a diagnostic setting Configuration
Parameters > Model Referencing > Rebuild options.

In addition to incremental code generation, the Real-Time Workshop software
uses incremental loading. The code for a referenced model is not loaded into
memory until the code for its parent model executes and needs the outputs
of the referenced model. The product then loads the referenced model target
and executes. Once loaded, the target remains in memory until it is no longer
needed.

Most code generation considerations are the same whether or not a model
includes any referenced models: the Real-Time Workshop code generator
handles the details automatically insofar as possible. This chapter describes
topics that you may need to consider when generating code for a model
reference hierarchy.

Custom targets must declare themselves to be model reference compliant if
they need to support Model blocks. See “Supporting Optional Features” for
details.

4-27

4 Building Subsystems and Working with Referenced Models

Referenced Model Code Generation Tutorial
You can get hands-on experience with creating referenced models and
generating code for them by working through the model reference tutorial.
See “Generating Code for a Referenced Model”.

Project Directory Structure for Model Reference
Targets
Code for models referenced by using Model blocks is generated in project
directories within the current working directory. The top-level project
directory is always named /slprj. The next level within slprj contains
parallel build area subdirectories.

The following table lists principal project directories and files. In the paths
listed, model is the name of the model being used as a referenced model,
and target is the system target file acronym (for example, grt, ert, rsim,
and so on).

Directories and Files Description

slprj/sim/model/ Simulation target files for referenced
models

slprj/sim/model/tmwinternal MAT-files used during code generation
slprj/target/model/referenced_model_includes Header files from models referenced by this

model
slprj/target/model Model reference target files
slprj/target/model/tmwinternal MAT-files used during code generation
slprj/sl_proj.tmw Marker file
slprj/target/_sharedutils Utility functions for model reference

targets, shared across models
slprj/sim/_sharedutils Utility functions for simulation targets,

shared across models

If you are building code for more than one referenced model within the same
working directory, model reference files for all such models are added to the
existing slprj directory.

4-28

Generating Code for Model Referencing

Building Model Reference Targets
By default, the Simulink engine rebuilds simulation targets as needed before
the Real-Time Workshop software generates model reference targets. You can
change the rebuild criteria or specify that the engine always or never rebuilds
targets. See “Rebuild options” for details.

The Real-Time Workshop software generates a model reference target directly
from the Simulink model. The product automatically generates or regenerates
model reference targets as needed.

You can command the Simulink and Real-Time Workshop products to
generate a simulation target for an Accelerator mode referenced model, and a
model reference target for any referenced model, by executing the slbuild
command with appropriate arguments in the MATLAB Command Window.

The Real-Time Workshop software generates only one model reference target
for all instances of a referenced model. See “Reusable Code and Referenced
Models” on page 4-42 for details.

Reducing Change Checking Time
You can reduce the time that the Simulink and Real-Time Workshop products
spend checking whether any or all simulation targets and model reference
targets need to be rebuilt by setting configuration parameter values as follows:

• In the top model, set Configuration Parameters > Model
Referencing > Rebuild options to If any changes in known
dependencies detected. (See “Rebuild options”.)

• In all referenced models throughout the hierarchy, set Configuration
Parameters > Diagnostics > Data Validity > Signal resolution to
Explicit only. (See “Signal resolution”.)

These parameter values exist in a referenced model’s configuration set, not
in the individual Model block, so setting either value for any instance of a
referenced model sets it for all instances of that model.

4-29

4 Building Subsystems and Working with Referenced Models

Real-Time Workshop Model Referencing
Requirements
A model reference hierarchy must satisfy various Real-Time Workshop
requirements, as described in this section. In addition to these requirements,
a model referencing hierarchy to be processed by the Real-Time Workshop
software must satisfy:

• The Simulink requirements listed in:

- “Configuration Requirements for All Referenced Model Simulation”

- “Model Structure Requirements”

• The Simulink limitations listed in “Limitations on All Model Referencing”

• The Real-Time Workshop limitations listed in “Real-Time Workshop Model
Referencing Limitations” on page 4-46

Configuration Parameter Requirements
A referenced model uses a configuration set in the same way that any other
model does, as described in “Configuration Sets”. By default, every model in a
hierarchy has its own configuration set, which it uses in the same way that it
would if the model executed independently.

Because each model can have its own configuration set, configuration
parameter values can be different in different models. Furthermore, some
parameter values are intrinsically incompatible with model referencing. The
response of the Real-Time Workshop software to an inconsistent or unusable
configuration parameter depends on the parameter:

• Where an inconsistency has no significance, or a trivial resolution exists
that carries no risk, the product ignores or resolves the inconsistency
without posting a warning.

• Where a nontrivial and possibly acceptable solution exists, the product
resolves the conflict silently; resolves it with a warning; or generates an
error. See “Model configuration mismatch” for details.

• Where no acceptable resolution is possible, the product generates an
error. You must then change some or all parameter values to eliminate
the problem.

4-30

Generating Code for Model Referencing

When a model reference hierarchy contains many submodels that have
incompatible parameter values, or a changed parameter value must propagate
to many submodels, manually eliminating all configuration parameter
incompatibilities can be tedious. You can control or eliminate such overhead
by using configuration references to assign an externally-stored configuration
set to multiple models. See “Referencing Configuration Sets” for details.

The following tables list configuration parameters that can cause problems if
set in certain ways, or if set differently in a referenced model than in a parent
model. Where possible, the Real-Time Workshop software resolves violations
of these requirements automatically, but most cases require changes to the
parameters in some or all models.

For general information about setting configuration parameters for code
generation, see “Adjusting Simulation Configuration Parameters for Code
Generation” on page 2-27.

Configuration Requirements for Model Referencing with All System
Targets

Dialog Box
Pane

Option Requirement

Solver Start time Some system
targets require
the start time of
all models to be
zero.

Hardware
Implementation

Emulation hardware options All values
must be the
same for top
and referenced
models.

4-31

4 Building Subsystems and Working with Referenced Models

Configuration Requirements for Model Referencing with All System
Targets (Continued)

Dialog Box
Pane

Option Requirement

System target file Must be the
same for top
and referenced
models.

Language Must be the
same for top
and referenced
models.

Real-Time
Workshop

Generate code only Must be the
same for top
and referenced
models.

Symbols Maximum identifier length Cannot be longer
for a referenced
model than for
its parent model.

4-32

Generating Code for Model Referencing

Configuration Requirements for Model Referencing with All System
Targets (Continued)

Dialog Box
Pane

Option Requirement

Target
function
library

Must be the
same for top
and referenced
models.

C API The C API
Signals and
Parameters
check boxes
must be the
same for top
and referenced
models.

Interface

Data exchange
Interface

ASAP2 Can be on or off
in a top model,
but must be off
in a referenced
model. If it is not,
the Real-Time
Workshop
software
temporarily sets
it to off during
code generation.

4-33

4 Building Subsystems and Working with Referenced Models

Configuration Requirements for Model Referencing with ERT System
Targets

Dialog Box
Pane

Option Requirement

Real-Time
Workshop

Ignore custom storage classes Must be the
same for top
and referenced
models.

Global variables
Global types
Subsystem methods
Local temporary variables
Constant macros

$R token must
appear.

Signal naming Must be the
same for top
and referenced
models.

M-function If specified,
must be the
same for top
and referenced
models.

Parameter naming Must be the
same for top
and referenced
models.

Symbols

#define naming Must be the
same for top
and referenced
models.

4-34

Generating Code for Model Referencing

Configuration Requirements for Model Referencing with ERT System
Targets (Continued)

Dialog Box
Pane

Option Requirement

Support floating- point numbers If off for top
model, must
be off for
referenced
models.

Support non-finite numbers If off for top
model, must
be off for
referenced
models.

Support complex numbers If off for top
model, must
be off for
referenced
models.

Terminate function required Must be the
same for top
and referenced
models.

Interface

Suppress error status in
real-time model

If on for top
model, must be
on for referenced
models.

Templates Target operating system Must be the
same for top
and referenced
models.

4-35

4 Building Subsystems and Working with Referenced Models

Configuration Requirements for Model Referencing with ERT System
Targets (Continued)

Dialog Box
Pane

Option Requirement

Module Naming Must be the
same for top
and referenced
models.

Module Name (if specified) If set, must be
the same for top
and referenced
models.

Signal display level Must be the
same for top
and referenced
models.

Data
Placement

Parameter tune level Must be the
same for top
and referenced
models.

Naming Requirements
Within a model that uses model referencing, there can be no collisions
between the names of the constituent models. When you generate code from
a model that uses model referencing, the Maximum identifier length
parameter must be large enough to accommodate the root model name and
the name mangling string (if needed). A code generation error occurs if
Maximum identifier length is not large enough.

When a name conflict occurs between a symbol within the scope of a
higher-level model and a symbol within the scope of a referenced model, the
symbol from the referenced model is preserved. Name mangling is performed
on the symbol from the higher-level model.

4-36

Generating Code for Model Referencing

Real-Time Workshop Embedded Coder Naming Requirements. The
Real-Time Workshop Embedded Coder product provides a Symbol format
field that lets you control the formatting of generated symbols in much
greater detail. When generating code with an ERT target from a model that
uses model referencing:

• The $R token must be included in the Identifier format control
parameter specifications (in addition to the $M token).

• The Maximum identifier length must be large enough to accommodate
full expansions of the $R and $M tokens.

See “Real-Time Workshop Pane: Symbols” and “Code Generation Options and
Optimizations” for more information.

Custom Target Requirements
A custom target must meet various requirements in order to support model
referencing. See “Supporting Optional Features” for details.

Storage Classes for Signals Used with Model Blocks
Models containing Model blocks can use signals of storage class Auto without
restriction. However, when you declare signals to be global, you must be
aware of how the signal data will be handled.

A global signal is a signal with a storage class other than Auto:

• ExportedGlobal

• ImportedExtern

• ImportedExternPointer

• Custom

The above are distinct from SimulinkGlobal signals, which are treated as
test points with Auto storage class.

Global signals are declared, defined, and used as follows:

4-37

4 Building Subsystems and Working with Referenced Models

• An extern declaration is generated by all models that use any given global
signal.

As a result, if a signal crosses a Model block boundary, the top model and
the referenced model both generate extern declarations for the signal.

• For any exported signal, the top mode is responsible for defining (allocating
memory for) the signal, whether or not the top model itself uses the signal.

• All global signals used by a referenced model are accessed directly (as
global memory). They are not passed as arguments to the functions that
are generated for the referenced models.

Custom storage classes also follow the above rules. However, certain custom
storage classes are not currently supported for use with model reference. See
“Custom Storage Class Limitations” for details.

Storage Classes for Parameters Used with Model Blocks
All storage classes are supported for both simulation and code generation, and
all except Auto are tunable. The supported storage classes thus include

• SimulinkGlobal

• ExportedGlobal

• ImportedExtern

• ImportedExternPointer

• Custom

Note the following restrictions on parameters in referenced models:

• Tunable parameters are not supported for noninlined S-functions.

• Tunable parameters set using the Model Parameter Configuration dialog
box are ignored.

Note the following considerations concerning how global tunable parameters
are declared, defined, and used in code generated for targets:

• A global tunable parameter is a parameter in the base workspace with a
storage class other than Auto.

4-38

Generating Code for Model Referencing

• An extern declaration is generated by all models that use any given
parameter.

• If a parameter is exported, the top model is responsible for defining
(allocating memory for) the parameter (whether it uses the parameter
or not).

• All global parameters are accessed directly (as global memory). They are
not passed as arguments to any of the functions that are generated for
any of the referenced models.

• Symbols for SimulinkGlobal parameters in referenced models are
generated using unstructured variables (rtP_xxx) instead of being written
into the model_P structure. This is so that each referenced model can be
compiled independently.

Certain custom storage classes for parameters are not currently supported for
model reference. See “Custom Storage Class Limitations” for details.

Parameters used as Model block arguments must be defined in the referenced
model’s workspace. See “Parameterizing Model References” in the Simulink
documentation for specific details.

Effects of Signal Name Mismatches
Within a parent model, the name and storage class for a signal entering or
leaving a Model block might not match those of the signal attached to the root
inport or outport within that referenced model. Because referenced models
are compiled independently without regard to any parent model, they cannot
adapt to all possible variations in how parent models label and store signals.

The Real-Time Workshop software accepts all cases where input and output
signals in a referenced model have Auto storage class. When such signals are
test pointed or are global, as described above, certain restrictions apply. The
following table describes how mismatches in signal labels and storage classes
between parent and referenced models are handled:

4-39

4 Building Subsystems and Working with Referenced Models

Relationships of Signals and Storage Classes Between Parent and
Referenced Models

Referenced
Model Parent Model

Signal Passing
Method

Signal
Mismatch
Checking

Auto Any Function
argument

None

SimulinkGlobal
or resolved to
Signal Object

Any Function
argument

Label Mismatch
Diagnostic (none
/ warning / error)

Global Auto or
SimulinkGlobal

Global variable Label Mismatch
Diagnostic (none
/ warning / error)

Global Global Global variable Labels and
storage classes
must be identical
(else error)

To summarize, the following signal resolution rules apply to code generation:

• If the storage class of a root input or output signal in a referenced model is
Auto (or is SimulinkGlobal), the signal is passed as a function argument.

- When such a signal is SimulinkGlobal or resolves to a Simulink.Signal
object, the Signal Mismatch diagnostic is applied.

• If a root input or output signal in a referenced model is global, it is
communicated by using direct memory access (global variable). In addition,

- If the corresponding signal in the parent model is also global, the names
and storage classes must match exactly.

- If the corresponding signal in the parent model is not global, the Signal
Mismatch diagnostic is applied.

You can set the Signal Mismatch diagnostic to error, warning, or none in
the Configuration Parameters > Diagnostics > Connectivity dialog.

4-40

Generating Code for Model Referencing

Inherited Sample Time for Referenced Models
See “Inheriting Sample Times” in the Simulink documentation
for information about Model block sample time inheritance. In
generated code, you can control inheriting sample time by using
ssSetModelReferenceSampleTimeInheritanceRule in different ways:

• An S-function that precludes inheritance: If the sample time is used
in the S-function’s run-time algorithm, then the S-function precludes a
model from inheriting a sample time. For example, consider the following
mdlOutputs code:

static void mdlOutputs(SimStruct *S, int_T tid)
{

const real_T *u = (const real_T*)
ssGetInputPortSignal(S,0);
real_T *y = ssGetOutputPortSignal(S,0);
y[0] = ssGetSampleTime(S,tid) * u[0];

}

This mdlOutputs code uses the sample time in its algorithm, and the
S-function therefore should specify

ssSetModelReferenceSampleTimeInheritanceRule
(S, DISALLOW_SAMPLE_TIME_INHERITANCE);

• An S-function that does not preclude Inheritance: If the sample time is
only used for determining whether the S-function has a sample hit, then it
does not preclude the model from inheriting a sample time. For example,
consider the mdlOutputs code from the S-function demo sfun_multirate.c:

static void mdlOutputs(SimStruct *S, int_T tid)
{

InputRealPtrsType enablePtrs;
int *enabled = ssGetIWork(S);

if (ssGetInputPortSampleTime
(S,ENABLE_IPORT)==CONTINUOUS_SAMPLE_TIME &&
ssGetInputPortOffsetTime(S,ENABLE_IPORT)==0.0) {

if (ssIsMajorTimeStep(S) &&
ssIsContinuousTask(S,tid)) {

4-41

4 Building Subsystems and Working with Referenced Models

enablePtrs =
ssGetInputPortRealSignalPtrs(S,ENABLE_IPORT);
*enabled = (*enablePtrs[0] > 0.0);

}
} else {

int enableTid =
ssGetInputPortSampleTimeIndex(S,ENABLE_IPORT);
if (ssIsSampleHit(S, enableTid, tid)) {

enablePtrs =
ssGetInputPortRealSignalPtrs(S,ENABLE_IPORT);
*enabled = (*enablePtrs[0] > 0.0);

}
}

if (*enabled) {
InputRealPtrsType uPtrs =
ssGetInputPortRealSignalPtrs(S,SIGNAL_IPORT);
real_T signal = *uPtrs[0];
int i;

for (i = 0; i < NOUTPUTS; i++) {
if (ssIsSampleHit(S,
ssGetOutputPortSampleTimeIndex(S,i), tid)) {

real_T *y = ssGetOutputPortRealSignal(S,i);
*y = signal;

}
}

}
} /* end mdlOutputs */

The above code uses the sample times of the block, but only for determining
whether there is a hit. Therefore, this S-function should set

ssSetModelReferenceSampleTimeInheritanceRule
(S, USE_DEFAULT_FOR_DISCRETE_INHERITANCE);

Reusable Code and Referenced Models
Models that employ model referencing might require special treatment when
generating and using reusable code. The following sections identify general
restrictions and discuss how reusable functions with inputs or outputs

4-42

Generating Code for Model Referencing

connected to a referenced model’s root Inport or Outport blocks can affect
code reuse.

General Considerations
You can generate code for subsystems that contain referenced models using
the same procedures and options described in “Nonvirtual Subsystem Code
Generation” on page 4-2. However, the following restrictions apply to such
builds:

• ERT S-functions do not support subsystems that contain a continuous
sample time.

• The Real-Time Workshop S-function target is not supported.

• The Tunable parameters table (set by using the Model Parameter
Configuration dialog box) is ignored; to make parameters tunable, you must
define them as Simulink parameter objects in the base workspace.

• All other parameters are inlined into the generated code and S-function.

Note You can generate subsystem code using any target configuration
available in the System Target File Browser. However, if the S-function
target is selected, Build Subsystem behaves identically to Generate
S-function. (See “Automated S-Function Generation” on page 11-14.)

Code Reuse and Model Blocks with Root Inport or Outport
Blocks
Reusable functions with inputs or outputs connected to a referenced model’s
root Inport or Outport block can affect code reuse. This means that code for
certain atomic subsystems cannot be reused in a model reference context the
same way it is reused in a standalone model.

For example, suppose you create the following subsystem and make the
following changes to the subsystem’s block parameters:

• Select Treat as an atomic unit

• Set Real-Time Workshop system code to Reusable function

4-43

4 Building Subsystems and Working with Referenced Models

Suppose you then create the following model, which includes three instances
of the preceding subsystem.

With the Inline parameters option enabled in this stand-alone model, the
Real-Time Workshop code generator can optimize the code by generating a
single copy of the function for the reused subsystem, as shown below.

void reuse_subsys1_Subsystem1(
real_T rtu_0,
rtB_reuse_subsys1_Subsystem1 *localB)

{

/* Gain: '<S1>/Gain' */
localB->Gain_k = rtu_0 * 3.0;

}

When generated as code for a Model block (into an slprj project directory),
the subsystems have three different function signatures:

/* Output and update for atomic system: '<Root>/Subsystem1' */
void reuse_subsys1_Subsystem1(const real_T *rtu_0,
rtB_reuse_subsys1_Subsystem1
*localB)

{
/* Gain: '<S1>/Gain' */

4-44

Generating Code for Model Referencing

localB->Gain_w = (*rtu_0) * 3.0;
}

/* Output and update for atomic system: '<Root>/Subsystem2' */
void reuse_subsys1_Subsystem2(real_T rtu_In1,
rtB_reuse_subsys1_Subsystem2
*localB)

{
/* Gain: '<S2>/Gain' */
localB->Gain_y = rtu_In1 * 3.0;

}

/* Output and update for atomic system: '<Root>/Subsystem3' */
void reuse_subsys1_Subsystem3(real_T rtu_In1, real_T *rty_0)
{

/* Gain: '<S3>/Gain' */
(*rty_0) = rtu_In1 * 3.0;

}

One way to make all the function signatures the same — and therefore assure
code reuse — is to insert Signal Conversion blocks. Place one between the
Inport and Subsystem1 and another between Subsystem3 and the Outport of
the referenced model.

The result is a single reusable function:

void reuse_subsys2_Subsystem1(real_T rtu_In1,
rtB_reuse_subsys2_Subsystem1 *localB)

{

/* Gain: '<S1>/Gain' */
localB->Gain_g = rtu_In1 * 3.0;

}

4-45

4 Building Subsystems and Working with Referenced Models

You can achieve the same result (reusable code) with only one Signal
Conversion block. You can omit the Signal Conversion block connected to the
Inport block if you select the Pass scalar root inputs by value check box at
the bottom of theModel Referencing pane of the Configuration Parameters
dialog box. When you do this, you still need to insert a Signal Conversion
block before the Outport block.

Customizing the Library File Suffix, Including the File
Type Extension
You can control the library file suffix, including the file type extension, that
the Real-Time Workshop code generator uses to name generated model
reference libraries by specifying the string for the suffix with the model
configuration parameter TargetLibSuffix. The string must include a period
(.). If you do not set this parameter,

On a... The Real-Time Workshop Software Names the
Libraries...

Microsoft Windows
system

model_rtwlib.lib

The Open Group
UNIX system

model_rtwlib.a

Real-Time Workshop Model Referencing Limitations
The following Real-Time Workshop limitations apply to model referencing.
In addition to these limitations, a model reference hierarchy used for code
generation must satisfy:

• The Simulink requirements listed in:

- “Configuration Requirements for All Referenced Model Simulation”

- “Model Structure Requirements”

• The Simulink limitations listed in “Simulink Model Referencing
Limitations”.

• The Real-Time Workshop requirements applicable to the code generation
target, as listed in “Configuration Parameter Requirements” on page 4-30.

4-46

Generating Code for Model Referencing

Customization Limitations

• The Real-Time Workshop code generator ignores custom code settings in
the Configuration Parameter dialog box and custom code blocks when
generating code for a referenced model.

• Some restrictions exist on grouped custom storage classes in referenced
models. See “Custom Storage Class Limitations” for details.

• Referenced models do not support custom storage classes if the parent
model has inline parameters off.

• This release does not include Stateflow target custom code in simulation
targets generated for referenced models.

• Data type replacement is not supported for simulation target code
generation for referenced models.

• Simulation targets do not include Stateflow target custom code.

Data Logging Limitations

• To Workspace blocks, Scope blocks, and all types of runtime display, such
as the display of port values and signal values, are ignored when the
Real-Time Workshop software generates code for a referenced model. The
resulting code is the same as if the constructs did not exist.

• Code generated for referenced models cannot log data to MAT-files. If data
logging is enabled for a referenced model, the Real-Time Workshop software
disables the option before code generation and re-enables it afterwards.

4-47

4 Building Subsystems and Working with Referenced Models

Reusability Limitations
If a referenced model used for code generation has any of the following
properties, the model must specify Configuration Parameters > Model
Referencing > Total number of instances allowed per top model as
One, and no other instances of the model can exist in the hierarchy. If the
parameter is not set correctly, or more than one instance of the model exists
in the hierarchy, an error occurs. The properties are:

• The model references another model which has been set to single instance

• The model contains a state or signal with non-auto storage class

• The model uses any of the following Stateflow constructs:

- Machine-parented data

- Machine-parented events

- Stateflow graphical functions

• The model contains a subsystem that is marked as function

• The model contains an S-function that is:

- Inlined but has not set the option SS_OPTION_WORKS_WITH_CODE_REUSE

- Not inlined

• The model contains a function-call subsystem that:

- Has been forced by the Simulink engine to be a function

- Is called by a wide signal

4-48

Generating Code for Model Referencing

S-Function Limitations

• If a referenced model contains an S-function that should be inlined using a
Target Language Compiler file, the S-function must use the ssSetOptions
macro to set the SS_OPTION_USE_TLC_WITH_ACCELERATOR option in its
mdlInitializeSizes method. The simulation target will not inline the
S-function unless this flag is set.

• The Real-Time Workshop software cannot generate code for a referenced
model that includes noninlined S-functions.

• A referenced model cannot use noninlined S-functions generated by the
Real-Time Workshop software.

• The Real-Time Workshop S-function target does not support model
referencing.

Simulink Tool Limitations

• Simulink tools that require access to a model’s internal data or
configuration (including the Model Coverage tool, the Simulink Report
Generator product, the Simulink debugger, and the Simulink profiler) have
no effect on code generated by the Real-Time Workshop software for a
referenced model, or on the execution of that code. Specifications made and
actions taken by such tools are ignored and effectively do not exist.

Subsystem Limitations

• If a subsystem contains Model blocks, you cannot build a subsystem
module by right-clicking the subsystem (or by using Tools > Real-Time
Workshop > Build subsystem) unless the model is configured to use
an ERT target.

• If you generate code for an atomic subsystem as a reusable function, inputs
or outputs that connect the subsystem to a referenced model can affect code
reuse, as described in “Reusable Code and Referenced Models” on page 4-42.

Target Limitations

• Real-Time Workshop grt_malloc targets do not support model reference.

4-49

4 Building Subsystems and Working with Referenced Models

• The Real-Time Workshop S-function target does not support model
referencing.

Other Limitations

• Errors or unexpected behavior can occur if a Model block is part of a cycle,
the Model block is a direct feedthrough block, and an algebraic loop results.
See “Model Blocks and Direct Feedthrough” for details.

• The External mode option is not supported. If it is enabled, it is ignored
during code generation.

4-50

Sharing Utility Functions

Sharing Utility Functions

In this section...

“Introduction” on page 4-51
“Controlling Shared Utility Generation” on page 4-51
“rtwtypes.h and Shared Utilities” on page 4-52
“Incremental Shared Utility Generation and Compilation” on page 4-53
“Shared Utility Checksum” on page 4-53
“Shared Fixed-Point Utilities” on page 4-55

Introduction
Blocks in a model can require common functionality to implement their
algorithm. In many cases, it is most efficient to modularize this functionality
into standalone support or helper functions, rather than inlining the code for
the functionally for each block instance.

Typically, functions that can have multiple callers are packaged into a library.
Traditionally, such functions are defined statically, that is, the function
source code exists in a file before you use the Real-Time Workshop software to
generate code for your model.

In other cases, several model- and block-specific properties can affect which
functions are needed and their behavior. Additionally, these properties can
affect type definitions (for example, typedef) in shared utility header files.
Since there are many possible combinations of properties that determine
unique behavior, it is not practical to statically define all possible function
files before code generation. Instead, you can use the Real-Time Workshop
shared utility mechanism, which generates any needed support functions
during code generation process.

Controlling Shared Utility Generation
You control the shared utility generation mechanism with the Utility
function generation option on the Real-Time Workshop > Interface
pane of the Configuration Parameters dialog box. By default, the option is set

4-51

4 Building Subsystems and Working with Referenced Models

to Auto. For this setting, if the model being built does not include any Model
blocks, the Real-Time Workshop build process places any code required for
fixed-point and other utilities in one of the following:

• The model.c or model.cpp file

• In a separate file in the Real-Time Workshop build directory (for example,
vdp_grt_rtw)

Thus, the code is specific to the model.

If a model does contain Model blocks, the Real-Time Workshop build process
creates and uses a shared utilities directory within slprj. Model reference
builds require the use of shared utilities. The naming convention for shared
utility directories is slprj/target/_sharedutils, where target is sim
for simulations with Model blocks or the name of the system target file for
Real-Time Workshop target builds. Some examples follow:

slprj/sim/_sharedutils % directory used with simulation

slprj/grt/_sharedutils % directory used with grt.tlc STF

slprj/ert/_sharedutils % directory used with ert.tlc STF

slprj/mytarget/_sharedutils % directory used with mytarget.tlc STF

To force a model build to use the slprj directory for shared utility generation,
even when the current model contains no Model blocks, set the Utility
function generation option to Shared location. This forces the Real-Time
Workshop build process to place utilities under the slprj directory rather
than in the normal Real-Time Workshop build directory. This setting is useful
when you are manually combining code from several models, as it prevents
symbol collisions between the models.

rtwtypes.h and Shared Utilities
The generated header file rtwtypes.h provides necessary defines,
enumerations, and so on. The location of this file is controlled by whether the
build process is using the shared utilities directory. Typically, the Real-Time
Workshop build process places rtwtypes.h in the standard build directory,
model_target_rtw. However, if a shared directory is required, the product
places rtwtypes.h in slprj/target/_sharedutils.

4-52

Sharing Utility Functions

Incremental Shared Utility Generation and
Compilation
As explained in “Controlling Shared Utility Generation” on page 4-51, you can
specify that C source files, which contain function definitions, and header files,
which contain macro definitions, be generated in a shared utilities directory.
For the purpose of this discussion, the term functions means functions and
macros.

A shared function can be used by blocks within the same model and by
blocks in different models when using model reference or when building
multiple standalone models from the same start build directory. However,
the Real-Time Workshop software generates the code for a given function
only once for the block that first triggers code generation. As the product
determines the need to generate function code for subsequent blocks,
it performs a file existence check. If the file exists, the function is not
regenerated. Thus, the shared utility function mechanism requires that
a given function and file name represent the same functional behavior
regardless of which block or model generates the function. To satisfy this
requirement:

• Model properties that affect function behavior are included in a shared
utility checksum or affect the function and file name.

• Block properties that affect the function behavior also affect the function
and file name.

During compilation, makefile rules for the shared utilities directory are
configured to compile only new C files, and incrementally archive the object
file into the shared utility library, rtwshared.lib or rtwshared.a. Thus,
incremental compilation is also done.

Shared Utility Checksum
As explained in “Incremental Shared Utility Generation and Compilation”
on page 4-53, the Real-Time Workshop software uses the shared
utilities directory when you explicitly configure a model to use the
shared location or the model contains Model blocks. During the code
generation process, if relative to the current directory, the configuration
file slprj/target/_sharedutils/checksummap.mat exists, the product
reads that file and ensures that the current model being built has identical

4-53

4 Building Subsystems and Working with Referenced Models

settings for the required model properties. If mismatches occur between the
properties defined in checksummap.mat and the current model properties,
a Warning dialog appears.

The following table lists properties that must match for the shared utility
checksum.

Category Properties

Hardware
Implementation
configuration
properties

get_param(bdroot,
'TargetShiftRightIntArith')
get_param(bdroot, 'TargetEndianess')
get_param(bdroot, 'ProdEndianess')
get_param(bdroot, 'TargetBitPerChar')
get_param(bdroot, 'TargetBitPerShort')
get_param(bdroot, 'TargetBitPerInt')
get_param(bdroot, 'TargetBitPerLong')
get_param(bdroot, 'ProdHWWordLengths')
get_param(bdroot, 'TargetWordSize')
get_param(bdroot, 'ProdWordSize')
get_param(bdroot, 'TargetHWDeviceType')
get_param(bdroot, 'ProdHWDeviceType')
get_param(bdroot, 'TargetIntDivRoundTo')
get_param(bdroot, 'ProdIntDivRoundTo'

Additional
configuration
properties

get_param(bdroot, 'TargetLibSuffix')
get_param(bdroot, 'TargetLang')
get_param(bdroot, 'TemplateMakefile')

4-54

Sharing Utility Functions

Category Properties

ERT target properties get_param(bdroot, 'PurelyIntegerCode')
get_param(bdroot, 'SupportNonInlinedSFcns'

Platform property Return value of the computer command

Shared Fixed-Point Utilities
An important set of generated functions that are placed in the shared utility
directory are the fixed-point support functions. Based on model and block
properties, there are many possible versions of fixed-point utilities functions
that make it impractical to provide a complete set as static files. Generating
only the required fixed-point utility functions during the code generation
process is an efficient alternative.

The shared utility checksum mechanism ensures that several critical
properties are identical for all models that use the shared utilities. For the
fixed-point functions, there are additional properties that affect function
behavior. These properties are coded into the functions and file names to
ensure requirements are maintained. The additional properties include

Category Function/Property

Block
properties

• Fixed-point operation being performed by the block

• Fixed-point data type and scaling (Slope, Bias) of
function inputs and outputs

• Overflow handling mode (Saturation, Wrap)

• Rounding Mode (Floor, Ceil, Zero)
Model
properties

get_param(bdroot, 'NoFixptDivByZeroProtection')

The naming convention for the fixed-point utilities is based on the properties
as follows:

operation + [zero protection] + output data type + output bits +

[input1 data] + input1 bits + [input2 data type + input2 bits] +

[shift direction] + [saturate mode] + [round mode]

4-55

4 Building Subsystems and Working with Referenced Models

Below are examples of generated fixed-point utility files, the function or macro
names in the file are identical to the file name without the extension.

FIX2FIX_U12_U16.c
FIX2FIX_S9_S9_SR99.c
ACCUM_POS_S30_S30.h
MUL_S30_S30_S16.h
div_nzp_s16s32_floor.c
div_s32_sat_floor.c

For these examples, the respective fields correspond as follows:

Operation FIX2FIX FIX2FIX ACCUM_POS MUL div div

Zero protection NULL NULL NULL NULL _nzp NULL

Output data type _U _S _S _S _s _s

Output bits 12 9 30 30 16 32

Input data type _U _S _S _S [and _S] s NULL

Input bits 16 9 30 30 [and 16] 32 NULL

Shift direction NULL SR99 NULL NULL NULL NULL

Saturate mode NULL NULL NULL NULL NULL _sat

Round mode NULL NULL NULL NULL _floor _floor

Note For the ACCUM_POS example, the output variable is also used as one of
the input variables. Therefore, only the output and second input is contained
in the file and macro name. For the second div example, both inputs and
the output have identical data type and bits. Therefore, only the output is
included in the file and function name.

4-56

Supporting Shared Utility Directories in the Build Process

Supporting Shared Utility Directories in the Build Process
The shared utility directories (slprj/target/_sharedutils) typically store
generated utility code that is common to a top-level model and the models
it references. You can also force the build process to use a shared utilities
directory for a standalone model. See “Sharing Utility Functions” on page
4-51 for details.

If you want your target to support compilation of code generated in the shared
utilities directory, several updates to your template makefile (TMF) are
required. Support for the shared utilities directory is a necessary, but not
sufficient, condition for supporting model reference builds. See “Supporting
Optional Features” to learn about additional updates that are needed for
supporting model reference builds.

The exact syntax of the changes can vary due to differences in the make utility
and compiler/archive tools used by your target. The examples below are
based on the Free Software Foundation’s GNU make utility. You can find the
following updated TMF examples for GNU and Microsoft Visual C++ make
utilities in the GRT and ERT target directories:

• GRT: matlabroot/rtw/c/grt/

- grt_lcc.tmf

- grt_vc.tmf

- grt_unix.tmf

• ERT: matlabroot/rtw/c/ert/

- ert_lcc.tmf

- ert_vc.tmf

- ert_unix.tmf

Use the GRT or ERT examples as a guide to the location, within the TMF, of
the changes and additions described below.

4-57

4 Building Subsystems and Working with Referenced Models

Note The ERT-based TMFs contain extra code to handle generation of ERT
S-functions and model reference simulation targets. Your target does not
need to handle these cases.

Modifying Template Makefiles to Support Shared
Utilities
Make the following changes to your TMF to support the shared utilities
directory:

1 Add the following make variables and tokens to be expanded when the
makefile is generated:

SHARED_SRC = |>SHARED_SRC<|
SHARED_SRC_DIR = |>SHARED_SRC_DIR<|
SHARED_BIN_DIR = |>SHARED_BIN_DIR<|
SHARED_LIB = |>SHARED_LIB<|

SHARED_SRC specifies the shared utilities directory location and the source
files in it. A typical expansion in a makefile is

SHARED_SRC = ../slprj/ert/_sharedutils/*.c

SHARED_LIB specifies the library file built from the shared source files, as
in the following expansion.

SHARED_LIB = ../slprj/ert/_sharedutils/rtwshared.lib

SHARED_SRC_DIR and SHARED_BIN_DIR allow specification of separate
directories for shared source files and the library compiled from the source
files. In the current release, all TMFs use the same path, as in the following
expansions.

SHARED_SRC_DIR = ../slprj/ert/_sharedutils
SHARED_BIN_DIR = ../slprj/ert/_sharedutils

2 Set the SHARED_INCLUDES variable according to whether shared utilities
are in use. Then append it to the overall INCLUDES variable.

4-58

Supporting Shared Utility Directories in the Build Process

SHARED_INCLUDES =
ifneq ($(SHARED_SRC_DIR),)
SHARED_INCLUDES = -I$(SHARED_SRC_DIR)
endif

INCLUDES = -I. $(MATLAB_INCLUDES) $(ADD_INCLUDES) \
$(USER_INCLUDES) $(SHARED_INCLUDES)

3 Update the SHARED_SRC variable to list all shared files explicitly.

SHARED_SRC := $(wildcard $(SHARED_SRC))

4 Create a SHARED_OBJS variable based on SHARED_SRC.

SHARED_OBJS = $(addsuffix .o, $(basename $(SHARED_SRC)))

5 Create an OPTS (options) variable for compilation of shared utilities.

SHARED_OUTPUT_OPTS = -o $@

6 Provide a rule to compile the shared utility source files.

$(SHARED_OBJS) : $(SHARED_BIN_DIR)/%.o : $(SHARED_SRC_DIR)/%.c
$(CC) -c $(CFLAGS) $(SHARED_OUTPUT_OPTS) $<

7 Provide a rule to create a library of the shared utilities. The following
example is based on The Open Group UNIX platforms.

$(SHARED_LIB) : $(SHARED_OBJS)
@echo "### Creating $@ "
ar r $@ $(SHARED_OBJS)
@echo "### Created $@ "

8 Add SHARED_LIB to the rule that creates the final executable.

$(PROGRAM) : $(OBJS) $(LIBS) $(SHARED_LIB)
$(LD) $(LDFLAGS) -o $@ $(LINK_OBJS) $(LIBS) $(SHARED_LIB)\

$(SYSLIBS)
@echo "### Created executable: $(MODEL)"

4-59

4 Building Subsystems and Working with Referenced Models

9 Remove any explicit reference to rt_nonfinite.c or rt_nonfinite.cpp
from your TMF. For example, change

ADD_SRCS = $(RTWLOG) rt_nonfinite.c

to

ADD_SRCS = $(RTWLOG)

4-60

5

Working with Data

• “Parameter Storage, Interfacing, and Tuning” on page 5-2

• “Signal Storage, Optimization, and Interfacing” on page 5-31

• “Parameter Tuning and Signal Monitoring” on page 5-45

• “Simulink Data Objects and Code Generation” on page 5-46

• “Enumerated Data Types in Generated Code” on page 5-72

• “Block State Storage and Interfacing” on page 5-78

• “Storage Classes for Data Store Memory Blocks” on page 5-88

5 Working with Data

Parameter Storage, Interfacing, and Tuning

In this section...

“Introduction” on page 5-2
“Nontunable Parameter Storage” on page 5-3
“Tunable Parameter Storage” on page 5-5
“Tunable Parameter Storage Classes” on page 5-7
“Using the Model Parameter Configuration Dialog Box” on page 5-10
“Tunable Expressions” on page 5-14
“Linear Block Parameter Tunability” on page 5-18
“Parameter Configuration Quick Reference Diagram” on page 5-19
“Generated Code for Parameter Data Types” on page 5-20
“Tunable Workspace Parameter Data Type Considerations” on page 5-26
“Parameter Tuning by Using MATLAB Commands” on page 5-28

Introduction
This section discusses how the Real-Time Workshop product generates
parameter storage declarations, and how you can generate the storage
declarations you need to interface block parameters to your code.

If you are using S-functions in your model and intend to tune their run-time
parameters in the generated code, see “Tuning Run-Time Parameters” in the
Simulink documentation. Note that

• Parameters must be numeric, logical, or character arrays.

• Parameters may not be sparse.

• Parameter arrays must not be greater than 2 dimensions.

For guidance on implementing a parameter tuning interface using a C API,
see “C API for Interfacing with Signals and Parameters” on page 17-2.

5-2

Parameter Storage, Interfacing, and Tuning

Simulink external mode offers a way to monitor signals and modify parameter
values while generated model code executes. However, external mode might
not be appropriate for your application in some cases. The S-function target
does not support external mode, for example. For other targets, you might
want your existing code to access parameters and signals of a model directly,
rather than using the external mode communications mechanism. For
information on external mode, see Chapter 6, “External Mode”.

Nontunable Parameter Storage
By default, block parameters are not tunable in the generated code. When
Inline Parameters is off (the default), the Real-Time Workshop product
has control of parameter storage declarations and the symbolic naming of
parameters in the generated code.

Nontunable parameters are stored as fields within model_P (formerly rtP),
a model-specific global parameter data structure. The Real-Time Workshop
product initializes each field of model_P to the value of the corresponding
block parameter at code generation time.

When the Inline parameters option is on, block parameters are evaluated at
code generation time, and their values appear as constants in the generated
code, if possible (in certain circumstances, parameters cannot be inlined, and
are then included in a constant parameter or model parameter structure.)

As an example of nontunable parameter storage, consider the following model.

The workspace variable Kp sets the gain of the Gain1 block.

5-3

5 Working with Data

Assume that Kp is nontunable and has a value of 5.0. The next table shows
the variable declarations and the code generated for Kp in the noninlined
and inlined cases.

Notice that the generated code does not preserve the symbolic name
Kp. The noninlined code represents the gain of the Gain1 block as
model_P.Gain1_Gain. When Kp is noninlined, the parameter is tunable.

5-4

Parameter Storage, Interfacing, and Tuning

Inline
Parameters

Generated Variable Declaration and Code

Off
struct Parameters_non_tunable_sin { real_T SineWave_Amp;

real_T SineWave_Bias;
real_T SineWave_Freq;
real_T SineWave_Phase;
real_T Gain_Gain;

};
.
.
.
Parameters_non_tunable_sin non_tunable_sin_P = {

1.0 , /* SineWave_Amp : '<Root>/Sine Wave' */
0.0 , /* SineWave_Bias : '<Root>/Sine Wave' */
1.0 , /* SineWave_Freq : '<Root>/Sine Wave' */
0.0 , /* SineWave_Phase : '<Root>/Sine Wave' */
5.0 /* Gain_Gain : '<Root>/Gain' */

};
.
.
.
non_tunable_sin_Y.Out1 = rtb_u *
non_tunable_sin_P.Gain_Gain;

On
non_tunable_sin_Y.Out1 = rtb_u * 5.0;

Tunable Parameter Storage
A tunable parameter is a block parameter whose value can be changed at
run-time. A tunable parameter is inherently noninlined. Consequently, when
Inlined parameters is off, all parameters are members of model_P, and thus
are tunable. A tunable expression is an expression that contains one or more
tunable parameters.

5-5

5 Working with Data

When you declare a parameter tunable, you control whether or not the
parameter is stored within model_P. You also control the symbolic name of
the parameter in the generated code.

When you declare a parameter tunable, you specify

• The storage class of the parameter.

The storage class property of a parameter specifies how the Real-Time
Workshop product declares the parameter in generated code.

The term “storage class,” as used in the Real-Time Workshop product, is not
synonymous with the term storage class specifier, as used in the C language.

• A storage type qualifier, such as const or volatile. This is simply a string
that is included in the variable declaration, without error checking.

• (Implicitly) the symbolic name of the variable or field in which the
parameter is stored. The Real-Time Workshop product derives variable
and field names from the names of tunable parameters.

The Real-Time Workshop product generates a variable or struct storage
declaration for each tunable parameter. Your choice of storage class controls
whether the parameter is declared as a member of model_P or as a separate
global variable.

You can use the generated storage declaration to make the variable visible
to external legacy code. You can also make variables declared in your code
visible to the generated code. You are responsible for properly linking your
code to generated code modules.

You can use tunable parameters or expressions in your root model and
in masked or unmasked subsystems, subject to certain restrictions. (See
“Tunable Expressions” on page 5-14.)

Overriding Inlined Parameters for Tuning
When the Inline parameters option is selected, you can use the Model
Parameter Configuration dialog box to remove individual parameters from
inlining and declare them to be tunable. This allows you to improve overall
efficiency by inlining most parameters, while at the same time retaining the
flexibility of run-time tuning for selected parameters. Another way you can

5-6

Parameter Storage, Interfacing, and Tuning

achieve the same result is by using Simulink data objects; see “Simulink Data
Objects and Code Generation” on page 5-46 for specific details.

The mechanics of declaring tunable parameters are discussed in “Using the
Model Parameter Configuration Dialog Box” on page 5-10.

Tunable Parameter Storage Classes
The Real-Time Workshop product defines four storage classes for tunable
parameters. You must declare a tunable parameter to have one of the
following storage classes:

• SimulinkGlobal (Auto): SimulinkGlobal (Auto) is the default storage
class. The Real-Time Workshop product stores the parameter as a member
of model_P. Each member of model_P is initialized to the value of the
corresponding workspace variable at code generation time.

• ExportedGlobal: The generated code instantiates and initializes the
parameter and model.h exports it as a global variable. An exported global
variable is independent of the model_P data structure. Each exported
global variable is initialized to the value of the corresponding workspace
variable at code generation time.

• ImportedExtern: model_private.h declares the parameter as an extern
variable. Your code must supply the proper variable definition and
initializer.

• ImportedExternPointer: model_private.h declares the variable as
an extern pointer. Your code must supply the proper pointer variable
definition and initializer, if any.

The generated code for model.h includes model_private.h to make the
extern declarations available to subsystem files.

As an example of how the storage class declaration affects the code generated
for a parameter, consider the next figure.

5-7

5 Working with Data

The workspace variable Kp sets the gain of the Gain1 block. Assume that
the value of Kp is 3.14. The following table shows the variable declarations
and the code generated for the gain block when Kp is declared as a tunable
parameter. An example is shown for each storage class.

Note The Real-Time Workshop product uses column-major ordering
for two-dimensional signal and parameter data. When interfacing your
hand-written code to such signals or parameters by using ExportedGlobal,
ImportedExtern, or ImportedExternPointer declarations, make sure that
your code observes this ordering convention.

The symbolic name Kp is preserved in the variable and field names in the
generated code.

5-8

Parameter Storage, Interfacing, and Tuning

Storage Class Generated Variable Declaration and Code

SimulinkGlobal
(Auto) typedef struct _Parameters_tunable_sin

Parameters_tunable_sin;

struct _Parameters_tunable_sin {
real_T Kp;

};

Parameters_tunable_sin tunable_sin_P = {
3.14

};
.
.
tunable_sin_Y.Out1 = rtb_u *
tunable_sin_P.Kp;

ExportedGlobal
real_T Kp = 3.14;
.
.
tunable_sin_Y.Out1 = rtb_u * Kp;

ImportedExtern
extern real_T Kp;
.
.
tunable_sin_Y.Out1 = rtb_u * Kp;

ImportedExtern
Pointer extern real_T *Kp;

.

.
tunable_sin_Y.Out1 = rtb_u * (*Kp);

5-9

5 Working with Data

Using the Model Parameter Configuration Dialog Box
The Model Parameter Configuration dialog box is available only when the
Inline parameters check box on the Optimization pane is selected.
Selecting this check box activates the Configure button, as shown in the
next figure.

Clicking the Configure button opens the Model Parameter Configuration
dialog box.

Note The Model Parameter Configuration dialog box cannot tune parameters
within referenced models. See “Parameterizing Model References” for tuning
techniques that work with referenced models.

5-10

Parameter Storage, Interfacing, and Tuning

The Model Parameter Configuration Dialog Box

The Model Parameter Configuration dialog box lets you select base workspace
variables and declare them to be tunable parameters in the current model.
The dialog box is divided into two panels:

• The Source list panel displays a list of workspace variables and lets you
add them to the tunable parameters list.

• The Global (tunable) parameters panel displays and maintains a list of
tunable parameters associated with the model.

To declare tunable parameters, you select one or more variables from the
Source list, add them to the Global (tunable) parameters list, and set
their storage class and other attributes.

Source List Panel
The Source list panel displays a menu and a scrolling table of numerical
workspace variables.

The menu lets you choose the source of the variables to be displayed in the
list. There are two choices: MATLAB workspace (lists all variables in the

5-11

5 Working with Data

MATLAB workspace that have numeric values), and Referenced workspace
variables (lists only those variables referenced by the model). The source list
displays names of variables defined in the MATLAB base workspace.

Selecting one or more variables from the source list enables the Add to
table button. Clicking Add to table adds selected variables to the tunable
parameters list in the Global (tunable) parameters panel. This action
is all that is necessary to declare tunable parameters. However, if a block
parameter which is not tunable is set to the name that appears on this list, a
warning results during simulation and also during code generation.

In the Source list, the names of variables added to the tunable parameters
list are displayed in bold type (see the preceding figure).

The Refresh list button updates the table of variables to reflect the current
state of the workspace. If you define or remove variables in the workspace
while the Model Parameter Configuration dialog box is open, click the
Refresh list button when you return to the dialog box. The new variables
are added to the source list.

Global (Tunable) Parameters Panel
The Global (tunable) parameters panel displays a scrolling table of
variables that have been declared tunable in the current model and lets you
specify their attributes. The Global (tunable) parameters panel also lets
you remove entries from the list or create new tunable parameters.

You select individual variables and change their attributes directly in the
table. The attributes are

• Storage class of the parameter in the generated code. Select one of

- SimulinkGlobal (Auto)

- ExportedGlobal

- ImportedExtern

- ImportedExternPointer

See “Tunable Parameter Storage Classes” on page 5-7 for definitions.

5-12

Parameter Storage, Interfacing, and Tuning

• Storage type qualifier of the variable in the generated code. For
variables with any storage class except SimulinkGlobal (Auto), you can
add a qualifier (such as const or volatile) to the generated storage
declaration. To do so, you can select a predefined qualifier from the list or
add additional qualifiers to the list. The code generator does not check the
storage type qualifier for validity. The code generator includes the qualifier
string in the generated code without syntax checking.

• Name of the parameter. This field is used only when creating a new
tunable variable.

Use the New button to create a new tunable variable entry in the Global
(tunable) parameters list. Enter the name and attributes of the variable
and click Apply. The new variable does not need to be in use when you do
this. At a later time, you can add references to any such variable in the model.

If the name you enter matches the name of an existing workspace variable
in the Source list, that variable is declared tunable, and is displayed in
italics in the Source list.

Use the Remove button to delete selected variables from the Global
(tunable) parameters list. All such removed variables will be inlined if
Inlined parameters is on.

Note If you edit the name of an existing variable in the list, you actually
create a new tunable variable with the new name. The previous variable is
removed from the list and loses its tunability (that is, it is inlined).

Declaring Tunable Variables
To declare an existing variable tunable

1 Open the Model Parameter Configuration dialog box.

2 In the Source list panel, click the desired variable in the list to select it.

3 Click the Add to table button. The variable then appears in the table of
tunable variables in the Global (tunable) parameters panel.

5-13

5 Working with Data

4 Click the variable in the Global (tunable) parameters panel.

5 Select the desired storage class from the Storage class menu.

6 Optionally, select (or enter) a storage type qualifier, such as const or
volatile that you want the variable to have.

7 Click Apply, or click OK to apply changes and close the dialog box.

Tunable Expressions
The Real-Time Workshop product supports the use of tunable variables in
expressions. An expression that contains one or more tunable parameters is
called a tunable expression.

Tunable Expressions in Masked Subsystems
Tunable expressions are allowed in masked subsystems. You can use tunable
parameter names or tunable expressions in a masked subsystem dialog box.
When referenced in lower-level subsystems, such parameters remain tunable.

As an example, consider the masked subsystem in the next figure. The
masked variable k sets the gain parameter of theGain.

Suppose that the base workspace variable b is declared tunable with
SimulinkGlobal (Auto) storage class. The next figure shows the tunable
expression b*3 in the subsystem’s mask dialog box.

5-14

Parameter Storage, Interfacing, and Tuning

Tunable Expression in Subsystem Mask Dialog Box

The Real-Time Workshop product produces the following output computation
for theGain. The variable b is represented as a member of the global
parameters structure, model_P. (For clarity in showing the individual Gain
block computation, expression folding is off in this example.)

/* Gain: '<S1>/theGain' */
rtb_theGain_C = rtb_SineWave_n * ((subsys_mask_P.b * 3.0));

/* Outport: '<Root>/Out1' */
subsys_mask_Y.Out1 = rtb_theGain_C;

As this example shows, for GRT targets, the parameter structure is mangled
to create the structure identifier model_P (subject to the identifier length
constraint). This is done to avoid namespace clashes in combining code from
multiple models using model reference. ERT-based targets provide ways to
customize identifier names.

When expression folding is on, the above code condenses to

/* Outport: '<Root>/Out1' incorporates:

* Gain: '<S1>/theGain'

*/

subsys_mask_Y.Out1 = rtb_SineWave_n * ((subsys_mask_P.b * 3.0));

Expressions that include variables that were declared or modified in mask
initialization code are not tunable.

As an example, consider the subsystem above, modified as follows:

5-15

5 Working with Data

• The mask initialization code is

t = 3 * k;

• The parameter k of the myGain block is 4 + t.

• Workspace variable b = 2. The expression b * 3 is plugged into the mask
dialog box as in the preceding figure.

Since the mask initialization code can run only once, k is evaluated at code
generation time as

4 + (3 * (2 * 3))

The Real-Time Workshop product inlines the result. Therefore, despite the
fact that b was declared tunable, the code generator produces the following
output computation for theGain. (For clarity in showing the individual Gain
block computation, expression folding is off in this example.)

/* Gain Block: <S1>/theGain */
rtb_temp0 *= (22.0);

Tunable Expression Limitations
Currently, there are certain limitations on the use of tunable variables in
expressions. When an unsupported expression is encountered during code
generation a warning is issued and the equivalent numeric value is generated
in the code. The limitations on tunable expressions are

• Complex expressions are not supported, except where the expression is
simply the name of a complex variable.

• The use of certain operators or functions in expressions containing tunable
operands is restricted. Restrictions are applied to four categories of
operators or functions, classified in the following table:

Category Supported Operators or Functions

1 + - .* ./ < > <= >= == ~= & |

2 * /

5-16

Parameter Storage, Interfacing, and Tuning

Category Supported Operators or Functions

3 abs, acos, asin, atan, atan2, boolean, ceil, cos, cosh,
exp, floor, log, log10, sign, sin, sinh, sqrt, tan, tanh,

4 single, int8, int16, int32, uint8, uint16, uint32
5 : .^ ^ [] {} . \ .\ ' .' ; ,

The rules applying to each category are as follows:

- Category 1 is unrestricted. These operators can be used in tunable
expressions with any combination of scalar or vector operands.

- Category 2 operators can be used in tunable expressions where at least
one operand is a scalar. That is, scalar/scalar and scalar/matrix operand
combinations are supported, but not matrix/matrix.

- Category 3 lists all functions that support tunable arguments. Tunable
arguments passed to these functions retain their tunability. Tunable
arguments passed to any other functions lose their tunability.

- Category 4 lists the casting functions that do not support tunable
arguments. Tunable arguments passed to these functions lose their
tunability.

Note The Real-Time Workshop product casts values using MATLAB
typecasting rules. The MATLAB typecasting rules are different from C
code typecasting rules. For example, using the MATLAB typecasting
rules, int8(3.7) returns the result 4, while in C code int8(3.7) returns
the result 3. See “Data Type Conversion” in the MATLAB reference
documentation for more information on MATLAB typecasting.

- Category 5 operators are not supported.

Note The “dot” (structure membership) operator is not supported. This
means that expressions that include a structure member are not tunable.

5-17

5 Working with Data

• Expressions that include variables that were declared or modified in mask
initialization code are not tunable.

• The Fcn block does not support tunable expressions in code generation.

• Model workspace parameters can take on only the Auto storage class, and
thus are not tunable. See “Parameterizing Model References” for tuning
techniques that work with referenced models.

• Non-double expressions are not supported.

• Blocks that access parameters only by address support the use of tunable
parameters, if the parameter expression is a simple variable reference.
When an operation such as a data type conversion or a math operation is
applied, the Real-Time Workshop product creates a nontrivial expression
that cannot be accessed by address, resulting in an error during the build
process.

Linear Block Parameter Tunability
The following blocks have a Realization parameter that affects the
tunability of their parameters:

• Transfer Fcn

• State-Space

• Discrete Transfer Fcn

• Discrete State-Space

• Discrete Filter

The Realization parameter must be set by using the MATLAB set_param
function, as in the following example.

set_param(gcb,'Realization','auto')

The following values are defined for the Realization parameter:

• general: The block’s parameters are preserved in the generated code,
permitting parameters to be tuned.

5-18

Parameter Storage, Interfacing, and Tuning

• sparse: The block’s parameters are represented in the code by transformed
values that increase the computational efficiency. Because of the
transformation, the block’s parameters are no longer tunable.

• auto: This setting is the default. A general realization is used if one or
more of the block’s parameters are tunable. Otherwise sparse is used.

Note To tune the parameter values of a block of one of the above types
without restriction during an external mode simulation, you must set
Realization to general.

Code Reuse for Subsystems with Mask Parameters
The Real-Time Workshop product can generate reusable (reentrant) code for
a model containing identical atomic subsystems. Selecting the Reusable
function option for Real-Time Workshop system code enables such code
reuse, and causes a single function with arguments to be generated that is
called when any of the identical atomic subsystem executes. See “Reusable
Function Option” on page 4-12 for details and restrictions on the use of this
option.

Mask parameters become arguments to reusable functions. However, for
reuse to occur, each instance of a reusable subsystem must declare the same
set of mask parameters. If, for example subsystem A has mask parameters
b and K, and subsystem B has mask parameters c and K, then code reuse is
not possible, and the Real-Time Workshop product will generate separate
functions for A and B.

Parameter Configuration Quick Reference Diagram
The next figure shows the code generation and storage class options that
control the representation of parameters in generated code.

5-19

5 Working with Data

����
.�"	���/�0�
�����	�������
��
�����	�����"	���
1%%%2�0�,�3�
�����	�
������������"�����	����	���
������

-"�4�5*�6

-"� �

.���/

������
+�����	���

�&

.7�	�/
8��"����	9

,#7:���!#�3�,-�;�+���&�,�:���'! �:�<�#���&����#

�

=

>

?

5

@

A

,#7:���!#�3�,-�;�+���&�,�:���'! �:�<�#���&����#

�&�:<�#���&�:��������:� 7:�8�<&7 :#9�+7,7!#�#,�

� �����������������
�����
��"�����	�����������
�
�����
�������	���	���
8����
�����������
���������������9

� �������� ��

��!��������������"���������# $�
%������� ����&���''�(
���#�$���������������#�$��
)

<�����������(�������
"�����	���8���"�������9

�	B��C���D������
������
����	��	�
�������	���	���

.��������������87�	�9/

��"��	�
#$	���

#$"��	�
������

��"��	�
#$	���+���	��

�������"�����(�

8���	�������E��9

� ����������*���

� ������*���

� ������*���

� �������*���

�����
������

�������	���	���

<��	���	���

�	���
�

Generated Code for Parameter Data Types
For an example of the code generated from Simulink parameters with
different data types, run the demo model rtwdemo_paramdt. This demo model
shows options that are available for controlling the data type of tunable
parameters in the generated code. The model’s subsystem includes several

5-20

Parameter Storage, Interfacing, and Tuning

instances of Gain blocks feeding Saturation blocks. Each pair of blocks uses a
workspace variable of a particular data type, as shown in the next figure.

5-21

5 Working with Data

������
�"�����	����8��:���+�����	�����&�F�7�	���	���
�������9
442���������(�����������

���
�� ������	 ���
�� ���
��
� �

<""��0�-������
:�C��0��

�������"���������8���	�$	������	�(�9�"�����	���
442�	�������"�����	�����B���	��
�	��	�"�����������	����"�����	��

���
�� �
� ���
�� ���
��
= =

<""��0�-��
:�C��0��

��������"�����	����C�	B��$"����	�
�	��	�"���"�������	���
442�"�����	���������	�	������	����"�����	���
�	��	�"�����
�����	�
���
�

���
�� ������	 ���
�� ���
��
> >

<""��0�-���
��
:�C��0��

���
�� ���
� ���
�� ���
��
? ?

<""��0�-��	G
:�C��0��

���
��
�����

���
�� ���
��
5 5

<""��0�-��$"	
:�C��0��

���
��
������

���
�� ���
��
@ @

<""��0�-�����
:�C��0��

���
��
���	�

���
�� ���
��
A A

<""��0�-����
:�C��0��

5-22

Parameter Storage, Interfacing, and Tuning

The Simulink engine initializes the parameters in the demo model
by executing the script rtwdemo_paramdt_data.m. You can view the
initialization script and inspect the workspace variables in Model Explorer by
double-clicking the appropriate yellow boxes in the demo model.

In the demo model, note that the Inline parameters option on the
Optimization pane of the Configuration Parameters dialog box is
selected. The Model Parameter Configuration dialog box reveals that
all base workspace variables (with the exception of Kinline) have their
Storage class property set to ExportedGlobal. Consequently, Kinline is a
nontunable parameter while the remaining variables are tunable parameters.

To generate code for the demo model, double-click the blue boxes. The
following table shows both the MATLAB code used to initialize parameters
and the code generated for each parameter in the rtwdemo_paramdt model.

Parameter & MATLAB Code Generated Variable Declaration and Code

Kinline

Kinline = 2;
rtb_Gain1 = rtwdemo_paramdt_U.In1 * 2.0F;

.

.

rtwdemo_paramdt_Y.Out1 = rt_SATURATE(rtb_Gain1, 0.0F, 2.0F);

Kcs

Kcs = 3;
real32_T Kcs = 3.0F;

.

.

rtb_Gain1 = rtwdemo_paramdt_U.In2 * Kcs;

.

.

rtwdemo_paramdt_Y.Out2 = rt_SATURATE(rtb_Gain1, 0.0F, Kcs);

5-23

5 Working with Data

Parameter & MATLAB Code Generated Variable Declaration and Code

Ksingle

Ksingle = single(4);
real32_T Ksingle = 4.0F;

.

.

rtb_Gain1 = rtwdemo_paramdt_U.In3 * Ksingle;

.

.

rtwdemo_paramdt_Y.Out3 = rt_SATURATE(rtb_Gain1, 0.0F, Ksingle);

Kint8

Kint8 = int8(5);
int8_T Kint8 = 5;

.

.

rtb_Gain1 = rtwdemo_paramdt_U.In4 * ((real32_T)(Kint8));

.

.

rtwdemo_paramdt_Y.Out4 = rt_SATURATE(rtb_Gain1, 0.0F,

((real32_T)(Kint8)));

Kfixpt

Kfixpt = Simulink.Parameter;

Kfixpt.Value = 6;

Kfixpt.DataType = ...

'fixdt(true, 16, 2^-5, 0)';

Kfixpt.RTWInfo.StorageClass = ...

'ExportedGlobal';

int16_T Kfixpt = 192;

.

.

rtb_Gain1 = rtwdemo_paramdt_U.In5 *

(((real32_T)ldexp((real_T)Kfixpt, -5)));

.

.

rtwdemo_paramdt_Y.Out5 = rt_SATURATE(rtb_Gain1, 0.0F,

(((real32_T)ldexp((real_T)Kfixpt, -5))));

5-24

Parameter Storage, Interfacing, and Tuning

Parameter & MATLAB Code Generated Variable Declaration and Code

Kalias

aliasType = ...

Simulink.AliasType('single');

Kalias = Simulink.Parameter;

Kalias.Value = 7;

Kalias.DataType = 'aliasType';

Kalias.RTWInfo.StorageClass = ...

'ExportedGlobal';

typedef real32_T aliasType;

.

.

aliasType Kalias = 7.0F;

.

.

rtb_Gain1 = rtwdemo_paramdt_U.In6 * Kalias;

.

.

rtwdemo_paramdt_Y.Out6 = rt_SATURATE(rtb_Gain1, 0.0F, Kalias);

Kuser

userType = Simulink.NumericType;

userType.DataTypeMode = ...

'Fixed-point: slope and bias scaling';

userType.Slope = 2^-3;

userType.isAlias = true;

Kuser = Simulink.Parameter;

Kuser.Value = 8;

Kuser.DataType = 'userType';

Kuser.RTWInfo.StorageClass = ...

'ExportedGlobal';

typedef int16_T userType;

.

.

userType Kuser = 64;

.

.

rtb_Gain1 = rtwdemo_paramdt_U.In7 *

(((real32_T)ldexp((real_T)Kuser, -3)));

.

.

rtwdemo_paramdt_Y.Out7 = rt_SATURATE(rtb_Gain1, 0.0F,

(((real32_T)ldexp((real_T)Kuser, -3))));

The salient features of the code generated for this demo model are as follows:

• The Real-Time Workshop product inlines nontunable parameters,
for example, Kinline. However, the product does not inline tunable
parameters, such as Kcs, Ksingle, and Kint8.

• The Simulink engine treats tunable parameters of data type double in a
context-sensitive manner, such that the parameter inherits its data type
from the context in which the block uses it. For example, Kcs inherits a
single data type from the Gain block’s input signal.

5-25

5 Working with Data

• If a parameter’s data type matches that of the block’s run-time parameter,
the block can use the tunable parameter without any transformation.
Consequently, the Real-Time Workshop product need not cast the
parameter from one data type to another, as illustrated by Ksingle and
Kalias. However, if a parameter’s data type does not match that of the
block’s run-time parameter, the block cannot readily compute its output. In
this case, the product casts parameters to the appropriate data type. For
example, Kint8, Kfixpt, and Kuser require casts to a single data type for
compatibility with the input signals to the Gain and Saturation blocks.

• If you are using an ERT target and a parameter specifies a data type alias,
for example, created by an instance of the Simulink.AliasType class, its
variable definition in the generated code uses the alias data type. For
example, the Real-Time Workshop product declares Kalias and Kuser to
be of data types aliasType and userType, respectively.

• If a parameter specifies a fixed-point data type, the Real-Time Workshop
product initializes its value in the generated code to the value of Q
computed from the expression V = SQ + B (see the Simulink Fixed Point
documentation for more information about fixed-point semantics and
notation), where

- V is a real-world value

- Q is an integer that encodes V

- S is the slope

- B is the bias

For example, Kfixpt has a real-world value of 6, slope of 2-5, and bias of 0.
Consequently, the product declares the value of Kfixpt to be 192.

Tunable Workspace Parameter Data Type
Considerations
If you are using tunable workspace parameters, you need to be aware of
potential issues regarding data types. A workspace parameter is tunable
when the following conditions exist:

• You select the Inline parameters option on the Optimization pane of
the Configuration Parameters dialog box

• The parameter has a storage class other than Auto

5-26

Parameter Storage, Interfacing, and Tuning

When generating code for tunable workspace parameters, the Real-Time
Workshop product checks and compares the data types used for a particular
parameter in the workspace and in Block Parameter dialog boxes.

If... The Real-Time Workshop Product...

The data types match Uses that data type for the parameter in the
generated code.

You do not explicitly
specify a data type
other than double in
the workspace

Uses the data type specified by the block in
the generated code. If multiple blocks share a
parameter, they must all specify the same data
type. If the data type varies between blocks,
the product generates an error similar to the
following:

Variable 'K' is used in incompatible ways

in the dialog fields of the following:

cs_params/Gain, cs_params/Gain1. The

variable'value is being used both directly

and after a transformation. Only one of

these usages is permitted for any given

variable.

You explicitly specify
a data type other
than double in the
workspace

Uses the data type from the workspace for the
parameter. The block typecasts the parameter to
the block specific data type before using it.

Guidelines for Specifying Data Types
The following table provides guidelines on specifying data types for tunable
workspace parameters.

If You Want to... Then Specify Data Types in...

Minimize memory usage (int8
instead of single)

The workspace explicitly

Avoid typecasting Blocks only

5-27

5 Working with Data

If You Want to... Then Specify Data Types in...

Interface to legacy or custom code The workspace explicitly
Use the same parameter for
multiple blocks that specify
different data types

The workspace explicitly

The Real-Time Workshop product enforces limitations on the use of data
types other than double in the workspace, as explained in “Limitations on
Specifying Data Types in the Workspace Explicitly” on page 5-28.

Limitations on Specifying Data Types in the Workspace
Explicitly
When you explicitly specify a data type other than double in the workspace,
blocks typecast the parameter to the appropriate data type. This is an issue for
blocks that use pointer access for their parameters. Blocks cannot use pointer
access if they need to typecast the parameter before using it (because of a data
type mismatch). Another case in which this occurs is for workspace variables
with bias or fractional slope. Two possible solutions to these problems are

• Remove the explicit data type specification in the workspace for parameters
used in such blocks.

• Modify the block so that it uses the parameter with the same data type
as specified in the workspace. For example, the Lookup Table block uses
the data types of its input signal to determine the data type that it uses
to access the X-breakpoint parameter. You can prevent the block from
typecasting the run-time parameter by converting the input signal to
the data type used for X-breakpoints in the workspace. (Similarly, the
output signal is used to determine the data types used to access the lookup
table’s Y data.)

Parameter Tuning by Using MATLAB Commands
When parameters are MATLAB workspace variables, the Model Parameter
Configuration dialog box is the recommended way to see or set the attributes
of tunable parameters. In addition to that dialog box, you can also use
MATLAB get_param and set_param commands.

5-28

Parameter Storage, Interfacing, and Tuning

Note You can also use Simulink.Parameter objects for tunable parameters.
See “Configuring Parameter Objects for Code Generation” on page 5-47 for
details.

The following commands return the tunable parameters and/or their
attributes:

• get_param(gcs, 'TunableVars')

• get_param(gcs, 'TunableVarsStorageClass')

• get_param(gcs, 'TunableVarsTypeQualifier')

The following commands declare tunable parameters or set their attributes:

• set_param(gcs, 'TunableVars', str)

The argument str (string) is a comma-separated list of variable names.

• set_param(gcs, 'TunableVarsStorageClass', str)

The argument str (string) is a comma-separated list of storage class
settings.

The valid storage class settings are

- Auto

- ExportedGlobal

- ImportedExtern

- ImportedExternPointer

• set_param(gcs, 'TunableVarsTypeQualifier', str)

The argument str (string) is a comma-separated list of storage type
qualifiers.

The following example declares the variable k1 to be tunable, with storage
class ExportedGlobal and type qualifier const. The number of variables and
number of specified storage class settings must match. If you specify multiple
variables and storage class settings, separate them with a comma.

5-29

5 Working with Data

set_param(gcs, 'TunableVars', 'k1')
set_param(gcs, 'TunableVarsStorageClass','ExportedGlobal')
set_param(gcs, 'TunableVarsTypeQualifier','const')

Other configuration parameters you can get and set are listed in
“Configuration Parameters” in the Real-Time Workshop Reference.

5-30

Signal Storage, Optimization, and Interfacing

Signal Storage, Optimization, and Interfacing

In this section...

“Introduction” on page 5-31
“Signal Storage Concepts” on page 5-32
“Signals with Auto Storage Class” on page 5-34
“Signals with Test Points” on page 5-40
“Interfacing Signals to External Code” on page 5-40
“Symbolic Naming Conventions for Signals in Generated Code” on page 5-42
“Summary of Signal Storage Class Options” on page 5-43

Introduction
The Real-Time Workshop product offers a number of options that let you
control how signals in your model are stored and represented in the generated
code. This section discusses how you can use these options to

• Control whether signal storage is declared in global memory space or
locally in functions (that is, in stack variables).

• Control the allocation of stack space when using local storage.

• Ensure that particular signals are stored in unique memory locations by
declaring them as test points.

• Reduce memory usage by instructing the Real-Time Workshop product
to store signals in reusable buffers.

• Control whether or not signals declared in generated code are interfaceable
(visible) to externally written code. You can also specify that signals are to
be stored in locations declared by externally written code.

• Preserve the symbolic names of signals in generated code by using signal
labels.

The discussion in the following sections refers to code generated from
signal_examp, the model shown in the next figure.

5-31

5 Working with Data

Signal_examp Model

Signal Storage Concepts
This section discusses structures and concepts you must understand to choose
the best signal storage options for your application:

• The global block I/O data structure model_B

• The concept of signal storage classes as used in the Real-Time Workshop
product

The Global Block I/O Structure
By default, the Real-Time Workshop product attempts to optimize memory
usage by sharing signal memory and using local variables.

However, there are a number of circumstances in which it is desirable or
necessary to place signals in global memory. For example,

• You might want a signal to be stored in a structure that is visible to
externally written code.

• The number and/or size of signals in your model might exceed the stack
space available for local variables.

In such cases, it is possible to override the default behavior and store selected
(or all) signals in a model-specific global block I/O data structure. The global
block I/O structure is called model_B (in earlier versions this was called rtB).

5-32

Signal Storage, Optimization, and Interfacing

The following code shows how model_B is defined and declared in code
generated (with signal storage optimizations off) from the signal_examp
model shown in the Signal_examp Model on page 5-32 figure.

(in signal_examp.h)
/* Block signals (auto storage) */
extern BlockIO_signal_examp signal_examp_B;

(in signal_examp.c)
/* Block signals (auto storage) */
BlockIO_signal_examp signal_examp_B;

Field names for signals stored in model_B are generated according to the
rules described in “Symbolic Naming Conventions for Signals in Generated
Code” on page 5-42.

Signals Storage Classes
In the Real-Time Workshop product, the storage class property of a signal
specifies how the product declares and stores the signal. In some cases this
specification is qualified by more options.

In the context of the Real-Time Workshop product, the term “storage class”
is not synonymous with the term storage class specifier, as used in the C
language.

Default Storage Class. Auto is the default storage class. Auto is the
appropriate storage class for signals that you do not need to interface to
external code. Signals with Auto storage class can be stored in local and/or
shared variables or in a global data structure. The form of storage depends
on the Signal storage reuse, Reuse block outputs, Enable local block
outputs, andMinimize data copies between local and global variables
options, and on available stack space. See “Signals with Auto Storage Class”
on page 5-34 for a full description of code generation options for signals with
Auto storage class.

Explicitly Assigned Storage Classes. Signals with storage classes other
than Auto are stored either as members of model_B, or in unstructured global
variables, independent of model_B. These storage classes are appropriate for
signals that you want to monitor and/or interface to external code.

5-33

5 Working with Data

The Signal storage reuse, Enable local block outputs, Reuse block
outputs, Eliminate superfluous local variables (Expression folding),
and Minimize data copies between local and global variables
optimizations do not apply to signals with storage classes other than Auto.

Use the Signal Properties dialog box to assign these storage classes to signals:

• SimulinkGlobal(Test Point): Test points are stored as fields of the
model_B structure that are not shared or reused by any other signal. See
“Signals with Test Points” on page 5-40 for more information.

• ExportedGlobal: The signal is stored in a global variable, independent
of the model_B data structure. model.h exports the variable. Signals
with ExportedGlobal storage class must have unique signal names. See
“Interfacing Signals to External Code” on page 5-40 for more information.

• ImportedExtern: model_private.h declares the signal as an extern
variable. Your code must supply the proper variable definition. Signals
with ImportedExtern storage class must have unique signal names. See
“Interfacing Signals to External Code” on page 5-40 for more information.

• ImportedExternPointer: model_private.h declares the signal as an
extern pointer. Your code must define a valid pointer variable. Signals
with ImportedExtern storage class must have unique signal names. See
“Interfacing Signals to External Code” on page 5-40 for more information.

Signals with Auto Storage Class
Options are available for signals with Auto storage class:

• Signal storage reuse

• Enable local block outputs

• Reuse block outputs

• Eliminate superfluous local variables (Expression folding)

• Minimize data copies between local and global variables

Use these options to control signal memory reuse and choose local or global
(model_B) storage for signals. The Signal storage reuse option is on the
Optimization pane of the Configuration Parameters dialog box, as shown in
the next figure.

5-34

Signal Storage, Optimization, and Interfacing

When you select Signal storage reuse, the Enable local block
outputs, Reuse block outputs, Eliminate superfluous local variables
(Expression folding), and Minimize data copies between local and
global variables options in the Code Generation section of the dialog box
are enabled.

These options interact. When the Signal storage reuse option is selected,

• The Reuse block outputs option is enabled and selected, and signal
memory is reused whenever possible.

• The Enable Local block outputs option is enabled and selected. This
lets you choose whether reusable signal variables are declared as local
variables in functions or as members of model_B.

• The Eliminate superfluous local variables (Expression folding)
is enabled and selected, and block computations collapse into single
expressions.

• The Minimize data copies between local and global variables is
enabled and cleared, and global memory is not reused.

5-35

5 Working with Data

The following code examples illustrate the effects of the Signal storage
reuse, Enable Local block outputs, Reuse block outputs, Eliminate
superfluous local variables (Expression folding) and Minimize data
copies between local and global variables options. The examples were
generated from the signal_examp model (see figure Signal_examp Model
on page 5-32).

The first example illustrates signal storage optimization, with Signal
storage reuse, Enable Local block outputs, Reuse block outputs, and
Minimize data copies between local and global variables selected. (For
clarity in showing the individual Gain and Sum block computation, expression
folding is off in this example.) The output signal from the Sum block reuses
signal_examp_Y.Out1, a variable local to the model output function.

/* Model output function */

static void signal_examp_output(int_T tid)

{

/* Sum: '<Root>Sum' incorporates:

* Constant: '<Root>/Constant'

* Inport: '<Root>>/In1'

*/

signal_examp_Y.Out1 = signal_examp_U.In1 + signal_examp_P.Constant_Value;

/* Gain: '<Root>/Gain' */

signal_examp_Y.Out1 = signal_examp_P.Gain_Gain * signal_examp_Y.Out1;

/* tid is required for a uniform function interface.

* Argument tid is not used in the function. */

UNUSED_PARAMETER(tid);

}

If you are constrained by limited stack space, you can turn Enable local
block outputs off and still benefit from memory reuse. The following
example was generated with Enable local block outputs cleared and
Signal storage reuse, Reuse block outputs, andMinimize data copies
between local and global variables selected. The output signals from
the Sum and Gain blocks use global structure signal_examp_B rather than
declaring local variables and in both cases the signal name is gainSig.

/* Model output function */

5-36

Signal Storage, Optimization, and Interfacing

static void signal_examp_output(int_T tid)

{

/* Sum: '<Root>/Add' incorporates:

* Constant: '<Root>/Constant'

* Inport: '<Root>/In1'

*/

signal_examp_B.gainSig = signal_examp_U.In1 +

signal_examp_P.Constant_Value;

/* Gain: '<Root>/Gain' */

signal_examp_B.gainSig = signal_examp_P.Gain_Gain *

signal_examp_B.gainSig;

/* Outport: '<Root>/Out1' */

signal_examp_Y.Out1 = signal_examp_B.gainSig;

/* tid is required for a uniform function interface.

* Argument tid is not used in the function. */

UNUSED_PARAMETER(tid);

}

When the Signal storage reuse option is cleared, Reuse block outputs,
Enable local block outputs, and Minimize data copies between local
and global variables are disabled. This makes the block output signals
global and unique, signal_examp_B.sumSig and signal_examp_B.gainSig,
as shown in the following code.

/* Model output function */

static void signal_examp_output(int_T tid)

{

/* Sum: '<Root>/Add' incorporates:

* Constant: '<Root>/Constant'

* Inport: '<Root>/In1'

*/

signal_examp_B.sumSig = signal_examp_U.In1 +

signal_examp_P.Constant_Value;

/* Gain: '<Root>/Gain' */

signal_examp_B.gainSig = signal_examp_P.Gain_Gain *

signal_examp_B.sumSig;

5-37

5 Working with Data

/* Outport: '<Root>/Out1' */

signal_examp_Y.Out1 = signal_examp_B.gainSig;

/* tid is required for a uniform function interface.

* Argument tid is not used in the function. */

UNUSED_PARAMETER(tid);

}

In large models, disabling Signal storage reuse can significantly increase
RAM and ROM usage. Therefore, this approach is not recommended for code
deployment; however it can be useful in rapid prototyping environments.

The following table summarizes the possible combinations of the Signal
storage reuse / Reuse block outputs and Enable local block outputs
options.

Signal storage reuse
and Reuse block
outputs ON

Signal storage reuse
OFF
(Reuse block outputs
disabled)

Enable local block
outputs ON

Reuse signals in
local memory (fully
optimized)

N/A

Enable local block
outputs OFF

Reuse signals in
model_B structure

Individual signal
storage in model_B
structure

Controlling Stack Space Allocation
When the Enable local block outputs option is on, the following TLC
variables constrain the use of stack space by local block output variables:

• MaxStackSize: The maximum number of bytes the Real-Time Workshop
product allocates for local variables declared by all block outputs in a
model. MaxStackSize can be any positive integer. If the total size of local
block output variables exceeds this maximum, the product allocates the

5-38

Signal Storage, Optimization, and Interfacing

remaining block output variables in global, rather than local, memory. The
default value for MaxStackSize is Inf, that is, unlimited stack size.

Note Local variables in the generated code from sources other than local
block outputs and stack usage from sources such as function calls and
context switching are not included in the MaxStackSize calculation. For
overall executable stack usage metrics, you should do a target-specific
measurement, such as using run-time (empirical) analysis or static (code
path) analysis with object code.

• MaxStackVariableSize: The maximum number of bytes n, where n is
greater than zero, the Real-Time Workshop product allocates for any local
block output variable declared in the code. The product allocates any
variable with a size that exceeds MaxStackVariableSize in global, rather
than local, memory. The default is 4096 bytes.

You may need to adjust the settings of these variables when working
with models that contain large signals. When a variable exceeds
MaxStackVariableSize, the Real-Time Workshop product places the variable
in global memory space. Similarly, if the accumulated size of variables in
local memory exceeds MaxStackSize, the product places subsequent local
variables in global memory space. The Real-Time Workshop product analyzes
the accumulated size of local variables based on a worst-case scenario without
taking into account that local variables are released after functions return.

Consider the following options for your specific model:

• Is it important that you maximize potential for signal storage optimization?
If so, set MaxStackSize appropriately to accommodate the size and number
of signals in your model. This minimizes overflow into global memory space
and maximizes use of local memory. Local variables offer more optimization
potential through mechanisms such as expression folding and buffer reuse.

• Is the accumulated size of local variables exceeding the MaxStackSize
setting? If so, consider setting MaxStackVariableSize to a value that
forces large local variables into the global memory space and helps retain
smaller local variables in local storage.

5-39

5 Working with Data

See “Setting Target Language Compiler Options” on page 2-102 for more
information.

Signals with Test Points
A test point is a signal that is stored in a unique location no other signals share
or reuse. See “Working with Test Points” in the Simulink documentation for
information about including test points in your model.

When you generate code for models that include test points, the Real-Time
Workshop build process allocates a separate memory buffer for each test
point. Test points are stored as members of the model_B structure.

Declaring a signal as a test point disables the following options for that signal.
This can lead to increased code and data size. You do not lose the benefits of
optimized storage for any other signals in your model.

• Signal storage reuse

• Enable local block outputs

• Reuse block outputs

• Eliminate superfluous local variables (Expression folding)

• Minimize data copies between local and global variables

For an example of storage declarations and code generated for a test point,
see “Summary of Signal Storage Class Options” on page 5-43.

If you have a Real-Time Workshop Embedded Coder license, you can specify
that the Real-Time Workshop build process ignore all test points in the model,
allowing optimal buffer allocation, using the “Ignore test point signals”
parameter. Ignoring test points facilitates transitioning from prototyping
to deployment and avoids accidental degradation of generated code due to
workflow artifacts. For more information, see “Ignore test point signals” in
the Real-Time Workshop Reference.

Interfacing Signals to External Code
The Simulink Signal Properties dialog box lets you interface selected signals
to externally written code. In this way, your hand-written code has access

5-40

Signal Storage, Optimization, and Interfacing

to such signals for monitoring or other purposes. To interface a signal to
external code, use the Real-Time Workshop tab of the Signal Properties
dialog box to assign one of the following storage classes to the signal:

• ExportedGlobal

• ImportedExtern

• ImportedExternPointer

Set the storage class as follows:

1 In your Simulink block diagram, select the line that carries the signal.
Then select Signal Properties from the Edit menu of your model. This
opens the Signal Properties dialog box. Alternatively, right-click the line
that carries the signal, and select Signal properties from the menu.

2 Select the Real-Time Workshop tab of the Signal Properties dialog box.

3 Select the desired storage class (Auto, ExportedGlobal, ImportedExtern,
or ImportedExternPointer) from the RTW storage class menu. The next
figure shows ExportedGlobal selected.

4 Optional: For storage classes other than Auto, you can enter a storage type
qualifier such as const or volatile in the RTW storage type qualifier

5-41

5 Working with Data

field. The Real-Time Workshop product does not check this string for
errors; whatever you enter is included in the variable declaration.

5 Click Apply.

Note You can also interface test points and other signals that are
stored as members of model_B to your code. To do this, your code must
know the address of the model_B structure where the data is stored,
and other information. This information is not automatically exported.
The Real-Time Workshop product provides C/C++ and Target Language
Compiler APIs that give your code access to model_B and other data
structures. See “C API for Interfacing with Signals and Parameters” on
page 17-2 for more information.

Symbolic Naming Conventions for Signals in
Generated Code
When signals have a storage class other than Auto, the Real-Time Workshop
product preserves symbolic information about the signals or their originating
blocks in the generated code.

For labeled signals, field names in model_B derive from the signal names. In
the following example, the field names model_B.sumSig and model_B.gainSig
are derived from the corresponding labeled signals in the signal_examp
model (shown in figure Signal_examp Model on page 5-32).

/* Block signals (auto storage) */
typedef struct _BlockIO_signal_examp {

real_T sumSig; /* '<Root>/Add' */
real_T gainSig; /* '<Root>/Gain' */

} BlockIO_signal_examp;

When you clear the Signal Storage Reuse optimization, sumSig is not
part of model_B, and a local variable is used for it instead. For unlabeled
signals, model_B field names are derived from the name of the source block
or subsystem.

The components of a generated signal label are

5-42

Signal Storage, Optimization, and Interfacing

• The root model name, followed by

• The name of the generating signal object, followed by

• A unique name mangling string (if required)

The number of characters that a signal label can have is limited by the
Maximum identifier length parameter specified on the Symbols pane
of the Configuration Parameters dialog box. See “Configuring Generated
Identifiers” on page 2-66 for more detail.

When a signal has Auto storage class, the Real-Time Workshop build process
controls generation of variable or field names without regard to signal labels.

Summary of Signal Storage Class Options
The next table shows, for each signal storage class option, the variable
declaration and the code generated for Sum (sumSig) and Gain (gainSig)
block outputs of the model shown in figure Signal_examp Model on page 5-32.

Storage Class Declaration Code

Auto

(with signal storage
reuse optimizations
on)

In model.c or model.cpp

real_T rtb_sumSig;

rtb_sumSig = signal_examp_U.In1 +

signal_examp_P.Constant_Value;

rtb_sumSig *=

signal_examp_P.Gain_Gain;

signal_examp_Y.Out1 = rtb_sumSig;

5-43

5 Working with Data

Storage Class Declaration Code

Test point (for
sumSig only)

In model.h

typedef struct

_BlockIO_signal_examp

{

real_T sumSig;

}

BlockIO_signal_examp;

In model.c or model.cpp

BlockIO_signal_examp

signal_examp_B;

real_T rtb_gainSig;

signal_examp_B.sumSig =

signal_examp_U.In1 +

signal_examp_P.Constant_Value;

rtb_gainSig =

signal_examp_B.sumSig *

signal_examp_P.Gain_Gain;

signal_examp_Y.Out1 = rtb_gainSig;

ExportedGlobal
(for sumSig only)

In model.h

extern real_T sumSig;

In model.c or model.cpp

real_T sumSig;

real_T rtb_gainSig;

sumSig = signal_examp_U.In1 +

signal_examp_P.Constant_Value;

rtb_gainSig = sumSig *

signal_examp_P.Gain_Gain;

signal_examp_Y.Out1 = rtb_gainSig;

ImportedExtern In model_private.h

extern real_T sumSig;

In model.c or model.cpp

real_T rtb_gainSig;

sumSig = signal_examp_U.In1 +

signal_examp_P.Constant_Value;

rtb_gainSig = sumSig *

signal_examp_P.Gain_Gain;

signal_examp_Y.Out1 = rtb_gainSig;

ImportedExternPointerIn model_private.h

extern real_T *sumSig;

In model.c or model.cpp

real_T rtb_gainSig;

(*sumSig) = signal_examp_U.In1 +

signal_examp_P.Constant_Value;

rtb_gainSig = (*sumSig) *

signal_examp_P.Gain_Gain;

signal_examp_Y.Out1 = rtb_gainSig;

5-44

Parameter Tuning and Signal Monitoring

Parameter Tuning and Signal Monitoring

In this section...

“Introduction” on page 5-45
“Using the C API to Tune Parameters and Monitor Signals” on page 5-45
“Using the Target Language Compiler API to Tune Parameters and Monitor
Signals” on page 5-45

Introduction
This section describes how to tune parameters and monitor signals in the
Real-Time Workshop product.

Using the C API to Tune Parameters and Monitor
Signals
The Real-Time Workshop product includes a C application program interface
(API) for tuning parameters and monitoring signals independent of external
mode. See “C API for Interfacing with Signals and Parameters” on page 17-2
for information.

Using the Target Language Compiler API to Tune
Parameters and Monitor Signals
The Real-Time Workshop product includes support for development of a
Target Language Compiler API for tuning parameters and monitoring signals
independent of external mode. See “Target Language Compiler API for
Signals and Parameters” on page 17-30 for information.

5-45

5 Working with Data

Simulink Data Objects and Code Generation

In this section...

“Introduction” on page 5-46
“Parameter Objects” on page 5-47
“Parameter Object Configuration Quick Reference Diagram” on page 5-54
“Signal Objects” on page 5-55
“Using Signal Objects to Initialize Signals and Discrete States” on page 5-60
“Resolving Conflicts in Configuration of Parameter and Signal Objects”
on page 5-69
“Customizing Code for Parameter and Signal Objects” on page 5-71
“Using Objects to Export ASAP2 Files” on page 5-71

Introduction
Before using Simulink data objects with the Real-Time Workshop product,
read the following:

• The discussion of Simulink data objects in the Simulink documentation

• “Parameter Storage, Interfacing, and Tuning” on page 5-2

• “Signal Storage, Optimization, and Interfacing” on page 5-31

Within the class hierarchy of Simulink data objects, the Simulink product
provides two classes that are designed as base classes for signal and
parameter storage:

• Simulink.Parameter: Objects that are instances of the
Simulink.Parameter class or any class derived from Simulink.Parameter
are called parameter objects.

• Simulink.Signal: Objects that are instances of the Simulink.Signal
class or any class derived from Simulink.Signal are called signal objects.

The RTWInfo properties of parameter and signal objects are used by the
Real-Time Workshop product during code generation. These properties let you

5-46

Simulink® Data Objects and Code Generation

assign storage classes to the objects, thereby controlling how the generated
code stores and represents signals and parameters.

The Real-Time Workshop build process also writes information about the
properties of parameter and signal objects to the model.rtw file. This
information, formatted as Object records, is accessible to Target Language
Compiler programs. For general information on Object records, see the
Target Language Compiler documentation.

The general procedure for using Simulink data objects in code generation
is as follows:

1 Define a subclass of one of the built-in Simulink.Data classes.

• For parameters, define a subclass of Simulink.Parameter.

• For signals, define a subclass of Simulink.Signal.

2 Instantiate parameter or signal objects from your subclass and set their
properties appropriately, from the command line or using Model Explorer.

3 Use the objects as parameters or signals within your model.

4 Generate code and build your target executable.

The following sections describe the relationship between Simulink data
objects and code generation in the Real-Time Workshop product.

Parameter Objects
This section discusses how to use parameter objects in code generation.

Configuring Parameter Objects for Code Generation
In configuring parameter objects for code generation, you use the following
code generation and parameter object properties:

• The Inline parameters option (see “Parameter Storage, Interfacing, and
Tuning” on page 5-2).

• Parameter object properties:

5-47

5 Working with Data

- Value. The numeric value of the object, used as an initial (or inlined)
parameter value in generated code.

- DataType. The data type of the object. This can be any Simulink numeric
data type, including a fixed-point, user-defined, or alias data type.

- RTWInfo.StorageClass. Controls the generated storage declaration
and code for the parameter object.

Other parameter object properties (such as user-defined properties of
classes derived from Simulink.Parameter) do not affect code generation.

Note If Inline parameters is off (the default), the RTWInfo.StorageClass
parameter object property is ignored in code generation.

Effect of Storage Classes on Code Generation for Parameter
Objects
The Real-Time Workshop product generates code and storage declarations
based on the RTWInfo.StorageClass property of the parameter object. The
logic is as follows:

• If the storage class is 'Auto' (the default), the parameter object is inlined
(if possible), using the Value property.

• For storage classes other than 'Auto', the parameter object is handled as a
tunable parameter.

- A global storage declaration is generated. You can use the generated
storage declaration to make the variable visible to your hand-written
code. You can also make variables declared in your hand-written code
visible to the generated code.

- The symbolic name of the parameter object is generally preserved in
the generated code.

See the table in “Controlling Parameter Object Code Generation Using the
Model Explorer” on page 5-50 for examples of code generated for possible
settings of RTWInfo.StorageClass.

5-48

Simulink® Data Objects and Code Generation

Controlling Parameter Object Code Generation with Typed
Commands
In this section, the Gain block computations of the model shown in the next
figure are used as an example of how the Real-Time Workshop build process
generates code for a parameter object.

Model Using Parameter Object Kp As Block Parameter

In this model, Kp sets the gain of the Gain block.

To configure a parameter object such as Kp for code generation,

1 Instantiate a Simulink.Parameter object called Kp. In this
example, the parameter object is an instance of the example class
SimulinkDemos.Parameter, which is provided with the Simulink product.

Kp = Simulink.Parameter
Kp =
Simulink.Parameter

Value: 5
RTWInfo: [1x1 Simulink.ParamRTWInfo]

Description: ''
DataType: 'auto'

Min: -Inf
Max: Inf

DocUnits: ''

5-49

5 Working with Data

Complexity: 'real'
Dimensions: '[1x1]'

Make sure that the name of the parameter object matches the desired
block parameter in your model. This ensures that the Simulink engine can
associate the parameter name with the correct object. In the preceding
model, the Gain block parameter Kp resolves to the parameter object Kp.

2 Set the object properties you need. You can do this by using the Model
Explorer, or you can assign properties by using MATLAB commands, as
follows:

• To specify the Value property, type

Kp.Value = 5.0;

• To specify the storage class of for the parameter, set the
RTWInfo.StorageClass property, for example:

Kp.RTWInfo.StorageClass = 'ExportedGlobal';

The RTWInfo parameters are now

Kp.RTWInfo
Simulink.ParamRTWInfo

StorageClass: 'ExportedGlobal'
Alias: ''

CustomStorageClass: 'Default'
CustomAttributes: [1x1

SimulinkCSC.AttribClass_Simulink_Default]

Controlling Parameter Object Code Generation Using the
Model Explorer
If you prefer, you can create and modify attributes of parameter objects
using the Model Explorer. This lets you see all attributes of a parameter in a
dialog box, and alleviates the need to remember and type field names. Do the
following to instantiate Kp and set its attributes from Model Explorer:

1 Choose Model Explorer from the View menu.

5-50

Simulink® Data Objects and Code Generation

Model Explorer opens or activates if it already was open.

2 Select Base Workspace in the Model Hierarchy pane.

3 Select Simulink Parameter from the Add menu.

A new parameter named Param appears in the Contents pane.

4 To set Kp.Name in the Model Explorer:

a Click the word Param in the Name column to select it.

b Rename it by typing Kp in place of Param.

c Click Return.

5 To set Kp.Value in Model Explorer:

a Select the Value field at the top of the Dialog pane.

b Type 5.0.

c Click the Apply button.

5-51

5 Working with Data

6 To set the Kp.RTWInfo.StorageClass in Model Explorer:

a Click the Storage class menu and select ExportedGlobal, as shown in
the next figure.

b Click Apply.

The following table shows the variable declarations for Kp and the code
generated for the Gain block in the model shown in the preceding model,
with the Inline parameters and Eliminate superfluous local variables
(Expression folding) check boxes selected (which includes the gain
computation in the output computation). An example is shown for each
possible setting of RTWInfo.StorageClass. Global structures include the
model name (symbolized as model_ or _model).

StorageClass
Property

Generated Variable Declaration
and Code

Auto
model_Y.Out1 = rtb_u * 5.0;

5-52

Simulink® Data Objects and Code Generation

StorageClass
Property

Generated Variable Declaration
and Code

SimulinkGlobal
struct _Parameters_model {

real_T Kp;
}
.
.
Parameters_model model_P = {

5.0
};
.
.
model_Y.Out1 = rtb_u * model_P.Kp;

ExportedGlobal
extern real_T Kp;
.
.
real_T Kp = 5.0;
.
.
model_Y.Out1 = rtb_u * Kp;

ImportedExtern
extern real_T Kp;
.
.
model_Y.Out1 = rtb_u * Kp;

ImportedExternPointer
extern real_T *Kp;
.
.
model_Y.Out1 = rtb_u * (*Kp);

5-53

5 Working with Data

Parameter Object Configuration Quick Reference
Diagram
The next figure shows the code generation and storage class options that
control the representation of parameter objects in generated code.

����
.�"	���/�0�
�����	�������
��
�����	�����"	���
1%%%2�0�,�3�
�����	�
������������"�����	����	���
������

-"�4���������*+�����	��6�-"*H�����4�5*�6

-"� �

.���/

������
+�����	���

�&

.7�	�/

,#7:���!#�3�,-�;�+���&�,�:���'! �:�<�#���&����#

�

=

>

?

5

@

A

,#7:���!#�3�,-�;�+���&�,�:���'! �:�<�#���&����#

�&�:<�#���&�:��������:� 7:�8�<&7 :#9�+7,7!#�#,�

� �����������������
�����
��"�����	�����������
�
�����
�������	���	���
8����
�����������
���������������9

� �������� ��

��!��������������"���������# $�
%������� ����&���''�(
���#�$���������������#�$��
)

<�����������(�������
"�����	���8���"�������9

�	B��C���D������
������
����	��	�
�������	���	���

��������������

��"��	�
#$	���

#$"��	�
������

��"��	�
#$	���+���	��

�������"�����(�

8���	�������E��9

� ����������*���

� ������*���

� ������*���

� �������*���

�����
������

�������	���	���

<��	���	���

�	���
�

5-54

Simulink® Data Objects and Code Generation

Signal Objects
This section discusses how to use signal objects in code generation. Signal
objects can be used to represent both signal and state data, and behave
similarly to parameter objects, described in “Parameter Objects” on page 5-47.

Configuring Signal Objects for Code Generation
In configuring signal objects for code generation, you use the following code
generation options and signal object properties:

• The Signal storage reuse code generation option (see “Signal Storage,
Optimization, and Interfacing” on page 5-31).

• The Enable local block outputs code generation option (see “Signal
Storage, Optimization, and Interfacing” on page 5-31).

• The Minimize data copies between local and global variables code
generation option (see “Signal Storage, Optimization, and Interfacing” on
page 5-31).

• The RTWInfo.StorageClass signal object property: The storage classes
defined for signal objects, and their effect on code generation, are the same
for model signals and signal objects (see “Signals Storage Classes” on
page 5-33).

Other signal object properties (such as user-defined properties of classes
derived from Simulink.Signal) do not affect code generation.

Effect of Storage Classes on Code Generation for Signal Objects
The way in which the Real-Time Workshop product uses storage classes
to determine how signals are stored is the same with and without signal
objects. However, if a signal’s label resolves to a signal object, the object’s
RTWInfo.StorageClass property is used in place of the port configuration
of the signal.

The default storage class is Auto. If the storage type is Auto, the Real-Time
Workshop product follows the Signal storage reuse, Reuse block outputs,
Enable local block outputs, Eliminate superfluous local variables
(Expression folding), and Minimize data copies between local and
global variables code generation options to determine whether signal objects

5-55

5 Working with Data

are stored in reusable and/or local variables. Make sure that these options
are set correctly for your application.

To generate a test point or signal storage declaration that can interface
externally, use an explicit RTWInfo.StorageClass assignment. For example,
setting the storage class to SimulinkGlobal, as in the following command,
is equivalent to declaring a signal as a test point.

SinSig.RTWInfo.StorageClass = 'SimulinkGlobal';

Controlling Signal Object Code Generation By Using Typed
Commands
The discussion and code examples in this section refers to the model shown in
the next figure.

To configure a signal object, you must first create it and associate it with a
labeled signal in your model. To do this,

1 Define a subclass of Simulink.Signal. In this example, the signal object
is an instance of the class Simulink.Signal, which is provided with the
Simulink product.

2 Instantiate a signal object from your subclass. The following example
instantiates inSig, a signal object of class Simulink.Signal.

inSig = Simulink.Signal
inSig =
Simulink.Signal

RTWInfo: [1x1 Simulink.SignalRTWInfo]
Description: ''

DataType: 'auto'
Min: -Inf
Max: Inf

DocUnits: ''

5-56

Simulink® Data Objects and Code Generation

Dimensions: -1
Complexity: 'auto'
SampleTime: -1

SamplingMode: 'auto'
InitialValue: ''

Make sure that the name of the signal object matches the label of the
desired signal in your model. This ensures that the Simulink engine can
resolve the signal label to the correct object. For example, in the model
shown in the above figure, the signal label inSig would resolve to the
signal object inSig.

3 You can require signals in a model to resolve to Simulink.Signal objects.
To do this for the signal inSig, in the model window right-click the signal
line labeled inSig and choose Signal Properties from the context menu.
A Signal Properties dialog appears.

4 In the Signal Properties dialog box that appears, select the check box
labelled Signal name must resolve to Simulink signal object, and
click OK or Apply.

5 Set the object properties as required. You can do this by using the
Simulink Model Explorer. Alternatively, you can assign properties by using
MATLAB commands. For example, assign the signal object’s storage class
by setting the RTWInfo.StorageClass property as follows.

5-57

5 Working with Data

inSig.RTWInfo.StorageClass = 'ExportedGlobal';

Controlling Signal Object Code Generation By Using Model
Explorer
If you prefer, you can create signal objects and modify their attributes using
Model Explorer. This lets you see and set attributes of a signal in a dialog
box pane, and alleviates the need to remember and type field names. Do the
following to instantiate inSig and set its attributes from Model Explorer:

1 Choose Model Explorer from the View menu.

Model Explorer opens or activates if it already was open.

2 Select Base Workspace in the Model Hierarchy pane.

3 Select Simulink Signal from the Add menu.

A new signal named Sig appears in the Contents pane.

5-58

Simulink® Data Objects and Code Generation

4 To set the signal name in Model Explorer, click the word Sig in the Name
column to select it, and rename it by typing inSig followed by Return
in place of Sig.

5 To set the inSig.RTWInfo.StorageClass in Model Explorer, click the
Storage class menu and select ExportedGlobal, as shown in the next
figure.

6 Click Apply.

The following table shows, for each setting of RTWInfo.StorageClass, the
variable declaration and the code generated for the inport signal (inSig)
of the current model:

5-59

5 Working with Data

Storage Class Declaration Code

Auto (with
storage
optimizations
on)

In model.h

typedef struct

_ExternalInputs_signal_ objs_examp_tag

{

real_T inSig;

}

ExternalInputs_signal_ objs_examp;

rtb_Gain1Sig =

signal_objs_examp_U.inSig *

signal_objs_examp_P.Gain_Gain;

Simulink
Global

In model.h

typedef struct

_ExternalInputs_signal_objs_examp_tag

{

real_T inSig;

}

ExternalInputs_signal_objs_examp;

rtb_Gain1Sig =

signal_objs_examp_U.inSig *

signal_objs_examp_P.Gain_Gain;

ExportedGlobal In model.c or model.cpp

real_T inSig;

In model.h

extern real_T inSig;

rtb_Gain1Sig = inSig *

signal_objs_examp_P.Gain_Gain;

ImportedExtern In model_private.h

extern real_T inSig;

rtb_Gain1Sig = inSig *

signal_objs_examp_P.Gain_Gain;

ImportedExternPointerIn model_private.h

extern real_T *inSig;

rtb_Gain1Sig = (*inSig) *

signal_objs_examp_P.Gain_Gain;

Using Signal Objects to Initialize Signals and Discrete
States
You can use Simulink signal objects to initialize signals and discrete
states with user-defined values for simulation and code generation. Data
initialization increases application reliability and is a requirement of safety

5-60

Simulink® Data Objects and Code Generation

critical applications. Initializing signals for both simulation and code
generation can expedite transitions between phases of Model-Based Design.

For details on simulation behavior, see “Initialization Behavior Summary for
Signal Objects” in the Simulink documentation.

Specifying an Initial Value for a Signal Object
You can use signal objects that have a storage class other than 'auto’ or
'SimulinkGlobal' to initialize

• Discrete states with an initial condition parameter

• Any signals in a model except bus signals and signals with constant sample
time

The initial value is the signal or state value before a simulation takes its
first time step.

Note Initial value settings for signal objects that represent the following
signals and states override the corresponding block parameter initial values if
undefined (specified as []):

• Output signals of conditionally executed subsystems and Merge blocks

• Block states

To specify an initial value, use the Model Explorer or MATLAB commands to
do the following:

1 Create the signal object.

Model Explorer

5-61

5 Working with Data

MATLAB Command

S1=Simulink.Signal;

The name of the signal object must be the same as the name of the signal
that the object is initializing. Although not required, consider setting the
Signal name must resolve to Simulink signal object option in the
Signal Properties dialog box. This setting ensures consistency between
signal objects in the MATLAB workspace and the signals that appear in
your model.

Consider using the Data Object Wizard to create signal objects. The Data
Object Wizard searches a model for signals for which signal objects do not
exist. You can then selectively create signal objects for multiple signals
listed in the search results with a single operation. For more information
about the Data Object Wizard, see “Data Object Wizard” in the Simulink
documentation.

2 Set the signal object’s storage class to a value other than 'auto’ or
'SimulinkGlobal'.

Model Explorer

5-62

Simulink® Data Objects and Code Generation

MATLAB Command

S1.RTWInfo.StorageClass='ExportedGlobal';

3 Set the initial value. You can specify any MATLAB string expression that
evaluates to a double numeric scalar value or array.

Model Explorer MATLAB Command

Valid 1.5
[1 2 3]
1+0.5

foo = 1.5;
s1.InitialValue = 'foo';

Invalid uint(1) foo = '1.5';
s1.InitialValue = 'foo';

If necessary, the Simulink engine converts the initial value to ensure
type, complexity, and dimension consistency with the corresponding block
parameter value. If you specify an invalid value or expression, an error
message appears when you update the model.

Model Explorer

5-63

5 Working with Data

MATLAB Command

S1.InitialValue='0.5'

The following example shows a signal object specifying the initial output of
an enabled subsystem.

5-64

Simulink® Data Objects and Code Generation

Sine Wave
Amplitude = 1

Period = 10 samples
Ts = 0.1

Scope

In1 Out1

Enabled
Subsystem

Enable
Ts = 0.1

Phase Delay = 10 samples

e

s

1

Out1
Initial Output = []

2

Gain

Enable

1

In1

Signal s is initialized to 4.5. Note that to avoid a consistency error, the initial
value of the enabled subsystem’s Outport block must be [] or 4.5.

Signal Object Initialization in Generated Code
The initialization behavior for code generation is the same as that for model
simulation with the following exceptions:

• RSim executables can use the Data Import/Export pane of the
Configuration Parameters dialog box to load input values from MAT-files.
GRT and ERT executables cannot load input values from MAT-files.

5-65

5 Working with Data

• The initial value for a block output signal or root level input or output
signal can be overwritten by an external (calling) program.

• Setting the initial value for persistent signals is relevant if the value is
used or viewed by an external application.

For details on initialization behavior for different types of signals and discrete
states, see “Initialization Behavior Summary for Signal Objects” in the
Simulink documentation.

When you initialize Simulink signal objects in a model during code generation,
the corresponding initialization statements are placed in model.c or
model.cpp in the model’s initialize code.

For example, consider the demo model rtwdemo_sigobj_iv.

If you create and initialize signal objects in the base workspace, the Real-Time
Workshop product places initialization code for the signals in the file
rtwdemo_sigobj_iv.c under the rtwdemo_sigobj_iv_initialize function,
as shown below.

/* Model initialize function */

void rtwdemo_sigobj_iv_initialize(boolean_T firstTime)

{

.

.

.

5-66

Simulink® Data Objects and Code Generation

/* exported global signals */

S3 = -3.0;

S2 = -2.0;

.

.

.

/* exported global states */

X1 = 0.0;

X2 = 0.0;

/* external inputs */

S1 = -4.5;

.

.

.

The following code shows the initialization code for the enabled subsystem’s
Unit Delay block state X1 and output signal S2.

void MdlStart(void) {

.

.

.

/* InitializeConditions for UnitDelay: '<S2>/Unit Delay' */

X1 = aa1;

/* Start for enable system: '<Root>/Enabled Subsystem (state X1 inside)' */

/* virtual outports code */

/* (Virtual) Outport Block: '<S2>/Out1' */

S2 = aa2;

}

Also note that for an enabled subsystem, such as the one shown in the
preceding model, the initial value is also used as a reset value if the
subsystem’s Outport block parameter Output when disabled is set

5-67

5 Working with Data

to reset. The following code from rtwdemo_sigobj_iv.c shows the
assignment statement for S3 as it appears in the model output function
rtwdeni_sigobj_iv_output.

/* Model output function */

static void rtwdemo_sigobj_iv_output(void)

{

.

.

.

/* Disable for enable system: '<Root>/Enabled Subsystem (state X1 inside)' */

/* (Virtual) Outport Block: '<S2>/Out1' */

S2 = aa2;

Tunable Initial Values
If you specify a tunable parameter in the initial value for a signal object, the
parameter expression is preserved in the initialization code in model.c.

For example, if you configure parameter df to be tunable for model signal_iv
and you initialize the signal object for discrete state X1 with the expression
df*2, the following initialization code appears for signal object X1 in
signal_iv.c.

void MdlInitialize(void) {

/* InitializeConditions for UnitDelay: '<Root>/Unit Delay X1=2' */

X1 = (tunable_param_P.df * 2.0);

}

For more information about the treatment of tunable parameters in generated
code, see “Parameter Storage, Interfacing, and Tuning” on page 5-2.

5-68

Simulink® Data Objects and Code Generation

Resolving Conflicts in Configuration of Parameter
and Signal Objects
This section describes how to avoid and resolve certain conflicts that can arise
when using parameter and signal objects.

Parameters
As explained in “Simulink Data Objects and Code Generation” on page 5-46
and “Using the Model Parameter Configuration Dialog Box” on page 5-10, two
methods are available for controlling the tunability of parameters. You can

• Define them as Simulink.Parameter objects in the MATLAB workspace

• Use the Model Parameter Configuration dialog box

The next figures show how you can use each of these methods to control
the tunability of parameter Kp. The first figure shows Kp defined as
Simulink.Parameter in the Model Explorer. You control the tunability of Kp
by specifying the parameter’s storage class.

Parameter Object Kp with Auto Storage Class in Model Explorer

5-69

5 Working with Data

The next figure shows how you can use the Model Parameter Configuration
dialog box to specify a storage class for numeric variables in the MATLAB
workspace.

Parameter Kp Defined with SimulinkGlobal Storage Class

Note The MathWorks recommends that you not use both methods for
controlling the tunability of a given parameter. If you use both methods and
the storage class settings for the parameter do not match, an error results.

Signals and Block States
If a signal is defined in the Signal Properties dialog box and a signal object of
the same name is defined by using the command line or in the Model Explorer,
the potential exists for ambiguity when the Simulink engine attempts to
resolve the symbol representing the signal name. One way to resolve the
ambiguity is to specify that a signal must resolve to a Simulink data object. To
do this, select the Signal name must resolve to Simulink signal object
option in the Signal Properties dialog box. When you do this, you no longer
can specify the RTW storage class property in the Real-Time Workshop
pane of the Signal Properties dialog box, as the next figure shows.

5-70

Simulink® Data Objects and Code Generation

As the preceding figure shows, the RTW storage class menu is disabled
because it is up to the SinSig Simulink.Signal object to specify its own
storage class.

The signal and signal objects SinSig both have SimulinkGlobal storage class.
Therefore, no conflict arises, and SinSig resolves to the signal object SinSig.

Note The rules for compatibility between block states/signal objects are
identical to those given for signals/signal objects.

Customizing Code for Parameter and Signal Objects
You can influence the treatment of parameter and signal objects in generated
code by using TLC to access fields in object records in model.rtw files. For
details on doing this, see the Target Language Compiler documentation.

Using Objects to Export ASAP2 Files
The Real-Time Workshop product provides an interface for exporting ASAP2
files, which you customize. For details, see Appendix B, “Generating ASAP2
Files”.

5-71

5 Working with Data

Enumerated Data Types in Generated Code

In this section...

“About Enumerated Data Types” on page 5-72
“Default Code for an Enumerated Data Type” on page 5-72
“Enumerated Type Safe Casting” on page 5-73
“Overriding Default Methods (Optional)” on page 5-74
“Enumerated Type Limitations” on page 5-77

About Enumerated Data Types
Enumerated data is data that is restricted to a finite set of values. An
enumerated data type is a MATLAB class that defines a set of enumerated
values. Each enumerated value consists of an enumerated name and an
underlying integer which the software uses internally and in generated code.
The following is a MATLAB class definition for an enumerated data type
named BasicColors, which is used in all examples in this section.

classdef(Enumeration) BasicColors < Simulink.IntEnumType
enumeration

Red(0)
Yellow(1)
Blue(2)

end
end

For information about enumerated data types and their use in Simulink
models, see “Using Enumerated Data” in the Simulink documentation. For
information about enumerated data types in Stateflow charts, see “Using
Enumerated Data in Stateflow Charts”.

Default Code for an Enumerated Data Type
By default, enumerated data types in generated code are defined in the
generated header file model_types.h for the model. For example, the default
code for BasicColors, which is defined in the previous section, appears as
follows:

5-72

Enumerated Data Types in Generated Code

#ifndef _DEFINED_TYPEDEF_FOR_BasicColors_
#define _DEFINED_TYPEDEF_FOR_BasicColors_

typedef enum {
Red = 0, /* Default value */
Yellow = 1,
Blue = 2,

} BasicColors;

#endif

Enumerated Type Safe Casting
When generated code for a Simulink Data Type Conversion block or a
Stateflow block casts data to an enumerated type, the code always does so
using a safe-cast function like the following:

static int32_T ET08_safe_cast_to_BasicColors(int32_T input)
{

int32_T output;
/* Initialize output value to default value for BasicColors (Red) */
output = 0;
if ((input >= 0) && (input <= 2)) {

/* Set output value to input value if it is a member of BasicColor
output = input;

}
return output;

}

The cast fails if the value to be cast does not correspond to one of the
enumerated values in the enumerated type. When a safe cast fails, the value
returned is the underlying integer of the enumerated type’s default value. The
above code reflects this default for BasicColors. See “Specifying a Default
Enumerated Value” in the Simulink documentation for more information.

When the code for a Data Type Conversion block casts to an enumerated type,
and the block’s Saturate on integer overflow parameter is not selected,
a warning occurs during code generation stating that safe casting will be
used even though it has not been requested. To suppress the warning, select
Saturate on integer overflow.

5-73

5 Working with Data

Overriding Default Methods (Optional)
Every enumerated class has four associated static methods, which it inherits
from Simulink.IntEnumType. You can optionally override any or all of
these static methods to customize the behavior of an enumerated type. The
methods are:

• getDefaultValue — Returns the default value of the enumerated data
type.

• getDescription— Returns a description of the enumerated data type.

• getHeaderFile — Specifies a file where the type is defined for generated
code.

• addClassNameToEnumNames — Specifies whether the class name becomes
a prefix in code.

The first of these methods, getDefaultValue, is relevant to both simulation
and code generation, and is described in “Specifying a Default Enumerated
Value” in the Simulink documentation. The other three methods are relevant
only to code generation, and are described in this section. To override any of
the methods, include a customized version of the method in the enumerated
class definition’s methods section. If you do not want to override any default
methods, omit the methods section entirely. The following table summarizes
the four methods and the data to supply for each one:

Method Purpose Default Return Custom Return

getDefaultValue Returns the default
value for the class,
which must be an
instance of the class.

The lexically
first value in the
enumeration.

Any enumerated
value in the class.
See “Instantiating
an Enumerated
Type”.

getDescription Returns a string
containing a
description of the
enumerated class.

'' Any string that
MATLAB accepts.

5-74

Enumerated Data Types in Generated Code

Method Purpose Default Return Custom Return

getHeaderFile Returns a string
containing the name
of the header file

'' The name of the file
that contains the
enumerated type
definition.

addClassNameToEnumNames Returns a boolean
value indicating
whether to prefix
the class name in
generated code

false true or false

Specifying a Description
To specify a description for an enumerated data type, include the following
method in the enumerated class’s methods section:

function retVal = getDescription()
% GETDESCRIPTION Optional string to describe the data type.

retVal = ’description’;
end

Substitute any legal MATLAB string for description. The generated code
that defines the enumerated type will include the specified description.

Specifying a Header File
To prevent the declaration of an enumerated type from being embedded in the
generated code, allowing you to provide the declaration in an external file,
include the following method in the enumerated class’s methods section:

function retVal = getHeaderFile()
% GETHEADERFILE File where type is defined for generated code.
% If specified, this file is #included where needed in the code.
% Otherwise, the type is written out in the generated code.
retVal = 'filename';
end

5-75

5 Working with Data

Substitute any legal filename for filename. Be sure to provide a filename
suffix, typically .h. Providing the method replaces the declaration that would
otherwise have appeared in model_types.h with a #include statement like:

#include "imported_enum_type.h"

The getHeaderFile method does not create the declaration file itself. You
must provide a file of the specified name that declares the enumerated data
type.

Prefixing Class Names
By default, enumerated values in generated code have the same names that
they have in the enumerated class definition. Alternatively, the code can
prefix every enumerated value in an enumerated class with the name of
the class. This technique can be useful for preventing identifier conflicts or
improving the clarity of the code. To specify class name prefixing, include the
following method in an enumerated class’s methods section:

function retVal = addClassNameToEnumNames()
% ADDCLASSNAMETOENUMNAMES Control whether class name is added as
% a prefix to enumerated names in the generated code.
% By default the code does not use the class name as a prefix.
retVal = boolean;
end

Replace boolean with true to enable class name prefixing, or false to
suppress prefixing without having to delete the method itself. If boolean
is true, each enumerated value in the class appears in generated code as
EnumTypeName_EnumName. For BasicColors, which was defined in “About
Enumerated Data Types” on page 5-72, the data type definition with class
name prefixing looks like this:

#ifndef _DEFINED_TYPEDEF_FOR_BasicColors_
#define _DEFINED_TYPEDEF_FOR_BasicColors_

typedef enum {
BasicColors_Red = 0, /* Default value */
BasicColors_Yellow = 1,
BasicColors_Blue = 2,

} BasicColors;

5-76

Enumerated Data Types in Generated Code

#endif

In this example, the enumerated class name BasicColors appears as a prefix
for each of the enumerated names. The definition is otherwise the same as
it would be without name prefixing.

Enumerated Type Limitations

• Generated code does not support logging enumerated data.

5-77

5 Working with Data

Block State Storage and Interfacing

In this section...

“Introduction” on page 5-78
“Block State Storage” on page 5-78
“Block State Storage Classes” on page 5-79
“Using the State Properties Dialog Box to Interface States to External
Code” on page 5-80
“Symbolic Names for Block States” on page 5-82
“Block States and Simulink Signal Objects” on page 5-85
“Summary of State Storage Class Options” on page 5-86

Introduction
For certain block types, the Real-Time Workshop product lets you control how
block states in your model are stored and represented in the generated code.
Using the State properties tab of a block dialog box, you can

• Control whether or not states declared in generated code are interfaceable
(visible) to externally written code. You can also specify that states are to
be stored in locations declared by externally written code.

• Assign symbolic names to block states in generated code.

Block State Storage
The discussion of block state storage in this section applies to the following
block types:

• Discrete Filter

• Discrete State-Space

• Discrete-Time Integrator

• Discrete Transfer Function

• Discrete Zero-Pole

5-78

Block State Storage and Interfacing

• Memory

• Unit Delay

These block types require persistent memory to store values representing the
state of the block between consecutive time intervals. By default, such values
are stored in a data type work vector. This vector is usually referred to as the
DWork vector. It is represented in generated code as model_DWork, a global
data structure. For more information on the DWork vector, see the Target
Language Compiler documentation.

If you want to interface a block state to your hand-written code, you can
specify that the state is to be stored in a location other than the DWork vector.
You do this by assigning a storage class to the block state.

You can also define a symbolic name, to be used in code generation, for a
block state.

Block State Storage Classes
The storage class property of a block state specifies how the Real-Time
Workshop product declares and stores the state in a variable. Storage class
options for block states are similar to those for signals. The available storage
classes are

• Auto

• ExportedGlobal

• ImportedExtern

• ImportedExternPointer

Default Storage Class
Auto is the default storage class. Auto is the appropriate storage class for
states that you do not need to interface to external code. States with Auto
storage class are stored as members of the Dwork vector.

You can assign a symbolic name to states with Auto storage class. If you
do not supply a name, the Real-Time Workshop product generates one, as
described in “Symbolic Names for Block States” on page 5-82.

5-79

5 Working with Data

Explicitly Assigned Storage Classes
Block states with storage classes other than Auto are stored in unstructured
global variables, independent of the Dwork vector. These storage classes
are appropriate for states that you want to interface to external code. The
following storage classes are available for states:

• ExportedGlobal: The state is stored in a global variable. model.h exports
the variable. States with ExportedGlobal storage class must have unique
names.

• ImportedExtern: model_private.h declares the state as an extern
variable. Your code must supply the proper variable definition. States with
ImportedExtern storage class must have unique names.

• ImportedExternPointer: model_private.h declares the state as an
extern pointer. Your code must supply the proper pointer variable
definition. States with ImportedExternPointer storage class must have
unique names.

The table in “Summary of Signal Storage Class Options” on page 5-43 gives
examples of variable declarations and the code generated for block states
with each type of storage class.

Note Assign a symbolic name to states to specify a storage class other than
auto. If you do not supply a name for auto states, the Real-Time Workshop
product generates one, as described in “Symbolic Names for Block States”
on page 5-82.

The next section explains how to use the State Properties dialog box to assign
storage classes to block states.

Using the State Properties Dialog Box to Interface
States to External Code
The State Properties tab of the relevant blocks’ parameter dialog boxes
lets you interface a block’s state to external code by assigning the state a
storage class other than Auto (that is, ExportedGlobal, ImportedExtern,
or ImportedExternPointer).

5-80

Block State Storage and Interfacing

Set the storage class as follows:

1 In your block diagram, double-click the desired block. This opens the block
dialog box containing two or more tabs, one of which is State properties.
Alternatively, you can right-click the block and select Block properties
from the context menu.

2 Click the State Properties tab. The State Properties dialog appears.

3 Enter a name for the variable to be used to store block state in the State
name field.

The State name field turns yellow to indicate that you changed it.

4 Click Apply to register the variable name.

The first two fields beneath the State name, State name must resolve
to Simulink signal object and RTW storage class, become enabled.

5 If the state is to be stored in a Simulink signal object in the base or model
workspace, select State name must resolve to Simulink signal object.

If you choose this option, you cannot declare a storage class for the state in
the block, and the fields below becomes disabled.

5-81

5 Working with Data

6 Select the desired storage class (ExportedGlobal, ImportedExtern, or
ImportedExternPointer) from the RTW storage class menu.

7 Optional: For storage classes other than Auto, you can enter a storage type
qualifier such as const or volatile in the RTW storage type qualifier
field. The Real-Time Workshop product does not check this string for
errors; whatever you enter is included in the variable declaration.

8 Click OK or Apply and close the dialog box.

Symbolic Names for Block States
To determine the variable or field name generated for a block’s state, you
can either

• Use a default name generated by the Real-Time Workshop product

• Define a symbolic name by using the State Name field of the State
Properties dialog box

Default Block State Naming Convention
If you do not define a symbolic name for a block state, the Real-Time
Workshop product uses the following default naming convention:

BlockType#_DSTATE

where

• BlockType is the name of the block type (for example, Discrete_Filter).

• # is a unique ID number (#) assigned by the Real-Time Workshop product
if multiple instances of the same block type appear in the model. The ID
number is appended to BlockType.

• _DSTATE is a string that is always appended to the block type and ID
number.

For example, consider the model shown in the next figure.

5-82

Block State Storage and Interfacing

Model with Two Discrete Filter Block States

Examine the code generated for the states of the two Discrete Filter blocks.
Assume that:

• Neither block’s state has a user-defined name.

• The upper Discrete Filter block has Auto storage class (and is therefore
stored in the DWork vector).

• The lower Discrete Filter block has ExportedGlobal storage class.

The states of the two Discrete Filter blocks are stored in DWork vectors,
initialized as shown in the code below:

/* data type work */
disc_filt_states_M->Work.dwork = ((void *)
&disc_filt_states_DWork);

(void)memset((char_T *) &disc_filt_states_DWork, 0,
sizeof(D_Work_disc_filt_states));

{
int_T i;
real_T *dwork_ptr = (real_T *)

&disc_filt_states_DWork.DiscFilt_DSTATE;

for (i = 0; i < 2; i++) {
dwork_ptr[i] = 0.0;

}
}

5-83

5 Working with Data

User-Defined Block State Names
Using the State Properties dialog box, you can define your own symbolic name
for a block state. To do this,

1 In your block diagram, double-click the desired block. This opens the block
dialog box, containing two or more tabs, one of which is State properties.

Alternatively, you can right-click the block and select Block properties
from the context menu.

2 Click the State properties tab.

3 Enter the symbolic name in the State name field of the State Properties
dialog box. For example, enter the state name Top_filter.

4 Click Apply. The dialog box now looks like this:

5 Click OK or Cancel to dismiss the block dialog box.

The following state initialization code was generated from the example model
shown in figure , under the following conditions:

• The upper Discrete Filter block has the state name Top_filter, and Auto
storage class (and is therefore stored in the DWork vector).

5-84

Block State Storage and Interfacing

• The lower Discrete Filter block has the state name Lower_filter, and
storage class ExportedGlobal.

Top_filter is placed in the Dwork vector.

/* data type work */
disc_filt_states_M->Work.dwork = ((void *)

&disc_filt_states_DWork);
(void)memset((char_T *) &disc_filt_states_DWork, 0,
sizeof(D_Work_disc_filt_states));
disc_filt_states_DWork.Top_filter = 0.0;

/* exported global states */
Lower_filter = 0.0;

Block States and Simulink Signal Objects
If you are not familiar with Simulink data objects and signal objects, you
should read “Simulink Data Objects and Code Generation” on page 5-46
before reading this section.

You can associate a block state with a signal object, and control code
generation for the block state through the signal object. To do this,

1 Instantiate the desired signal object, and set its RTWInfo.StorageClass
property as you require.

2 Open the State Properties dialog box for the block whose state you want
to associate with the signal object.

3 Enter the name of the signal object in the State name field.

4 Select State name must resolve to Simulink signal object.

The Simulink product disables the RTW storage class and RTW storage
type qualifier options in the State Properties dialog box, because the
signal object specifies these settings.

5 Click Apply and close the dialog box.

5-85

5 Working with Data

Note When a block state is associated with a signal object, the mapping
between the block state and the signal object must be one to one. If two or
more identically named entities, such as a block state and a signal, map
to the same signal object, the name conflict is flagged as an error at code
generation time.

Summary of State Storage Class Options
Here is a simple model, unit_delay.mdl, which contains a Unit Delay block:

The following table shows, for each state storage class option, the variable
declaration and initialization code generated for a Unit Delay block state. The
block state has the user-defined state name udx.

Storage Class Declaration Initialization Code

Auto In model.h

typedef struct

D_Work_unit_delay_tag

{

real_T udx;

}

D_Work_unit_delay;

unit_delay_DWork.udx = 0.0;

Exported Global In model.c or model.cpp

real_T udx;

In model.h

extern real_T udx;

In model.c or model.cpp

udx = 0.0;

5-86

Block State Storage and Interfacing

Storage Class Declaration Initialization Code

ImportedExtern In model_private.h

extern real_T udx;

In model.c or model.cpp

udx =

unit_delay_P.UnitDelay_X0;

ImportedExternPointer In model_private.h

extern real_T *udx;

In model.c or model.cpp

(*udx) =

unit_delay_P.UnitDelay_X0;

5-87

5 Working with Data

Storage Classes for Data Store Memory Blocks
You can control how Data Store Memory blocks in your model are stored
and represented in the generated code by assigning storage classes and type
qualifiers. You do this in almost exactly the same way you assign storage
classes and type qualifiers for block states.

Data Store Memory blocks, like block states, have Auto storage class by
default, and their memory is stored within the DWork vector. The symbolic
name of the storage location is based on the block name.

You can generate code from multiple Data Store Memory blocks that have the
same name, subject to the following restriction: at most one of the identically
named blocks can have a storage class other than Auto. An error is reported if
this condition is not met. For blocks with Auto storage class, the Real-Time
Workshop product generates a unique symbolic name for each block (if
necessary) to avoid name clashes. For blocks with storage classes other than
Auto, the product simply uses the block name to generate the symbol.

If the storage class of a Data Store Memory block is ExportedGlobal, the
Real-Time Workshop product changes the name of any Inport that has the
same name as the block. The name of the Inport in generated code is the
original name suffixed with an underscore and a random lowercase letter. The
product makes this change to avoid reusing identifiers in ExportedGlobal
data.

To control the storage declaration for a Data Store Memory block, use the
RTW storage class and RTW storage type qualifier fields of the Data
Store Memory block parameters dialog box.

In the following block diagram, a Data Store Write block writes to memory
declared by the Data Store Memory block myData.

5-88

Storage Classes for Data Store Memory Blocks

Data Store Memory blocks are nonvirtual because code is generated for their
initialization in .c and .cpp files and their declarations in header files. The
next figure shows the Data Store Memory Block Parameters dialog box, which
specifies the blocks that can write to and read from the Data Store Memory
block.

The following table shows code generated for the Data Store Memory block in
this model, depending on the setting of RTW storage class. The table gives
the variable declarations and MdlOutputs code generated for the myData block.

5-89

5 Working with Data

Storage Class Declaration Code

Auto In model.h

typedef struct

D_Work_tag

{

real_T myData;

}

D_Work;

In model.c or model.cpp

/* Block states (auto storage) */

D_Work model_DWork;

model_DWork.myData =

rtb_SineWave;

ExportedGlobal In model.c or model.c

/* Exported block states */

real_T myData;

In model.h

extern real_T myData;

myData = rtb_SineWave;

ImportedExtern In model_private.h

extern real_T myData;

myData = rtb_SineWave;

ImportedExternPointer In model_private.h

extern real_T *myData;

(*myData) = rtb_SineWave;

Data Store Memory and Simulink Signal Objects
If you are not familiar with Simulink data objects and signal objects, you
should read “Simulink Data Objects and Code Generation” on page 5-46
before reading this section.

5-90

Storage Classes for Data Store Memory Blocks

You can associate a Data Store Memory block with a signal object, and control
code generation for the block through the signal object. To do this,

1 Instantiate the desired signal object, and set its RTWInfo.StorageClass
property as you require.

2 Open the block parameters dialog box for the Data Store Memory block
whose state you want to associate with the signal object. Enter the name of
the signal object in the Data store name field.

3 Select the Data Store name must resolve to Simulink signal object
option. Make sure that the storage class and type qualifier settings of the
block parameters dialog box are not set; you will be unable to close the
dialog box until you specify auto storage class. See “Resolving Conflicts in
Configuration of Parameter and Signal Objects” on page 5-69.

4 Click Apply and close the dialog box.

Note When a Data Store Memory block is associated with a signal object,
the mapping between the Data store name and the signal object name
must be one to one. If two or more identically named entities map to
the same signal object, the name conflict is flagged as an error at code
generation time.

5-91

5 Working with Data

5-92

6

External Mode

In external mode, the Real-Time Workshop software establishes a
communications link between a model running in the Simulink environment
and code executing on a target system. More details on external mode are
provided elsewhere in this documentation: “Creating an External Mode
Communication Channel” on page 17-32 contains advanced information for
those who want to implement their own external mode communications
layer. You want to read it to gain increased insight into the architecture and
code structure of external mode communications. In addition, Chapter 13,
“Targeting the Wind River Systems Tornado Environment for Real-Time
Applications” discusses the use of external mode in the Wind River Systems
VxWorks Tornado environment.

• “Introduction” on page 6-2

• “Using the External Mode User Interface” on page 6-4

• “External Mode Compatible Blocks and Subsystems” on page 6-26

• “External Mode Communications Overview” on page 6-29

• “Client/Server Implementations” on page 6-33

• “Using External Mode Programmatically” on page 6-42

• “External Mode Limitations” on page 6-48

6 External Mode

Introduction
External mode allows two separate systems, a host and a target, to
communicate. The host is the computer where the MATLAB and Simulink
environments are executing. The target is the computer where the executable
created by the Real-Time Workshop build process runs.

The host (the Simulink environment) transmits messages requesting the
target to accept parameter changes or to upload signal data. The target
responds by executing the request. External mode communication is based
on a client/server architecture, in which the Simulink environment is the
client and the target is the server.

External mode lets you

• Modify, or tune, block parameters in real time. In external mode, whenever
you change parameters in the block diagram, the Simulink engine
downloads them to the executing target program. This lets you tune your
program’s parameters without recompiling.

• View and log block outputs in many types of blocks and subsystems. You
can monitor and/or store signal data from the executing target program,
without writing special interface code. You can define the conditions under
which data is uploaded from target to host. For example, data uploading
could be triggered by a selected signal crossing zero in a positive direction.
Alternatively, you can manually trigger data uploading.

External mode works by establishing a communication channel between the
Simulink engine and the Real-Time Workshop generated code. The channel’s
low-level transport layer handles the physical transmission of messages.
The Simulink engine and the generated model code are independent of this
layer. The transport layer and the code directly interfacing to it are isolated
in separate modules that format, transmit, and receive messages and data
packets.

This design allows for different targets to use different transport layers.
ERT, GRT, GRT malloc, and RSim targets support external mode host/target
communication by using TCP/IP and RS-232 (serial) communication. The xPC
Target product uses a customized transport layer. The Wind River Systems
Tornado target supports TCP/IP only. Serial transport is implemented only

6-2

Introduction

for Microsoft Windows 32-bit architectures. The Real-Time Windows Target
product uses shared memory.

6-3

6 External Mode

Using the External Mode User Interface

In this section...

“External Mode Interface Options” on page 6-4
“External Mode Related Menu and Toolbar Items” on page 6-7
“External Mode Control Panel” on page 6-12
“Target Interfacing” on page 6-14
“External Signal Uploading and Triggering” on page 6-16
“Data Archiving” on page 6-21
“Parameter Downloading” on page 6-23

External Mode Interface Options
The ERT, GRT, GRT malloc, RSim, and Wind River Systems Tornado
targets and the Real-Time Windows Target product support external mode.
All targets that support it feature a set of external mode options on their
respective target tab of the Configuration Parameters dialog box. This tab is
normally named Interface). The next figure is from the GRT target dialog
box, and is discussed below.

6-4

Using the External Mode User Interface

Note The xPC Target product also uses external mode communications.
External mode in the xPC Target product is always on, and has no interface
options.

The Data exchange section at the bottom has the following elements:

• Interface menu: Selects which of three mutually exclusive data interfaces
to include in the generated code. Options are

- None

- C API

- External mode

- ASAP2

6-5

6 External Mode

This chapter discusses only the External mode option. For information
on other options, see “Configuring Model Interfaces” on page 2-73.

Once you select External mode from the Interface menu, the following
options appear beneath:

• Transport layer menu: Identifies messaging protocol for host/target
communications; choices are tcpip and serial_win32.

The default is tcpip. When you select a protocol, the MEX-file name that
implements the protocol is shown to the right of the menu.

• MEX-file arguments text field: Optionally enter a list of arguments to be
passed to the transport layer MEX-file for communicating with executing
targets; these will vary according to the protocol you use.

For more information on the transport options, see “Target Interfacing” on
page 6-14 and “Client/Server Implementations” on page 6-33. You can
add other transport protocols yourself by following instructions given in
“Creating an External Mode Communication Channel” on page 17-32.

• Static memory allocation check box: Controls how memory for external
mode communication buffers in the target is allocated. When you select
this option, the following one appears beneath it:

• Static memory buffer size text field: Number of bytes to preallocate for
external mode communications buffers in the target when Static memory
allocation is used.

Note Selecting External mode from the Interface menu does not cause
the Simulink model to operate in external mode (see “External Mode
Related Menu and Toolbar Items” on page 6-7, below). Its function is to
instrument the code generated for the target to support external mode.

The Static memory allocation check box (for GRT and ERT targets) directs
the Real-Time Workshop software to generate code for external mode that
uses only static memory allocation (“malloc-free” code). When selected, it
activates the Static memory buffer size edit field, in which you specify the
size of the static memory buffer used by external mode. The default value is
1,000,000 bytes. Should you enter too small a value for your application,
external mode issues an out-of-memory error when it tries to allocate more

6-6

Using the External Mode User Interface

memory than you allowed. In such cases, increase the value in the Static
memory buffer size field and regenerate the code.

Notes

• To determine how much memory you need to allocate, enable verbose mode
on the target (by including OPTS="-DVERBOSE" on the make command line).
As it executes, external mode displays the amount of memory it tries to
allocate and the amount of memory available to it each time it attempts an
allocation. Should an allocation fail, this console log can be used to adjust
the size entered in the Static memory buffer size field.

• When you create an ERT target, external mode can generate pure integer
code. Select this feature by clearing the Support floating-point numbers
option on the Interface pane of the Configuration Parameters dialog box
or Model Explorer. Clearing this option ensures that all code, including
external mode support code, is free of doubles and floats. For more details,
see “Configuring Model Interfaces” in the Real-Time Workshop Embedded
Coder documentation.

External Mode Related Menu and Toolbar Items
To communicate with a target program, the model must be operating in
external mode. To enable external mode, do either of the following:

• Select External from the Simulation menu.

• Select External from the simulation mode menu in the toolbar. The
simulation mode menu is shown in the next figure.

6-7

6 External Mode

������	������
������
�	��	������	������
�
��		���8
������
9

������	�	�
	��
�	���		��

Simulation Mode Menu Options and Target Connection Control (Host
Disconnected from Target)

Once external mode is enabled, you can connect to and control the target
program by doing any of the following:

• Select Connect To Target from the Simulation menu.

• Click the Connect To Target toolbar button, shown in the preceding
figure.

• Use the Ctrl+T keyboard shortcut.

Note When external mode is selected in the model window, the Ctrl+T
keyboard shortcut is remapped from a toggle for Start and Stop (simulation)
to a toggle for Connect To Target and Disconnect From Target.

Selecting external mode in the model window controls execution only, and
does not cause the Real-Time Workshop software to generate code for external
mode. To do this, you must select External mode from the Interface menu
on the Interface tab of the Configuration Parameters dialog box, as described
in “External Mode Interface Options” on page 6-4.

6-8

Using the External Mode User Interface

Note You can enable external mode, and simultaneously connect to the target
system, by using the External Mode Control Panel dialog box. See “External
Mode Control Panel” on page 6-12.

Simulation Menu
When a Simulink model is in external mode, the upper section of the
Simulation menu contains external mode options. Initially, the Simulink
model is disconnected from the target program, and the menu displays the
options shown in the next figure.

Simulation Menu External Mode Options (Host Disconnected from Target)

The Connect To Target option establishes communication with the target
program. When a connection is established, the target program might be
executing model code, or it might be awaiting a command from the host to
start executing model code. You can also accomplish this by clicking the
Connect To Target toolbar button, as shown in Simulation Mode Menu
Options and Target Connection Control (Host Disconnected from Target)
on page 6-8.

If the target program is executing model code, the Simulation menu contents
change, as shown in the next figure.

6-9

6 External Mode

Simulation Menu External Mode Options (Target Executing Model Code)

The Disconnect From Target option disconnects the Simulink model
from the target program, which continues to run. The Stop Real-Time
Code option terminates execution of the target program and disconnects the
Simulink model from the target system.

If the target program is in a wait state, the Start Real-Time Code option
is enabled, as shown in the next figure. The Start Real-Time Code option
instructs the target program to begin executing the model code.

Simulation Menu External Mode Options (Target Awaiting Start Command)

Toolbar Controls
The Simulink toolbar controls, shown in Simulation Mode Menu Options and
Target Connection Control (Host Disconnected from Target) on page 6-8,
let you control the same external mode functions as the Simulation menu.
The Simulink model editor displays external mode buttons to the left of the
Simulation mode menu. Initially, the toolbar displays a Connect To Target
button and a disabled Start real-time code button. Click the Connect To
Target button to connect the Simulink engine to the target program.

6-10

Using the External Mode User Interface

When a connection is established, the target program might be executing
model code, or it might be awaiting a command from the host to start
executing model code.

If the target program is executing model code, the toolbar displays a Stop
real-time code button and a Disconnect From Target button (shown in
External Mode Toolbar Controls (Target Executing Model Code) on page
6-11). Click the Stop real-time code button to command the target program
to stop executing model code and disconnect the Simulink engine from the
target system. Click the Disconnect From Target button to disconnect the
Simulink engine from the target program while leaving the target program
running.

�	�"������	������
����		�� ���������	������	��
�	���		��

External Mode Toolbar Controls (Target Executing Model Code)

If the target program is in a wait state, the toolbar displays a Start real-time
code button and a Disconnect From Target button (shown in External
Mode Toolbar Controls (Target in Wait State) on page 6-12). Click the Start
real-time code button to instruct the target program to start executing
model code. Click the Disconnect From Target button to disconnect the
Simulink engine from the target program.

6-11

6 External Mode

�	��	������	������
����		�� ���������	������	��
�	���		��

External Mode Toolbar Controls (Target in Wait State)

External Mode Control Panel
The External Mode Control Panel, illustrated in the next figure, provides
centralized control of all external mode features, including

• Host/target connection, disconnection, and target program start/stop
functions, and enabling of external mode

• Arming and disarming the data upload trigger

• External mode communications configuration

• Uploading data to Floating Scopes

• Timing of parameter downloads

• Selection of signals from the target program to be viewed and monitored
on the host

• Configuration of data archiving features

Select External Mode Control Panel from the Tools menu on the Simulink
model editor to open the External Mode Control Panel dialog box.

6-12

Using the External Mode User Interface

�"���
����
���$���	B�	������
���
�$	��������
��	��
�	���	������D
��
����"��"��	���D���
�
�	�����B�(��

���	����	����
���
"�����	���
�C����
�

���	����	B��������	������	C���
B��	���
�������������
����
�	�
�"���
��
�	��

��

���	���������������	��

���"�������$	��������
�

The following sections describe the features supported by the External Mode
Control Panel.

Connecting, Starting, and Stopping
The External Mode Control Panel performs the same connect/disconnect and
start/stop functions found in the Simulation menu and the Simulink toolbar
(see “External Mode Related Menu and Toolbar Items” on page 6-7).

6-13

6 External Mode

The Connect/Disconnect button connects to or disconnects from the target
program. The button text changes in accordance with the state of the
connection.

If external mode is not enabled at the time the Connect button is clicked, the
External Mode Control Panel enables external mode automatically.

The Start/Stop real-time code button commands the target to start or
terminate model code execution. The button is disabled until a connection to
the target is established. The button text changes in accordance with the
state of the target program.

Floating Scope Options
The Floating scope pane of the External Mode Control Panel controls when
and for how long data is uploaded to Floating Scope blocks. When used under
external mode, Floating Scopes

• Do not appear in the signal and triggering GUI

• Support manual triggering only

The behavior of wired scopes is not restricted in these ways.

The Floating scope pane contains a check box and an edit field:

• Enable data uploading check box, which functions as an Arm trigger
button for floating scopes. When the target is disconnected it controls
whether or not to arm when connecting the floating scopes. When already
connected it acts as a toggle button to arm/cancel the trigger.

• Duration edit field, which specifies the duration for floating scopes. By
default, it is set to auto, which causes whatever value is specified in the
signal and triggering GUI (which by default is 1000 seconds) to be used.

Target Interfacing
The Real-Time Workshop product lets you implement client and server
transport for external mode using either TCP/IP or serial protocols. You
can use the socket-based external mode implementation provided by the
Real-Time Workshop product with the generated code, provided that your

6-14

Using the External Mode User Interface

target system supports TCP/IP. Otherwise, use or customize the serial
transport layer option provided.

A low-level transport layer handles physical transmission of messages. Both
the Simulink engine and the model code are independent of this layer. Both
the transport layer and code directly interfacing to the transport layer are
isolated in separate modules that format, transmit, and receive messages
and data packets.

You specify the transport mechanism using the Transport layer menu in the
Host/Target interface subpane of the Interface pane of the Configuration
Parameters dialog box, shown below.

#$	��������	�������!#I����������
����
�8�"������

����$	��
�)	����"��	�*�������)���	���J�	���*�9

��"���"	��������
����	��	��	B���$	��������	������
!#I������B���*��B�����������	�������	B��������	

����	�����������	B�	������������!7�:7 �"�	B*

The Host/Target interface subpane also displaysMEX-file name, the name
of a MEX-file that implements host/target communications for the selected
external mode transport layer. This is known as the external interface
MEX-file. The default is ext_comm, the TCP/IP-based external interface
file provided for use with the GRT, GRT malloc, ERT, RSim, and Tornado
targets. If you select the serial_win32 transport option, the MEX-file name
ext_serial_win32_com is displayed in this location.

6-15

6 External Mode

Note Custom or third-party targets can use a custom transport layer and
a different external interface MEX-file. For more information on creating a
custom transport layer, see “Creating an External Mode Communication
Channel” on page 17-32. For more information on specifying a TCP/IP or serial
transport layer for a custom target, see “Using the TCP/IP Implementation”
on page 6-33 or “Using the Serial Implementation” on page 6-36.

The MEX-file arguments edit field lets you optionally specify arguments
that are passed to the external mode interface MEX-file for communicating
with executing targets. The meaning of the MEX-file arguments depends on
the MEX-file implementation.

For TCP/IP interfaces, ext_comm allows three optional arguments:

• Network name of your target (for example, 'myPuter' or '148.27.151.12')

• Verbosity level (0 for no information or 1 for detailed information)

• TCP/IP server port number (an integer value between 256 and 65535, with
a default of 17725)

For serial transport, ext_serial_win32_comm allows three optional
arguments:

• Verbosity level (0 for no information or 1 for detailed information)

• Serial port ID (for example, 1 for COM1, and so on)

• Baud rate (selected from the set 1200, 2400, 4800, 9600, 14400, 19200,
38400, 57600, 115200, with a default baud rate of 57600)

See “Client/Server Implementations” on page 6-33 for details on MEX-file
transport architecture and arguments.

External Signal Uploading and Triggering
Clicking the Signal & triggering button of the External Mode Control
Panel activates the External Signal & Triggering dialog box, as shown in
the next figure.

6-16

Using the External Mode User Interface

The External Signal & Triggering dialog box displays a list of all blocks and
subsystems in your model that support external mode signal uploading.
See “External Mode Compatible Blocks and Subsystems” on page 6-26 for
information on which types of blocks are external mode compatible.

The External Signal & Triggering dialog box lets you select the signals that
are collected from the target system and viewed in external mode. It also
lets you select a signal that triggers uploading of data when certain signal
conditions are met, and define the triggering conditions.

Default Operation
The preceding figure shows the default settings of the External Signal
& Triggering dialog box. The default operation of the External Signal &
Triggering dialog box is designed to simplify monitoring the target program.
If you use the default settings, you do not need to preconfigure signals and
triggers. Simply start the target program and connect the Simulink engine
to it. All external mode compatible blocks will be selected and the trigger
will be armed. Signal uploading begins immediately upon connection to the
target program.

6-17

6 External Mode

The default configuration is

• Arm when connecting to target: on

• Trigger Mode: normal

• Trigger Source: manual

• Select all: on

Signal Selection
All external mode compatible blocks in your model appear in the Signal
selection list of the External Signal & Triggering dialog box. You use this
list to select signals to be viewed. An X appears to the left of each selected
block’s name.

The Select all check box selects all signals. By default, Select all is on.

If Select all is off, you can select or deselect individual signals using the on
and off radio buttons. To select a signal, click the desired list entry and click
the on radio button. To deselect a signal, click the desired list entry and click
the off radio button. Alternatively, you can double-click a signal in the list to
toggle between selection and deselection.

The Clear all button deselects all signals.

Trigger Options
The Trigger panel located at the bottom left of the External Signal &
Triggering dialog contains options that control when and how signal data is
collected (uploaded) from the target system. These options are

• Source: manual or signal. Selecting manual directs external mode to start
logging data when the Arm trigger button on the External Mode Control
Panel is clicked.

Selecting signal tells external mode to start logging data when a selected
trigger signal satisfies trigger conditions specified in the Trigger signal
panel. When the trigger conditions are satisfied (that is, the signal crosses
the trigger level in the specified direction) a trigger event occurs. If the

6-18

Using the External Mode User Interface

trigger is armed, external mode monitors for the occurrence of a trigger
event. When a trigger event occurs, data logging begins.

• Arm when connecting to target: If this option is selected, external mode
arms the trigger automatically when the Simulink engine connects to the
target. If the trigger source is manual, uploading begins immediately.
If the trigger mode is signal, monitoring of the trigger signal begins
immediately, and uploading begins upon the occurrence of a trigger event.

If Arm when connecting to target is not selected, you must manually
arm the trigger by clicking the Arm trigger button in the External Mode
Control Panel.

• Duration: The number of base rate steps for which external mode logs
data after a trigger event. For example, if the fastest rate in the model is 1
second and a signal sampled at 1 Hz is being logged for a duration of 10
seconds, then external mode will collect 10 samples. If a signal sampled
at 2 Hz is logged, 20 samples will be collected.

• Mode: normal or one-shot. In normal mode, external mode automatically
rearms the trigger after each trigger event. In one-shot mode, external
mode collects only one buffer of data each time you arm the trigger. See
“Data Archiving” on page 6-21 for more details on the effect of the Mode
setting.

• Delay: The delay represents the amount of time that elapses between a
trigger occurrence and the start of data collection. The delay is expressed
in base rate steps, and can be positive or negative. A negative delay
corresponds to pretriggering. When the delay is negative, data from the
time preceding the trigger is collected and uploaded.

Trigger Signal Selection
You can designate one signal as a trigger signal. To select a trigger signal,
select signal from the Trigger Source menu. This activates the Trigger
signal panel (see the next figure). Then, click the desired entry in the Signal
selection list and click the Trigger signal button.

When a signal is selected as a trigger, a T appears to the left of the block’s
name in the Signal selection list. In the next figure, the Scope A signal is
the trigger. Scope B is also selected for viewing, as indicated by the X to the
left of the block name.

6-19

6 External Mode

���

�����
����"����

External Signal & Triggering Window with Trigger Selected

After selecting the trigger signal, you can define the trigger conditions and set
the Port and Element fields in the Trigger signal panel.

Setting Trigger Conditions

Note The Trigger signal panel and the Port and Element fields of the
External Signal & Triggering dialog box are enabled only when trigger
Source is set to signal.

By default, any element of the first input port of the specified trigger block
can cause the trigger to fire (that is, Port 1, any element). You can modify this
behavior by adjusting the Port and Element fields located on the right side
of the Trigger signal panel. The Port field accepts a number or the keyword
last. The Element field accepts a number or the keywords any and last.

6-20

Using the External Mode User Interface

The Trigger Signal panel defines the conditions under which a trigger
event will occur.

• Level: Specifies a threshold value. The trigger signal must cross this value
in a designated direction to fire the trigger. By default, the level is 0.

• Direction: rising, falling, or either. This specifies the direction in
which the signal must be traveling when it crosses the threshold value.
The default is rising.

• Hold-off: Applies only to normal mode. Expressed in base rate steps,
Hold-off is the time between the termination of one trigger event and
the rearming of the trigger.

Data Archiving
Clicking the Data Archiving button of the External Mode Control Panel
opens the External Data Archiving dialog box, which supports the following
features:

Directory Notes
Use this option to add annotations that pertain to a collection of related data
files in a directory. Clicking the Edit directory note button opens the
MATLAB editor. Place comments that you want saved to a file in the specified
directory in this window. By default, the comments are saved to the directory
last written to by data archiving.

File Notes
Clicking Edit file note opens a file finder window that is, by default, set to
the last file to which you have written. Selecting any MAT-file opens an edit
window. Add or edit comments in this window that you want saved with your
individual MAT-file.

Data Archiving
Clicking the Enable Archiving check box activates the automated data
archiving features of external mode. To understand how the archiving
features work, it is necessary to consider the handling of data when archiving
is not enabled. There are two cases, one-shot and normal mode.

6-21

6 External Mode

In one-shot mode, after a trigger event occurs, each selected block writes its
data to the workspace just as it would at the end of a simulation. If another
one-shot is triggered, the existing workspace data is overwritten.

In normal mode, external mode automatically rearms the trigger after each
trigger event. Consequently, you can think of normal mode as a series of
one-shots. Each one-shot in this series, except for the last, is referred to
as an intermediate result. Since the trigger can fire at any time, writing
intermediate results to the workspace generally results in unpredictable
overwriting of the workspace variables. For this reason, the default behavior
is to write only the results from the final one-shot to the workspace. The
intermediate results are discarded. If you know that sufficient time exists
between triggers for inspection of the intermediate results, then you can
override the default behavior by checking the Write intermediate results
to workspace check box. This option does not protect the workspace data
from being overwritten by subsequent triggers.

The options in the External Data Archiving dialog box support automatic
writing of logging results, including intermediate results, to disk. Data
archiving provides the following settings:

• Directory: Specifies the directory in which data is saved. External mode
appends a suffix if you select Increment directory when trigger armed.

• File: Specifies the filename in which data is saved. External mode appends
a suffix if you select Increment file after one-shot.

• Increment directory when trigger armed: External mode uses a
different directory for writing log files each time that you click the Arm
trigger button. The directories are named incrementally, for example,
dirname1, dirname2, and so on.

• Increment file after one-shot: New data buffers are saved in incremental
files: filename1, filename2, and so on. This happens automatically in
normal mode.

• Append file suffix to variable names: Whenever external mode
increments filenames, each file contains variables with identical names.
Selecting Append file suffix to variable name results in each file
containing unique variable names. For example, external mode will save
a variable named xdata in incremental files (file_1, file_2, and so on)
as xdata_1, xdata_2, and so on. This is useful if you want to load the

6-22

Using the External Mode User Interface

MAT-files into the workspace and compare variables at the MATLAB
command prompt. Without the unique names, each instance of xdata
would overwrite the previous one in the MATLAB workspace.

• Write intermediate results to workspace: Select this option if you
want the Real-Time Workshop software to write all intermediate results to
the workspace.

The next figure shows the External Data Archiving dialog box with archiving
enabled.

Unless you select Enable archiving, entries for the Directory and File
fields are not accepted.

Parameter Downloading
The Batch download check box on the External Mode Control Panel enables
or disables batch parameter changes.

By default, batch download is not enabled. If batch download is not enabled,
changes made directly to block parameters by using parameter dialog boxes
are sent to the target when you click the OK or Apply button. Changes
to MATLAB workspace variables are sent when an Update diagram is
performed.

6-23

6 External Mode

Note Opening a dialog box for a source block causes the Simulink to pause.
While Simulink is paused, you can edit the parameter values. You must
close the dialog box to have the changes take effect and allow Simulink
to continue.

If batch download is enabled, the Download button is enabled. Changes
made to block parameters are stored locally until you click the Download
button. When you click the Download button, the changes are sent in a
single transmission.

When parameter changes have been made and are awaiting batch download,
the External Mode Control Panel displays the message Parameter changes
pending... to the right of the download button. (See the next figure.) This
message disappears after the Simulink engine receives notification from the
target that the new parameters have been installed in the parameter vector
of the target system.

The External Mode Control Panel with the batch download option activated
appears in the next figure.

6-24

Using the External Mode User Interface

+�����	����B��
���"��
��

�����
���""�������������	
"�����	���(������B��
��
�����C��	��
�
�C����

+�����	����B��
���"��
��

External Mode Control Panel in Batch Download Mode

6-25

6 External Mode

External Mode Compatible Blocks and Subsystems

In this section...

“Compatible Blocks” on page 6-26
“Signal Viewing Subsystems” on page 6-27

Compatible Blocks
In external mode, you can use the following types of blocks to receive and view
signals uploaded from the target program:

• Floating Scope and Scope blocks

• Spectrum Scope and Vector Scope blocks from the Signal Processing
Blockset product

• Blocks from the Gauges Blockset product

• Display blocks

• To Workspace blocks

• User-written S-Function blocks

An external mode method is built into the S-function API. This
method allows user-written blocks to support external mode. See
matlabroot/simulink/simstruc.h.

• XY Graph blocks

In addition to these types of blocks, you can designate certain subsystems
as Signal Viewing Subsystems and use them to receive and view signals
uploaded from the target program. See “Signal Viewing Subsystems” on page
6-27 for more information.

External mode compatible blocks and subsystems are selected, and the
trigger is armed, by using the External Signal & Triggering dialog box. By
default, all such blocks in a model are selected, and a manual trigger is set to
be armed when connected to the target program.

6-26

External Mode Compatible Blocks and Subsystems

Signal Viewing Subsystems
A Signal Viewing Subsystem is an atomic subsystem that encapsulates
processing and viewing of signals received from the target system. A Signal
Viewing Subsystem runs only on the host, generating no code in the target
system. Signal Viewing Subsystems run in all simulation modes — normal,
accelerated, and external.

Signal Viewing Subsystems are useful in situations where you want to
process or condition signals before viewing or logging them, but you do not
want to perform these tasks on the target system. By using a Signal Viewing
Subsystem, you can generate smaller and more efficient code on the target
system.

Like other external mode compatible blocks, Signal Viewing Subsystems are
displayed in the External Signal & Triggering dialog box.

To declare a subsystem to be a Signal Viewing Subsystem,

1 Select the Treat as atomic unit option in the Block Parameters dialog box.

See “Nonvirtual Subsystem Code Generation” on page 4-2 for more
information on atomic subsystems.

2 Use the following set_param command to turn the SimViewingDevice
property on,

set_param('blockname', 'SimViewingDevice','on')

where 'blockname' is the name of the subsystem.

3 Make sure the subsystem meets the following requirements:

• It must be a pure sink block. That is, it must contain no Outport blocks
or Data Store blocks. It can contain Goto blocks only if the corresponding
From blocks are contained within the subsystem boundaries.

• It must have no continuous states.

The following model, sink_examp, contains an atomic subsystem, theSink.

6-27

6 External Mode

The subsystem theSink, shown in the next figure, applies a gain and an offset
to its input signal and displays it on a Scope block.

If theSink is declared as a Signal Viewing Subsystem, the generated target
program includes only the code for the Sine Wave block. If theSink is selected
and armed in the External Signal & Triggering dialog box, the target program
uploads the sine wave signal to theSink during simulation. You can then
modify the parameters of the blocks within theSink and observe their effect
upon the uploaded signal.

If theSink were not declared as a Signal Viewing Subsystem, its Gain,
Constant, and Sum blocks would run as subsystem code on the target system.
The Sine Wave signal would be uploaded to the Simulink engine after being
processed by these blocks, and viewed on sink_examp/theSink/Scope2.
Processing demands on the target system would be increased by the additional
signal processing, and by the downloading of changes in block parameters
from the host.

6-28

External Mode Communications Overview

External Mode Communications Overview

In this section...

“Introduction” on page 6-29
“Download Mechanism” on page 6-29
“Inlined and Tunable Parameters” on page 6-31

Introduction
This section describes how the Simulink engine and a target program
communicate, and how and when they transmit parameter updates and
signal data to each other.

Depending on the setting of the Inline parameters option when the target
program is generated, there are differences in the way parameter updates are
handled. “Download Mechanism” on page 6-29 describes the operation of
external mode communications with Inline parameters off. “Inlined and
Tunable Parameters” on page 6-31 describes the operation of external mode
with Inline parameters on.

Download Mechanism
In external mode, the Simulink engine does not simulate the system
represented by the block diagram. By default, when external mode is enabled,
the Simulink engine downloads all parameters to the target system. After
the initial download, the engine remains in a waiting mode until you change
parameters in the block diagram or until the engine receives data from the
target.

When you change a parameter in the block diagram, the Simulink engine
calls the external interface MEX-file, passing new parameter values (along
with other information) as arguments. The external interface MEX-file
contains code that implements one side of the interprocess communication
(IPC) channel. This channel connects the Simulink process (where the
MEX-file executes) to the process that is executing the external program.
The MEX-file transfers the new parameter values by using this channel to
the external program.

6-29

6 External Mode

The other side of the communication channel is implemented within the
external program. This side writes the new parameter values into the target’s
parameter structure (model_P).

The Simulink side initiates the parameter download operation by sending a
message containing parameter information to the external program. In the
terminology of client/server computing, the Simulink side is the client and
the external program is the server. The two processes can be remote, or they
can be local. Where the client and server are remote, a protocol such as
TCP/IP is used to transfer data. Where the client and server are local, a serial
connection or shared memory can be used to transfer data.

The next figure shows this relationship. The Simulink engine calls the
external interface MEX-file whenever you change parameters in the block
diagram. The MEX-file then downloads the parameters to the external
program by using the communication channel.

6-30

External Mode Communications Overview

���������+������

��$����	���

�����	
�+����
�

#$	��������	������

!#I������8�*
*D��+����

9

#$	������+��
����+������

#$	������+��
���

���(��
�+����
�

�+���	��

��	��"����������������	�����B�����������"��	�:����

External Mode Architecture

Inlined and Tunable Parameters
By default, all parameters (except those listed in “External Mode Limitations”
on page 6-48) in an external mode program are tunable; that is, you can
change them by using the download mechanism described in this section.

If you select the Inline parameters option (on the Optimization pane of
the Configuration Parameters dialog box), the Real-Time Workshop code
generator embeds the numerical values of model parameters (constants),

6-31

6 External Mode

instead of symbolic parameter names, in the generated code. Inlining
parameters generates smaller and more efficient code. However, inlined
parameters, because they effectively become constants, are not tunable.

The Real-Time Workshop software lets you improve overall efficiency by
inlining most parameters, while at the same time retaining the flexibility
of run-time tuning for selected parameters that are important to your
application. When you inline parameters, you can use the Model Parameter
Configuration dialog box to remove individual parameters from inlining and
declare them to be tunable. In addition, the Model Parameter Configuration
dialog box offers you options for controlling how parameters are represented
in the generated code.

For more information on tunable parameters, see “Parameter Storage,
Interfacing, and Tuning” on page 5-2.

Automatic Parameter Uploading on Host/Target Connection
Each time the Simulink engine connects to a target program that was
generated with Inline parameters on, the target program uploads the
current value of its tunable parameters (if any) to the host. These values are
assigned to the corresponding MATLAB workspace variables. This procedure
ensures that the host and target are synchronized with respect to parameter
values.

All workspace variables required by the model must be initialized at the time
of host/target connection. Otherwise the uploading cannot proceed and an
error results. Once the connection is made, these variables are updated to
reflect the current parameter values on the target system.

Automatic parameter uploading takes place only if the target program was
generated with Inline parameters on. “Download Mechanism” on page
6-29 describes the operation of external mode communications with Inline
parameters off.

6-32

Client/Server Implementations

Client/Server Implementations

In this section...

“Introduction” on page 6-33
“Using the TCP/IP Implementation” on page 6-33
“Using the Serial Implementation” on page 6-36
“Running the External Program” on page 6-39
“Implementing an External Mode Protocol Layer” on page 6-41

Introduction
The Real-Time Workshop product provides code to implement both the client
and server side of external mode communication using either TCP/IP or
serial protocols. You can use the socket-based external mode implementation
provided by the Real-Time Workshop product with the generated code,
provided that your target system supports TCP/IP. If not, use or customize
the serial transport layer option provided.

A low-level transport layer handles physical transmission of messages. Both
the Simulink engine and the model code are independent of this layer. Both
the transport layer and code directly interfacing to the transport layer are
isolated in separate modules that format, transmit, and receive messages
and data packets.

See “Target Interfacing” on page 6-14 for information on selecting a transport
layer.

Using the TCP/IP Implementation
You can use TCP/IP-based client/server implementation of external mode
with real-time programs on The Open Group UNIX or PC systems. Chapter
13, “Targeting the Wind River Systems Tornado Environment for Real-Time
Applications” shows the use of external mode in the Wind River Systems
Tornado environment. For help in customizing external mode transport
layers, see “Creating an External Mode Communication Channel” on page
17-32.

6-33

6 External Mode

To use Simulink external mode over TCP/IP, you must

• Make sure that the correct external interface MEX-file is specified for your
target’s TCP/IP transport.

Targets provided by The MathWorks specify
the name of the external interface MEX-file in
matlabroot/toolbox/simulink/simulink/extmode_transports.m. The
name of the interface appears as uneditable text in the Host/Target
interface section of the Interface pane of the Configuration Parameters
dialog box. The TCP/IP default is ext_comm.

To specify a TCP/IP transport for a custom target, you must add an entry of
the following form to an sl_customization.m file on the MATLAB path:

function sl_customization(cm)

cm.ExtModeTransports.add('stf.tlc', 'transport', 'mexfile', 'Level1');

%end function

where

- stf.tlc is the name of the system target file for which the transport will
be registered (for example, 'mytarget.tlc')

- transport is the transport name to display in the Transport layer
menu on the Interface pane of the Configuration Parameters dialog
box (for example, 'tcpip')

- mexfile is the name of the transport’s associated external interface
MEX-file (for example, 'ext_comm')

You can specify multiple targets and/or transports with additional
cm.ExtModeTransports.add lines, for example:

function sl_customization(cm)

cm.ExtModeTransports.add('mytarget.tlc', 'tcpip', 'ext_comm', 'Level1');

cm.ExtModeTransports.add('mytarget.tlc', 'serial_win32', ...

'ext_serial_win32_comm', 'Level1');

%end function

• Be sure that the template makefile is configured to link the proper source
files for the TCP/IP server code and that it defines the necessary compiler
flags when building the generated code.

6-34

Client/Server Implementations

• Build the external program.

• Run the external program.

• Set the Simulink model to external mode and connect to the target.

The next figure shows the structure of the TCP/IP-based implementation.

+������������
"�����	����B��
��

�+����

������������#$	������!�
�

<&�I����+��;��	

<"
�	��������"�����	���

���
�	���
�

���
�	

�+���	���

��+K�+����#	B����	

#$	������!�
��!����
�������	

B��
��
�	�����	��
�	������	

TCP/IP-Based Client/Server Implementation for External Mode

MEX-File Optional Arguments for TCP/IP Transport
In the External Target Interface dialog box, you can specify optional
arguments that are passed to the external mode interface MEX-file for
communicating with executing targets.

6-35

6 External Mode

• Target network name: the network name of the computer running the
external program. By default, this is the computer on which the Simulink
product is running. The name can be

- String delimited by single quotes, such as 'myPuter'

- IP address delimited by single quotes, such as '148.27.151.12'

• Verbosity level: controls the level of detail of the information displayed
during the data transfer. The value is either 0 or 1 and has the following
meaning:

0— No information
1 — Detailed information

• TCP/IP server port number: The default value is 17725. You can change
the port number to a value between 256 and 65535 to avoid a port conflict
if necessary.

The arguments are positional and must be specified in order. For example, if
you want to specify the verbosity level (the second argument), then you must
also specify the target network name (the first argument). Arguments can be
delimited by white space or commas. For example:

'148.27.151.12' 1 30000

You can specify command-line options to the external program when you
launch it. See “Running the External Program” on page 6-39 for more
information.

Using the Serial Implementation
Controlling host/target communications on a serial channel is similar to
controlling host/target communications on a TCP/IP channel.

To use Simulink external mode over a serial channel, you must

• Execute the target and host on a Microsoft Windows platform.

• Make sure that the correct external interface MEX-file is specified for your
target’s serial transport.

Targets provided by The MathWorks specify
the name of the external interface MEX-file in

6-36

Client/Server Implementations

matlabroot/toolbox/simulink/simulink/extmode_transports.m. The
name of the interface appears as uneditable text in the Host/Target
interface section of the Interface pane of the Configuration Parameters
dialog box. The serial default is serial_win32.

To specify a serial transport for a custom target, you must add an entry of
the following form to an sl_customization.m file on the MATLAB path:

function sl_customization(cm)

cm.ExtModeTransports.add('stf.tlc', 'transport', 'mexfile', 'Level1');

%end function

where

- stf.tlc is the name of the system target file for which the transport will
be registered (for example, 'mytarget.tlc')

- transport is the transport name to display in the Transport layer
menu on the Interface pane of the Configuration Parameters dialog
box (for example, 'serial_win32')

- mexfile is the name of the transport’s associated external interface
MEX-file (for example, 'ext_serial_win32_comm')

You can specify multiple targets and/or transports with additional
cm.ExtModeTransports.add lines, for example:

function sl_customization(cm)

cm.ExtModeTransports.add('mytarget.tlc', 'tcpip', 'ext_comm', 'Level1');

cm.ExtModeTransports.add('mytarget.tlc', 'serial_win32', ...

'ext_serial_win32_comm', 'Level1');

%end function

• Be sure that the template makefile is configured to link the proper source
files for the serial server code and that it defines the necessary compiler
flags when building the generated code.

• Build the external program.

• Run the external program.

• Set the Simulink model to external mode and connect to the target.

6-37

6 External Mode

MEX-File Optional Arguments for Serial Transport
In theMEX-file arguments field of the Interface pane of the Configuration
Parameters dialog box, you can specify arguments that are passed
to the external mode interface MEX-file for communicating with the
executing targets. For serial transport, the optional arguments to
ext_serial_win32_comm are

• Verbosity level: controls the level of detail of the information displayed
during the data transfer. The value is either 0 or 1 and has the following
meaning:

0— No information
1 — Detailed information

• Serial port ID (for example, 1 for COM1, and so on)

If the target program is executing on the same machine as the host and
communications is through a loopback serial cable, the target’s port ID
must differ from that of the host (as specified in theMEX-file arguments
edit field).

When you start the target program using a serial connection, you must
specify the port ID to use to connect it to the host. Do this by including the
-port command-line option. For example,

mytarget.exe -port 2 -w

• Baud rate (selected from the set 1200, 2400, 4800, 9600, 14400, 19200,
38400, 57600, 115200, with a default baud rate of 57600)

The arguments are positional and must be specified in order. For example,
if you want to specify the serial port ID (the second argument), then you
must also specify the verbosity level (the first argument). Arguments can be
delimited by white space or commas. For example:

1 1 115200

You can specify command-line options to the external program when you
launch it. The following section provides details on using command-line
arguments.

6-38

Client/Server Implementations

Running the External Program
The external program must be running before you can use the Simulink
product in external mode. To run the external program, you type a command
of the form

model -opt1 ... -optN

where model is the name of the external program and -opt1 ... -optN are
options. (See “Command-Line Options for the External Program” on page
6-40.) In the examples in this section, the name of the external program is
assumed to be ext_example.

Running the External Program Under the Windows
Environment
In the Windows environment, you can run the external programs in either
of the following ways:

• Open a Command Prompt window. At the command prompt, type the
name of the target executable, followed by any options, as in the following
example:

ext_example -tf inf -w

• Alternatively, you can launch the target executable from the MATLAB
command prompt. In this case the command must be preceded by an
exclamation point (!) and followed by an ampersand (&) , as in the following
example:

!ext_example -tf inf -w &

The ampersand (&) causes the operating system to spawn another process
to run the target executable. If you do not include the ampersand, the
program still runs, but you will be unable to enter commands at the
MATLAB command prompt or manually terminate the executable.

Running the External Program Under the UNIX Environment
In the UNIX environment, you can run the external programs in either of the
following ways:

6-39

6 External Mode

• Open an Xterm window. At the command prompt, type the name of the
target executable, followed by any options, as in the following example:

ext_example -tf inf -w

• Alternatively, you can launch the target executable from the MATLAB
command prompt. In the UNIX environment, if you start the external
program from the MATLAB command prompt, you must run it in the
background so that you can still access the Simulink environment. The
command must be preceded by an exclamation point (!) and followed by
an ampersand (&) , as in the following example:

!ext_example -tf inf -w &

runs the executable from the MATLAB command prompt by spawning
another process to run it.

Command-Line Options for the External Program
External mode target executables generated by the Real-Time Workshop code
generator support the following command-line options:

• -tf n option

The -tf option overrides the stop time set in the Simulink model. The
argument n specifies the number of seconds the program will run. The
value inf directs the model to run indefinitely. In this case, the model
code will run until the target program receives a stop message from the
Simulink engine.

The following example sets the stop time to 10 seconds.

ext_example -tf 10

When integer-only ERT targets are built and executed in external mode,
the stop time parameter (-tf) is interpreted by the target as the number of
base rate ticks rather than the number of seconds to execute. See “Using
External Mode with the ERT Target” in the Real-Time Workshop Embedded
Coder documentation.

6-40

Client/Server Implementations

Note The -tf option works with GRT, GRT malloc, ERT, RSim, and Tornado
targets. If you are creating a custom target and want to support the -tf
option, you must implement the option yourself. See “Creating an External
Mode Communication Channel” on page 17-32 for more information.

• -w option: Instructs the target program to enter a wait state until it
receives a message from the host. At this point, the target is running, but
not executing the model code. The start message is sent when you select
Start Real-Time Code from the Simulation menu or click the Start
real-time code button in the External Mode Control Panel.

Use the -w option if you want to view data from time step 0 of the target
program execution, or if you want to modify parameters before the target
program begins execution of model code.

• -port n option: Specifies the TCP/IP port number, n, for the target
program. The port number of the target program must match that of the
host. The default port number is 17725. The port number must be a value
between 256 and 65535.

Note The -tf, -w, and -port options are supported by the TCP/IP and
serial transport layer modules shipped with the Real-Time Workshop
product (although -port is interpreted differently by each). The -baud
option is serial only. By default, these modules are linked into external
mode target executables. If you are implementing a custom external mode
transport layer and want to support these options, you must implement
them in your code.

Implementing an External Mode Protocol Layer
If you want to implement your own transport layer for external mode
communication, you must modify certain code modules provided by the
Real-Time Workshop product and create a new external interface MEX-file.
This advanced topic is described in detail in “Creating an External Mode
Communication Channel” on page 17-32.

6-41

6 External Mode

Using External Mode Programmatically
You can run external-mode applications from the MATLAB command line or
programmatically in scripts. Use the get_param and set_param commands to
retrieve and set the values of model simulation command-line parameters,
such as SimulationMode and SimulationCommand, and external mode
command-line parameters, such as ExtModeCommand and ExtModeTrigType.
(For more information on using get_param and set_param to tune model
parameters, see “Parameter Tuning by Using MATLAB Commands” on page
5-28.)

The following sequence of model simulation commands assumes that a
Simulink model is open and that you have loaded a target program to which
the model will connect using external mode.

1 Change the Simulink model to external mode:

set_param(gcs, 'SimulationMode', 'external')

2 Connect the open model to the loaded target program:

set_param(gcs, 'SimulationCommand', 'connect')

3 Start running the target program:

set_param(gcs, 'SimulationCommand', 'start')

4 Stop running the target program:

set_param(gcs, 'SimulationCommand', 'stop')

5 Disconnect the target program from the model:

set_param(gcs, 'SimulationCommand', 'disconnect')

The next table lists external mode command-line parameters that you can
use in get_param and set_param commands. The table provides brief
descriptions, valid values (bold type highlights defaults), and a mapping to
External Mode dialog box equivalents.

6-42

Using External Mode Programmatically

Note For external mode parameters that are equivalent to Interface pane
options in the Configuration Parameters dialog box, see the ExtMode table
entries in “Parameter Command-Line Information Summary”.

External Mode Command-Line Parameters

Parameter and Values Dialog Box Equivalent Description

ExtModeAddSuffixToVar
off, on

Data Mode Archiving:
Append file suffix to
variable name check box

Increment variable names
for each incremented
filename.

ExtModeArchiveDirName
string

Data Mode Archiving:
Directory text box

Save data in specified
directory.

ExtModeArchiveFileName
string

Data Mode Archiving: File
text box

Save data in specified file.

ExtModeArchiveMode
string - off, on

Data Mode Archiving:
Enable archiving check
box

Activate automated data
archiving features.

ExtModeArmWhenConnect
off, on

External Signal &
Triggering: Arm when
connecting to target
check box

Arm the trigger as soon as
the Real-Time Workshop
software connects to the
target.

ExtModeAutoIncOneShot
off, on

Data Mode Archiving:
Increment file after
one-shot check box

Save new data buffers in
incremental files.

ExtModeAutoUpdateStatusClock
(Microsoft Windows platforms only)
off, on

Not available Continuously upload and
display target time on the
model window status bar.

ExtModeBatchMode
off, on

Control Panel: Batch
download check box

Enable or disable
downloading of parameters
in batch mode.

6-43

6 External Mode

External Mode Command-Line Parameters (Continued)

Parameter and Values Dialog Box Equivalent Description

ExtModeChangesPending
off, on

Not available When ExtModeBatchMode
is enabled, indicates
whether any parameters
remain in the queue
of parameters to be
downloaded to the target.

ExtModeCommand
string

Not available Issue an external mode
command to the target
program.

ExtModeConnected
off, on

Control Panel:
Connect/Disconnect
button

Indicate the state of the
connection with the target
program.

ExtModeEnableFloating
off, on

Control Panel: Enable
data uploading check box

Enable or disable the
arming and canceling of
triggers when a connection
is established with floating
scopes.

ExtModeIncDirWhenArm
off, on

Data Mode Archiving:
Increment directory
when trigger armed
check box

Write log files to
incremental directories
each time the trigger is
armed.

ExtModeLogAll
off, on

External Signal &
Triggering: Select all
check box

Upload all available
signals from the target to
the host.

ExtModeLogCtrlPanelDlg
string

Not available Return a handle to the
External Mode Control
Panel dialog box or –1 if
the dialog box does not
exist.

6-44

Using External Mode Programmatically

External Mode Command-Line Parameters (Continued)

Parameter and Values Dialog Box Equivalent Description

ExtModeParamChangesPending
off, on

Not available When the Real-Time
Workshop software is
connected to the target
and ExtModeBatchMode is
enabled, indicates whether
any parameters remain in
the queue of parameters
to be downloaded to the
target. More efficient than
ExtModeChangesPending
because it checks for a
connection to the target.

ExtModeSkipDownloadWhenConnect
off, on

Not available Connect to the target
program without
downloading parameters.

ExtModeTrigDelay
integer (0)

External Signal &
Triggering: Delay text
box

Specify the amount of time
that elapses between a
trigger occurrence and the
start of data collection.

ExtModeTrigDirection
string - rising, falling, either

External Signal &
Triggering: Direction
menu

Specify the direction in
which the signal must be
traveling when it crosses
the threshold value.

ExtModeTrigDuration
integer (1000)

External Signal &
Triggering: Direction
menu

Specify the number of
base rate steps for which
external mode is to log
data after a trigger event.

ExtModeTrigDurationFloating
string - integer (auto)

Control Panel: Duration
text box

Specify the duration for
floating scopes. If auto
is specified, the value of
ExtModeTrigDuration is
used.

6-45

6 External Mode

External Mode Command-Line Parameters (Continued)

Parameter and Values Dialog Box Equivalent Description

ExtModeTrigElement
string - integer, any, last

External Signal &
Triggering: Element
text field

Specify the elements of the
input port of the specified
trigger block that can
cause the trigger to fire.

ExtModeTrigHoldOff
integer (0)

External Signal &
Triggering: Hold-off
text field

Specify the base rate steps
between when a trigger
event terminates and the
trigger is rearmed.

ExtModeTrigLevel
integer (0)

External Signal &
Triggering: Level text
field

Specify the threshold value
the trigger signal must
cross to fire the trigger.

ExtModeTrigMode
string - normal, oneshot

External Signal &
Triggering: Mode menu

Specify whether the trigger
is to rearm automatically
after each trigger event or
whether only one buffer of
data is to be collected each
time the trigger is armed.

ExtModeTrigPort
string - integer (1), last

External Signal &
Triggering: Port text
field

Specify the input port of
the specified trigger block
for which elements can
cause the trigger to fire.

ExtModeTrigType
string - manual, signal

External Signal &
Triggering: Source text
field

Specify whether to start
logging data when the
trigger is armed or when
a specified trigger signal
satisfies trigger conditions.

6-46

Using External Mode Programmatically

External Mode Command-Line Parameters (Continued)

Parameter and Values Dialog Box Equivalent Description

ExtModeUploadStatus
string - inactive, armed,
uploading

Not available Return the status of the
external mode upload
mechanism — inactive,
armed, or uploading.

ExtModeWriteAllDataToWs
off, on

Data Mode Archiving:
Write intermediate
results to workspace
check box

Write all intermediate
results to the workspace.

6-47

6 External Mode

External Mode Limitations

In this section...

“Limitations on Changing Parameters” on page 6-48
“Limitation on Mixing 32-bit and 64-bit Architectures” on page 6-49
“Limitations on Uploading Data” on page 6-49

Limitations on Changing Parameters
In general, you cannot change a parameter if doing so results in a change in
the structure of the model. For example, you cannot change

• The number of states, inputs, or outputs of any block

• The sample time or the number of sample times

• The integration algorithm for continuous systems

• The name of the model or of any block

• The parameters to the Fcn block

If you cause any of these changes to the block diagram, then you must rebuild
the program with newly generated code.

However, you can change parameters in transfer function and state space
representation blocks in specific ways:

• The parameters (numerator and denominator polynomials) for the Transfer
Fcn (continuous and discrete) and Discrete Filter blocks can be changed (as
long as the number of states does not change).

• Zero entries in the State-Space and Zero Pole (both continuous and discrete)
blocks in the user-specified or computed parameters (that is, the A, B,
C, and D matrices obtained by a zero-pole to state-space transformation)
cannot be changed once external simulation is started.

• In the State-Space block, if you specify the matrices in the controllable
canonical realization, then all changes to the A, B, C, D matrices that
preserve this realization and the dimensions of the matrices are allowed.

6-48

External Mode Limitations

Note Opening a dialog box for a source block causes Simulink to pause.
While Simulink is paused, you can edit the parameter values. You must
close the dialog box to have the changes take effect and allow Simulink
to continue.

If the Simulink block diagram does not match the external program, the
Simulink engine displays an error informing you that the checksums do not
match (that is, the model has changed since you generated code). This means
that you must rebuild the program from the new block diagram (or reload
the correct one) to use external mode.

If the external program is not running, the Simulink engine displays an error
informing you that it cannot connect to the external program.

Limitation on Mixing 32-bit and 64-bit Architectures
When you use external mode, the machine running the Simulink product
and the machine running the target executable must have matching bit
architectures, either 32-bit or 64-bit. This is because the Real-Time Workshop
software varies a model’s checksum based on whether it is configured for
a 32-bit or 64-bit platform.

If you attempt to connect from a 32-bit machine to a 64-bit machine or vice
versa, the external mode connection fails.

Limitations on Uploading Data
External mode does not support uploading data values for fixed-point or
enumerated types into workspace parameters.

6-49

6 External Mode

6-50

7

Program Architecture

The Real-Time Workshop software generates two styles of code, depending
whether a target is embedded or not. In addition, the structure of code is
affected by whether a multitasking environment is available for execution,
and on what system and applications modules must be incorporated.

• “Introduction” on page 7-2

• “Model Execution” on page 7-4

• “Rapid Prototyping Program Framework” on page 7-24

• “Embedded Program Framework” on page 7-37

For a detailed discussion of the structure of embedded real-time code, see the
Real-Time Workshop Embedded Coder documentation.

7 Program Architecture

Introduction
The Real-Time Workshop software generates two styles of code. One
code style is suitable for rapid prototyping (and simulation by using code
generation). The other style is suitable for embedded applications. This
chapter discusses the program architecture, that is, the structure of code
generated by the Real-Time Workshop code generator, associated with these
two styles of code. The next table classifies the targets shipped with the
product. For related details about code style and target characteristics, see
“Choosing a Code Format for Your Application” on page 3-10.

Code Styles Listed by Target

Target Code Style (Using C or C++ Unless Noted)

Real-Time Workshop
Embedded Coder
embedded real-time
(ERT) target

Embedded — Useful as a starting point when
using generated C/C++ code in an embedded
application (often referred to as a production code
target).

Real-Time Workshop
Generic real-time
(GRT) target

Rapid prototyping — Use as a starting point for
creating a rapid prototyping target that does not
use real-time operating system tasking primitives,
and for verifying the generated code on your
workstation. Uses components of ERT, with a
different calling interface.

Real-time malloc
target

Rapid prototyping — Similar to the generic
real-time (GRT) target except that this target
allocates all model working memory dynamically
rather than statically declaring it in advance.

Rapid simulation
target (RSim)

Rapid prototyping — Non-real-time simulation
of your model on your workstation. Useful as a
high-speed or batch simulation tool.

S-function target Rapid prototyping — Creates a C MEX S-function
for simulation of your model within another
Simulink model; useful for intellectual property
protection.

7-2

Introduction

Code Styles Listed by Target (Continued)

Target Code Style (Using C or C++ Unless Noted)

Tornado (VxWorks)
real-time target21

Rapid prototyping — Runs model in real time
using the VxWorks real-time operating system
tasking primitives. Also useful as a starting point
for targeting a real-time operating system.

Real-Time Windows
Target

Rapid prototyping — Runs model in real time
at interrupt level while your PC is running
a Microsoft Windows environment in the
background.

xPC Target Rapid prototyping — Runs model in real time on
target PC running the xPC Target kernel.

Third-party vendors supply additional targets for the Real-Time Workshop
product. Generally, these can be classified as rapid prototyping targets. For
more information about third-party products, see The MathWorks Connections
Program Web page: http://www.mathworks.com/products/connections.

This chapter is divided into three sections. The first section discusses model
execution, the second section discusses the rapid prototyping style of code,
and the third section discusses the embedded style of code.

21. Tornado® and VxWorks® are registered trademarks of Wind River® Systems, Inc.

7-3

http://www.mathworks.com/products/connections

7 Program Architecture

Model Execution

In this section...

“Introduction” on page 7-4
“Models for Non-Real-Time Single-Tasking Systems” on page 7-6
“Models for Non-Real-Time Multitasking Systems” on page 7-7
“Models for Real-Time Single-Tasking Systems” on page 7-8
“Models for Real-Time Multitasking Systems” on page 7-9
“Models for Multitasking Systems that Use Real-Time Tasking Primitives”
on page 7-12
“Program Timing” on page 7-13
“Program Execution” on page 7-14
“External Mode Communication” on page 7-15
“Data Logging in Single-Tasking and Multitasking Model Execution” on
page 7-15
“Rapid Prototyping and Embedded Model Execution Differences” on page
7-16
“Rapid Prototyping Model Functions” on page 7-17
“Embedded Model Functions” on page 7-23

Introduction
Before looking at the two styles of generated code, you need to have a
high-level understanding of how the generated model code is executed. The
Real-Time Workshop software generates algorithmic code as defined by your
model. You can include your own code in your model by using S-functions.
S-functions can range from high-level signal manipulation algorithms to
low-level device drivers.

The Real-Time Workshop product also provides a run-time interface that
executes the generated model code. The run-time interface and model code
are compiled together to create the model executable. The next figure shows a
high-level object-oriented view of the executable.

7-4

Model Execution

!�
�����
�
��
�������	����

,����������	������

#$���	����
��(���������
�����
�D
�"���	��
����	�����	����������	����D
�K��
�"��
��	����	����D
���(�����
�
�	����

��
����	����*

The Object-Oriented View of a Real-Time Program

In general, the conceptual design of the model execution driver does not
change between the rapid prototyping and embedded style of generated
code. The following sections describe model execution for single-tasking and
multitasking environments both for simulation (non-real-time) and for real
time. For most models, the multitasking environment will provide the most
efficient model execution (that is, fastest sample rate).

The following concepts are useful in describing how models execute. Function
names used in ERT and GRT targets are shown, followed by the comparable
GRT-compatible calls in parentheses.

• Initialization: model_initialize (MdlInitializeSizes,
MdlInitializeSampleTimes, MdlStart) initializes the run-time interface
code and the model code.

• ModelOutputs: Calling all blocks in your model that have a sample hit
at the current time and having them produce their output. model_output
(MdlOutputs) can be done in major or minor time steps. In major time
steps, the output is a given simulation time step. In minor time steps, the
run-time interface integrates the derivatives to update the continuous
states.

• ModelUpdate: model_update (MdlUpdate) calls all blocks in your model
that have a sample hit at the current point in time and has them update
their discrete states or similar type objects.

• ModelDerivatives: Calling all blocks in your model that have continuous
states and having them update their derivatives. model_derivatives
is only called in minor time steps.

7-5

7 Program Architecture

• ModelTerminate: model_terminate (MdlTerminate) terminates the
program if it is designed to run for a finite time. It destroys the real-time
model data structure, deallocates memory, and can write data to a file.

The identifying names in the preceding list (ModelOutputs, and so on) identify
functions in pseudocode examples shown in the following sections.

• “Models for Non-Real-Time Single-Tasking Systems” on page 7-6

• “Models for Non-Real-Time Multitasking Systems” on page 7-7

• “Models for Real-Time Single-Tasking Systems” on page 7-8

• “Models for Real-Time Multitasking Systems” on page 7-9

• “Models for Multitasking Systems that Use Real-Time Tasking Primitives”
on page 7-12

For a complete set of correspondences between GRT and ERT function
identifiers, see the table Identifiers for Real-Time Model Data Structure
Variants on page 7-32.

Models for Non-Real-Time Single-Tasking Systems
The pseudocode below shows the execution of a model for a non-real-time
single-tasking system.

main()
{

Initialization
While (time < final time)

ModelOutputs -- Major time step.
LogTXY -- Log time, states and root outports.
ModelUpdate -- Major time step.
Integrate -- Integration in minor time step for

-- models with continuous states.
ModelDerivatives
Do 0 or more

ModelOutputs
ModelDerivatives

EndDo -- Number of iterations depends upon the solver
Integrate derivatives to update continuous states.

7-6

Model Execution

EndIntegrate
EndWhile
Termination

}

The initialization phase begins first. This consists of initializing model states
and setting up the execution engine. The model then executes, one step at a
time. First ModelOutputs executes at time t, then the workspace I/O data is
logged, and then ModelUpdate updates the discrete states. Next, if your model
has any continuous states, ModelDerivatives integrates the continuous
states’ derivatives to generate the states for time t t hnew = + , where h is the
step size. Time then moves forward to tnew and the process repeats.

During the ModelOutputs and ModelUpdate phases of model execution, only
blocks that reach the current point in time execute.

Models for Non-Real-Time Multitasking Systems
The pseudocode below shows the execution of a model for a non-real-time
multitasking system.

main()
{

Initialization
While (time < final time)

ModelOutputs(tid=0) -- Major time step.
LogTXY -- Log time, states, and root

-- outports.
ModelUpdate(tid=0) -- Major time step.
Integrate -- Integration in minor time step for

-- models with continuous states.
ModelDerivatives
Do 0 or more

ModelOutputs(tid=0)
ModelDerivatives

EndDo (Number of iterations depends upon the solver.)
Integrate derivatives to update continuous states.

EndIntegrate
For i=1:NumTids

7-7

7 Program Architecture

ModelOutputs(tid=i) -- Major time step.
ModelUpdate(tid=i) -- Major time step.

EndFor
EndWhile
Termination
}

Multitasking operation is more complex than single-tasking execution because
the output and update functions are subdivided by the task identifier (tid)
that is passed into these functions. This allows for multiple invocations of
these functions with different task identifiers using overlapped interrupts, or
for multiple tasks when using a real-time operating system. In simulation,
multiple tasks are emulated by executing the code in the order that would
occur if there were no preemption in a real-time system.

Multitasking execution assumes that all tasks are multiples of the base
rate. The Simulink product enforces this when you create a fixed-step
multitasking model. The multitasking execution loop is very similar to that
of single-tasking, except for the use of the task identifier (tid) argument
to ModelOutputs and ModelUpdate.

Models for Real-Time Single-Tasking Systems
The pseudocode below shows the execution of a model in a real-time
single-tasking system where the model is run at interrupt level.

rtOneStep()
{

Check for interrupt overflow
Enable "rtOneStep" interrupt
ModelOutputs -- Major time step.
LogTXY -- Log time, states and root outports.
ModelUpdate -- Major time step.
Integrate -- Integration in minor time step for models

-- with continuous states.
ModelDerivatives
Do 0 or more

ModelOutputs
ModelDerivatives

EndDo (Number of iterations depends upon the solver.)

7-8

Model Execution

Integrate derivatives to update continuous states.
EndIntegrate

}

main()
{

Initialization (including installation of rtOneStep as an
interrupt service routine, ISR, for a real-time clock).
While(time < final time)

Background task.
EndWhile
Mask interrupts (Disable rtOneStep from executing.)
Complete any background tasks.
Shutdown

}

Real-time single-tasking execution is very similar to non-real-time
single-tasking execution, except that instead of free-running the code, the
rt_OneStep function is driven by a periodic timer interrupt.

At the interval specified by the program’s base sample rate, the interrupt
service routine (ISR) preempts the background task to execute the model code.
The base sample rate is the fastest in the model. If the model has continuous
blocks, then the integration step size determines the base sample rate.

For example, if the model code is a controller operating at 100 Hz, then
every 0.01 seconds the background task is interrupted. During this
interrupt, the controller reads its inputs from the analog-to-digital converter
(ADC), calculates its outputs, writes these outputs to the digital-to-analog
converter (DAC), and updates its states. Program control then returns to the
background task. All these steps must occur before the next interrupt.

Models for Real-Time Multitasking Systems
The following pseudocode shows how a model executes in a real-time
multitasking system where the model is run at interrupt level.

rtOneStep()
{

Check for interrupt overflow

7-9

7 Program Architecture

Enable "rtOneStep" interrupt
ModelOutputs(tid=0) -- Major time step.
LogTXY -- Log time, states and root outports.
ModelUpdate(tid=0) -- Major time step.
Integrate -- Integration in minor time step for

-- models with continuous states.
ModelDerivatives
Do 0 or more

ModelOutputs(tid=0)
ModelDerivatives

EndDo (Number of iterations depends upon the solver.)
Integrate derivatives and update continuous states.

EndIntegrate
For i=1:NumTasks

If (hit in task i)
ModelOutputs(tid=i)
ModelUpdate(tid=i)

EndIf
EndFor

}

main()
{

Initialization (including installation of rtOneStep as an
interrupt service routine, ISR, for a real-time clock).

While(time < final time)
Background task.

EndWhile
Mask interrupts (Disable rtOneStep from executing.)
Complete any background tasks.
Shutdown

}

Running models at interrupt level in a real-time multitasking environment
is very similar to the previous single-tasking environment, except that
overlapped interrupts are employed for concurrent execution of the tasks.

The execution of a model in a single-tasking or multitasking environment
when using real-time operating system tasking primitives is very similar to

7-10

Model Execution

the interrupt-level examples discussed above. The pseudocode below is for a
single-tasking model using real-time tasking primitives.

tSingleRate()
{

MainLoop:
If clockSem already "given", then error out due to overflow.
Wait on clockSem
ModelOutputs -- Major time step.
LogTXY -- Log time, states and root

-- outports
ModelUpdate -- Major time step
Integrate -- Integration in minor time step

-- for models with continuous
-- states.

ModelDeriviatives
Do 0 or more

ModelOutputs
ModelDerivatives

EndDo (Number of iterations depends upon the solver.)
Integrate derivatives to update continuous states.

EndIntegrate
EndMainLoop

}

main()
{

Initialization
Start/spawn task "tSingleRate".
Start clock that does a "semGive" on a clockSem semaphore.
Wait on "model-running" semaphore.
Shutdown

}

In this single-tasking environment, the model executes as real-time operating
system tasking primitives. In this environment, create a single task
(tSingleRate) to run the model code. This task is invoked when a clock tick
occurs. The clock tick gives a clockSem (clock semaphore) to the model task
(tSingleRate). The model task waits for the semaphore before executing.
The clock ticks occur at the fundamental step size (base rate) for your model.

7-11

7 Program Architecture

Models for Multitasking Systems that Use Real-Time
Tasking Primitives
The pseudocode below is for a multitasking model using real-time tasking
primitives.

tSubRate(subTaskSem,i)
{

Loop:
Wait on semaphore subTaskSem.
ModelOutputs(tid=i)
ModelUpdate(tid=i)

EndLoop
}
tBaseRate()
{

MainLoop:
If clockSem already "given", then error out due to overflow.
Wait on clockSem
For i=1:NumTasks

If (hit in task i)
If task i is currently executing, then error out due to

overflow.
Do a "semGive" on subTaskSem for task i.

EndIf
EndFor
ModelOutputs(tid=0) -- major time step.
LogTXY -- Log time, states and root outports.
ModelUpdate(tid=0) -- major time step.
Loop: -- Integration in minor time step for

-- models with continuous states.
ModelDeriviatives
Do 0 or more

ModelOutputs(tid=0)
ModelDerivatives

EndDo (number of iterations depends upon the solver).
Integrate derivatives to update continuous states.

EndLoop
EndMainLoop

}
main()

7-12

Model Execution

{
Initialization
Start/spawn task "tSubRate".
Start/spawn task "tBaseRate".

Start clock that does a "semGive" on a clockSem semaphore.
Wait on "model-running" semaphore.
Shutdown

}

In this multitasking environment, the model is executed using real-time
operating system tasking primitives. Such environments require several
model tasks (tBaseRate and several tSubRate tasks) to run the model code.
The base rate task (tBaseRate) has a higher priority than the subrate tasks.
The subrate task for tid=1 has a higher priority than the subrate task for
tid=2, and so on. The base rate task is invoked when a clock tick occurs. The
clock tick gives a clockSem to tBaseRate. The first thing tBaseRate does is
give semaphores to the subtasks that have a hit at the current point in time.
Because the base rate task has a higher priority, it continues to execute. Next
it executes the fastest task (tid=0), consisting of blocks in your model that
have the fastest sample time. After this execution, it resumes waiting for the
clock semaphore. The clock ticks are configured to occur at the fundamental
step size for your model.

Program Timing
Real-time programs require careful timing of the task invocations (either
by using an interrupt or a real-time operating system tasking primitive)
to ensure that the model code executes to completion before another task
invocation occurs. This includes time to read and write data to and from
external hardware.

The next figure illustrates interrupt timing.

7-13

7 Program Architecture

�����	���$���	��	B����
�����
�

���"�����	��(������	����B��	�����	B�����
�����
���$���	���*

���"�����	��(�������""��"���	������	B�����
�����
���$���	���*

������(��������	��"�����������
����
�	����
�����	���$���	�
	B����
�����
�

	���

	���

Task Timing

The sample interval must be long enough to allow model code execution
between task invocations.

In the figure above, the time between two adjacent vertical arrows is the
sample interval. The empty boxes in the upper diagram show an example of a
program that can complete one step within the interval and still allow time
for the background task. The gray box in the lower diagram indicates what
happens if the sample interval is too short. Another task invocation occurs
before the task is complete. Such timing results in an execution error.

Note also that, if the real-time program is designed to run forever (that is, the
final time is 0 or infinite so the while loop never exits), then the shutdown
code never executes.

For more information on how the timing engine works, see Chapter 15,
“Timing Services”.

Program Execution
As the previous section indicates, a real-time program cannot require 100%
of the CPU’s time. This provides an opportunity to run background tasks
during the free time.

7-14

Model Execution

Background tasks include operations such as writing data to a buffer or file,
allowing access to program data by third-party data monitoring tools, or using
Simulink external mode to update program parameters.

It is important, however, that the program be able to preempt the background
task at the appropriate time to ensure real-time execution of the model code.

The way the program manages tasks depends on capabilities of the
environment in which it operates.

External Mode Communication
External mode allows communication between the Simulink block diagram
and the standalone program that is built from the generated code. In this
mode, the real-time program functions as an interprocess communication
server, responding to requests from the Simulink engine.

Data Logging in Single-Tasking and Multitasking
Model Execution
The Real-Time Workshop data-logging features, described in “Configuring
a Model for Data Logging” on page 2-29, enable you to save system states,
outputs, and time to a MAT-file at the completion of the model execution.
The LogTXY function, which performs data logging, operates differently in
single-tasking and multitasking environments.

If you examine how LogTXY is called in the single-tasking and multitasking
environments, you will notice that for single-tasking LogTXY is called
after ModelOutputs. During this ModelOutputs call, all blocks that have
a hit at time t execute, whereas in multitasking, LogTXY is called after
ModelOutputs(tid=0), which executes only the blocks that have a hit at time
t and that have a task identifier of 0. This results in differences in the logged
values between single-tasking and multitasking logging. Specifically, consider
a model with two sample times, the faster sample time having a period of 1.0
second and the slower sample time having a period of 10.0 seconds. At time
t = k*10, k=0,1,2... both the fast (tid=0) and slow (tid=1) blocks execute.
When executing in multitasking mode, when LogTXY is called, the slow
blocks execute, but the previous value is logged, whereas in single-tasking
the current value is logged.

7-15

7 Program Architecture

Another difference occurs when logging data in an enabled subsystem.
Consider an enabled subsystem that has a slow signal driving the enable port
and fast blocks within the enabled subsystem. In this case, the evaluation of
the enable signal occurs in a slow task, and the fast blocks see a delay of one
sample period; thus the logged values will show these differences.

To summarize differences in logged data between single-tasking and
multitasking, differences will be seen when

• Any root outport block has a sample time that is slower than the fastest
sample time

• Any block with states has a sample time that is slower than the fastest
sample time

• Any block in an enabled subsystem where the signal driving the enable
port is slower than the rate of the blocks in the enabled subsystem

For the first two cases, even though the logged values are different between
single-tasking and multitasking, the model results are not different. The only
real difference is where (at what point in time) the logging is done. The third
(enabled subsystem) case results in a delay that can be seen in a real-time
environment.

Rapid Prototyping and Embedded Model Execution
Differences
The rapid prototyping program framework provides a common application
programming interface (API) that does not change between model definitions.

The Real-Time Workshop Embedded Coder product provides a different
framework called the embedded program framework. The embedded program
framework provides an optimized API that is tailored to your model. When
you use the embedded style of generated code, you are modeling how you
would like your code to execute in your embedded system. Therefore, the
definitions defined in your model should be specific to your embedded targets.
Items such as the model name, parameter, and signal storage class are
included as part of the API for the embedded style of code.

One major difference between the rapid prototyping and embedded style of
generated code is that the latter contains fewer entry-point functions. The

7-16

Model Execution

embedded style of code can be configured to have only one run-time function,
model_step.

Thus, when you look again at the model execution pseudocode presented
earlier in this chapter, you can eliminate the Loop...EndLoop statements,
and group ModelOutputs, LogTXY, and ModelUpdate into a single statement,
model_step.

For a detailed discussion of how generated embedded code executes, see the
Real-Time Workshop Embedded Coder documentation.

Rapid Prototyping Model Functions
The rapid prototyping code defines the following functions that interface with
the run-time interface:

• Model(): The model registration function. This function initializes the
work areas (for example, allocating and setting pointers to various data
structures) needed by the model. The model registration function calls the
MdlInitializeSizes and MdlInitializeSampleTimes functions. These
two functions are very similar to the S-function mdlInitializeSizes and
mdlInitializeSampleTimes methods.

• MdlStart(void): After the model registration functions
MdlInitializeSizes and MdlInitializeSampleTimes execute, the
run-time interface starts execution by calling MdlStart. This routine is
called once at startup.

The function MdlStart has four basic sections:

- Code to initialize the states for each block in the root model that has
states. A subroutine call is made to the “initialize states” routines of
conditionally executed subsystems.

- Code generated by the one-time initialization (start) function for each
block in the model.

- Code to enable the blocks in the root model that have enable methods,
and the blocks inside triggered or function-call subsystems residing in
the root model. Simulink blocks can have enable and disable methods.
An enable method is called just before a block starts executing, and the
disable method is called just after the block stops executing.

7-17

7 Program Architecture

- Code for each block in the model that has a constant sample time.

• MdlOutputs(int_T tid): MdlOutputs updates the output of blocks at
appropriate times. The tid (task identifier) parameter identifies the task
that in turn maps when to execute blocks based upon their sample time.
This routine is invoked by the run-time interface during major and minor
time steps. The major time steps are when the run-time interface is taking
an actual time step (that is, it is time to execute a specific task). If your
model contains continuous states, the minor time steps will be taken. The
minor time steps are when the solver is generating integration stages,
which are points between major outputs. These integration stages are used
to compute the derivatives used in advancing the continuous states. The
solver is called to updates

• MdlUpdate(int_T tid): MdlUpdate updates the states and work vector
state information (that is, states that are neither continuous nor discrete)
saved in work vectors. The tid (task identifier) parameter identifies the
task that in turn indicates which sample times are active, allowing you to
conditionally update only states of active blocks. This routine is invoked by
the run-time interface after the major MdlOutputs has been executed. The
solver is also called, and model_Derivatives is called in minor steps by
the solver during its integration stages. All blocks that have continuous
states have an identical number of derivatives. These blocks are required
to compute the derivatives so that the solvers can integrate the states.

• MdlTerminate(void): MdlTerminate contains any block shutdown code.
MdlTerminate is called by the run-time interface, as part of the termination
of the real-time program.

The contents of the above functions are directly related to the blocks in your
model. A Simulink block can be generalized to the following set of equations.

y f t x x uc d= 0(, , ,)

Output y is a function of continuous state xc, discrete state xd, and input u.
Each block writes its specific equation in the appropriate section of MdlOutput.

x f t x ud u d+ =1 (, ,)

The discrete states xd are a function of the current state and input. Each block
that has a discrete state updates its state in MdlUpdate.

7-18

Model Execution

�x f t x ud c= (, ,)

The derivatives x are a function of the current input. Each block that has
continuous states provides its derivatives to the solver (for example, ode5) in
model_Derivatives. The derivatives are used by the solver to integrate the
continuous state to produce the next value.

The output, y, is generally written to the block I/O structure. Root-level
Outport blocks write to the external outputs structure. The continuous and
discrete states are stored in the states structure. The input, u, can originate
from another block’s output, which is located in the block I/O structure, an
external input (located in the external inputs structure), or a state. These
structures are defined in the model.h file that the Real-Time Workshop
software generates.

The next example shows the general contents of the rapid prototyping style of
C code written to the model.c file.

7-19

7 Program Architecture

The next figure shows a flow chart describing the execution of the rapid
prototyping generated code.

7-20

Model Execution

#
$�
��
	��
��
:�
�"

��	�
��	������ !�����������	�"�

#�

�����)����(�	�(��

�	��	�#$���	���

!
��	��	

!
���	"�	

!
�<"
�	�

!
���	"�	

�����)����(�	�(��

!
��������	�

Rapid Prototyping Execution Flow Chart

Each block places code in specific Mdl routines according to the algorithm that
it is implementing. Blocks have input, output, parameters, and states, as well
as other general items. For example, in general, block inputs and outputs are
written to a block I/O structure (model_B). Block inputs can also come from
the external input structure (model_U) or the state structure when connected
to a state port of an integrator (model_X), or ground (rtGround) if unconnected
or grounded. Block outputs can also go to the external output structure
(model_Y). The next figure shows the general mapping between these items.

7-21

7 Program Architecture

 ����

#$	�����
��"�	�
�	���	
��
��)<

�	�����

 ������K�
�	���	
��
��)

#$	�����
��	"�	�
�	���	
��
��)'

�	�	��
�	���	
��
��)I

+�����	��
�	���	
��
��)+

3���
�	���	�
�	,3���D
�	�3���D
�	+3���D

Data View of the Generated Code

The following list defines the structures shown in the preceding figure:

• Block I/O structure (model_B): This structure consists of persistent block
output signals. The number of block output signals is the sum of the widths
of the data output ports of all nonvirtual blocks in your model. If you
activate block I/O optimizations, the Simulink and Real-Time Workshop
products reduce the size of the model_B structure by

- Reusing the entries in the model_B structure

- Making other entries local variables

See “Signal Storage, Optimization, and Interfacing” on page 5-31 for more
information on these optimizations.

Structure field names are determined either by the block’s output signal
name (when present) or by the block name and port number when the
output signal is left unlabeled.

• Block states structures: The continuous states structure (model_X) contains
the continuous state information for any blocks in your model that have
continuous states. Discrete states are stored in a data structure called
the DWork vector (model_DWork).

• Block parameters structure (model_P): The parameters structure contains
all block parameters that can be changed during execution (for example,
the parameter of a Gain block).

7-22

Model Execution

• External inputs structure (model_U): The external inputs structure consists
of all root-level Inport block signals. Field names are determined by either
the block’s output signal name, when present, or by the Inport block’s name
when the output signal is left unlabeled.

• External outputs structure (model_Y): The external outputs structure
consists of all root-level Outport blocks. Field names are determined by the
root-level Outport block names in your model.

• Real work, integer work, and pointer work structures (model_RWork,
model_IWork, model_PWork): Blocks might have a need for real, integer,
or pointer work areas. For example, the Memory block uses a real work
element for each signal. These areas are used to save internal states or
similar information.

Embedded Model Functions
The Real-Time Workshop Embedded Coder target generates the following
functions:

• model_initialize: Performs all model initialization and should be called
once before you start executing your model.

• If the Single output/update function code generation option is selected,
then you see

- model_step: Contains the output and update code for all blocks in your
model.

Otherwise, you see

- model_output: Contains the output code for all blocks in your model.

- model_update: Contains the update code for all blocks in your model.

• If the Terminate function required code generation option is selected,
then you see

- model_terminate: This contains all model shutdown code and should be
called as part of system shutdown.

See “Model Entry Points” in the Real-Time Workshop Embedded Coder
documentation for complete descriptions of these functions.

7-23

7 Program Architecture

Rapid Prototyping Program Framework

In this section...

“Introduction” on page 7-24
“Rapid Prototyping Program Architecture” on page 7-24
“Rapid Prototyping System-Dependent Components” on page 7-25
“Rapid Prototyping System-Independent Components” on page 7-27
“Rapid Prototyping Application Components” on page 7-30

Introduction
The code modules generated from a Simulink model—model.c (or .cpp),
model.h, and other files — implement the model’s system equations, contain
block parameters, and perform initialization.

The Real-Time Workshop program framework provides the additional source
code necessary to build the model code into a complete, standalone program.
The program framework consists of application modules (files containing
source code to implement required functions) designed for a number of
different programming environments.

The automatic program builder ensures that the program is created with
the proper modules once you have configured your template makefile. The
application modules and the code generated for a Simulink model are
implemented using a common API. This API defines a data structure (called a
real-time model, sometimes abbreviated as rtM) that encapsulates all data for
your model.

This API is similar to that of S-functions, with one major exception: the API
assumes that there is only one instance of the model, whereas S-functions can
have multiple instances. The function prototypes also differ from S-functions.

Rapid Prototyping Program Architecture
The structure of a real-time program consists of three components. Each
component has a dependency on a different part of the environment in which
the program executes. The next figure shows this structure.

7-24

Rapid Prototyping Program Framework

���������
�
�������	������	�����������
��
	

��	

7""����	�������"����	�

������	�
�8!�
��9���
�
!
���	"�	�D��	�*
,����	������
���
�	���	���	����
������
�������	����
!�
���"�����	���

&��������

������	����0��������*�

���	�����
�"��
��	����"����	� ��	�
��	�������(���0��
��*�L�
�5*�
!�
����$���	������B�
����0��)���*�

���	���
�"��
��	����"����	�

#$	��������
�����������	���!����"��
���
�����

��	����"	�B��
���

�K��
��(���
��	����

��

,����������	������

The Real-Time Workshop architecture consists of three parts, the first two
of which include system-dependent components and system-independent
components. Together these two parts form the run-time interface.

This architecture adapts readily to a wide variety of environments by isolating
the dependencies of each program component. The following sections discuss
each component in more detail and include descriptions of the application
modules that implement the functions carried out by the system-dependent
components, system-independent components, and application components.

Rapid Prototyping System-Dependent Components
These components contain the program’s main function, which controls
program timing, creates tasks, installs interrupt handlers, enables data
logging, and performs error checking.

7-25

7 Program Architecture

The way in which application modules implement these operations depends
on the type of computer. This means that, for example, the components used
for a PC-based program perform the same operations, but differ in method of
implementation from components designed to run on a VME target.

The main Function
The main function in a C/C++ program is the point where execution begins. In
Real-Time Workshop application programs, the main function must perform
certain operations. These operations can be grouped into three categories:
initialization, model execution, and program termination.

Initialization

• Initialize special numeric parameters rtInf, rtMinusInf, and rtNaN.
These are variables that the model code can use.

• Call the model registration function to get a pointer to the real-time model.
The model registration function has the same name as your model. It is
responsible for initializing real-time model fields and any S-functions in
your model.

• Initialize the model size information in the real-time model. This is done by
calling MdlInitializeSizes.

• Initialize a vector of sample times and offsets (for systems with multiple
sample rates). This is done by calling MdlInitializeSampleTimes.

• Get the model ready for execution by calling MdlStart, which initializes
states and similar items.

• Set up the timer to control execution of the model.

• Define background tasks and enable data logging, if selected.

Model Execution

• Execute a background task: for example, communicate with the host
during external mode simulation or introduce a wait state until the next
sample interval.

• Execute model (initiated by interrupt).

7-26

Rapid Prototyping Program Framework

• Log data to buffer (if data logging is used).

• Return from interrupt.

Program Termination

• Call a function to terminate the program if it is designed to run for a finite
time — destroy the real-time model data structure, deallocate memory,
and write data to a file.

Rapid Prototyping Application Modules for System-Dependent
Components
The application modules contained in the system-dependent components
generally include a main module such as rt_main.c, containing the main
entry point for C. There can also be additional application modules for such
things as I/O support and timer handling.

Rapid Prototyping System-Independent Components
These components are collectively called system independent because
all environments use the same application modules to implement these
operations. This section steps through the model code (and if the model has
continuous states, calls one of the numerical integration routines). This
section also includes the code that defines, creates, and destroys the real-time
model data structure (rtM). The model code and all S-functions included in
the program define their own SimStructs.

The model code execution driver calls the functions in the model code
to compute the model outputs, update the discrete states, integrate the
continuous states (if applicable), and update time. These functions then write
their calculated data to the real-time model.

Model Execution
At each sample interval, the main program passes control to the model
execution function, which executes one step though the model. This step
reads inputs from the external hardware, calculates the model outputs, writes
outputs to the external hardware, and then updates the states.

7-27

7 Program Architecture

The next figure shows these steps.

,��
����	�����"�	�
�����7K�

#$���	��!�
��

�������	�����	�����	"�	�

3��	�����	�����	"�	�
	���K7

�������	����
��"
�	�

�����	���	�	��

�������	����
��"
�	�
���	��������	�	��

��������	�	���

��	�
��	���
7�
���	B�

Executing the Model

This scheme writes the system outputs to the hardware before the states are
updated. Separating the state update from the output calculation minimizes
the time between the input and output operations.

Integration of Continuous States
The real-time program calculates the next values for the continuous states
based on the derivative vector, dx/dt, for the current values of the inputs
and the state vector.

7-28

Rapid Prototyping Program Framework

These derivatives are then used to calculate the next values of the states
using a state-update equation. This is the state-update equation for the
first-order Euler method (ode1)

x x
dx
dt

h= +

where h is the step size of the simulation, x represents the state vector, and
dx/dt is the vector of derivatives. Other algorithms can make several calls to
the output and derivative routines to produce more accurate estimates.

Note, however, that real-time programs use a fixed-step size because it is
necessary to guarantee the completion of all tasks within a given amount of
time. This means that, while you should use higher order integration methods
for models with widely varying dynamics, the higher order methods require
additional computation time. In turn, the additional computation time might
force you to use a larger step size, which can diminish the improvement of
accuracy initially sought from the higher order integration method.

Generally, the stiffer the equations, (that is, the more dynamics in the system
with widely varying time constants), the higher the order of the method that
you must use.

In practice, the simulation of very stiff equations is impractical for real-time
purposes except at very low sample rates. You should test fixed-step size
integration in the Simulink environment to check stability and accuracy
before implementing the model for use in real-time programs.

For linear systems, it is more practical to convert the model that you are
simulating to a discrete time version, for instance, using the c2d function in
the Control System Toolbox product.

Application Modules for System-Independent Components
The system-independent components include these modules:

• ode1.c, ode2.c, ode3.c, ode4.c, ode5.c: These modules implement the
integration algorithms supported for real-time applications. See “Choosing
a Solver” in the Simulink documentation for more information about
fixed-step solvers.

7-29

7 Program Architecture

• rt_sim.c: Performs the activities necessary for one time step of the model.
It calls the model function to calculate system outputs and then updates
the discrete and continuous states.

• simstruc_types.h: Contains definitions of various events, including
subsystem enable/disable and zero crossings. It also defines data-logging
variables.

The system-independent components also include code that defines, creates,
and destroys the real-time model data structure. All S-functions included in
the program define their own SimStructs.

The SimStruct data structure encapsulates all the data relating to an
S-function, including block parameters and outputs. See “The SimStruct”
in the Writing S-Functions documentation for more information about
SimStruct.

Rapid Prototyping Application Components
The application components contain the generated code for the Simulink
model, including the code for any S-functions in the model. This code is
referred to as the model code because these functions implement the Simulink
model.

However, the generated code contains more than just functions to execute
the model (as described in the previous section). There are also functions
to perform initialization, facilitate data access, and complete tasks before
program termination. To perform these operations, the generated code must
define functions that

• Create the real-time model

• Initialize model size information in the real-time model

• Initialize a vector of sample times and sample time offsets and store this
vector in the real-time model

• Store the values of the block initial conditions and program parameters in
the real-time model

• Compute the block and system outputs

• Update the discrete state vector

7-30

Rapid Prototyping Program Framework

• Compute derivatives for continuous models

• Perform an orderly termination at the end of the program (when the
current time equals the final time, if a final time is specified)

• Collect block and scope data for data logging (either with the Real-Time
Workshop product or third-party tools)

The Real-Time Model Data Structure
The real-time model data structure encapsulates model data and associated
information necessary to fully describe the model. Its contents include

• Model parameters, inputs, and outputs

• Storage areas, such as dWork

• Timing information

• Solver identification

• Data logging information

• Simstructs for all child S-functions

• External mode information

The required information is stored in fields in the real-time model structure,
which is defined in model.h as

/* Real-time Model Data Structure */
struct _rtModel_model_Tag {

const char *path;
const char *modelName;
struct SimStruct_tag * *childSfunctions;
const char *errorStatus;
SS_SimMode simMode;
RTWLogInfo *rtwLogInfo;
RTWExtModeInfo *extModeInfo;
RTWSolverInfo solverInfo;
RTWSolverInfo *solverInfoPtr;
void *sfcnInfo;

/*

7-31

7 Program Architecture

* ModelData:
* The following substructure contains information regarding
* the data used in the model.
*/
.
.

}

The (possibly mangled) name of the model replaces model in the above tag.
The individual substructures have been omitted, as they can vary.

For GRT targets, model.h also includes aliases to map global identifiers to
identifiers used in prior versions (rtB, rtP, rtY, and so on). The following
table lists the structure identifiers used in the generated code for these
variants of the real-time model data structure. The column GRT Symbol
contains the old-style (pre-Version 6) GRT identifiers, which are still used by
the GRT calling interface, but not within the generated code.

Identifiers for Real-Time Model Data Structure Variants

Identifier GRT Symbol Data

model_B rtB Block IO
model_U rtU External inputs
model_X rtX Continuous states
model_Xdot rtXdot State derivatives
model_Xdix rtXdis Continuous state

disabled
model_Y rtY External outputs
model_P rtP Parameters
rts rts Child Simstruct
model_DWork rtDWork DWork
model_ConstB rtC Constant block IO

define, structure

7-32

Rapid Prototyping Program Framework

Identifiers for Real-Time Model Data Structure Variants (Continued)

Identifier GRT Symbol Data

model_ConstP rtcP Constant parameter
Structure

model_PrevZCSigState rtPrevZCSigState Previous zero-crossing
signal states

model_NonsampledZC rtNonsampledZC Nonsampled
zero-crossings

Real-Time Workshop Embedded Coder users can tailor identifiers, and can
make them look like the GRT symbols listed above, should they desire such a
coding style. The above GRT-ERT identifier equivalences (or at least as many
of them as are required to build a given model) are established by using a set
of #define macros in model.h, under the comment /* Backward compatible
GRT Identifiers */.

The real-time model data structure is used for all targets. Prior to Version 5,
the ERT target used the rtObject data structure, and other targets used the
Simstruct data structure for encapsulating model data. Now all targets are
treated the same, except for the fact that the real-time model data structure is
pruned for ERT targets to save space in executables. Even when not pruned,
the real-time model data structure is more space efficient than the root
Simstruct used by earlier releases for non-ERT targets, as it only contains
fields for child (S-function) Simstructs that are actually used in a model.

Rapid Prototyping Model Code Functions
The functions defined by the model code are called at various stages of
program execution (that is, initialization, model execution, or program
termination).

The next figure shows the functions defined in the generated code and shows
what part of the program executes each function.

7-33

7 Program Architecture

!�
�����
�
 ���������������
����!�
���

 ��	����	
�
���

 �������������	�����
���

��
�����	������	�����	���
����	B��"��
���0�,��-��
�!
��

���"�	��
���(�	�(����������	���������
���0�������.���	
��	��

<"
�	��
�����	���	�	��(��	��0�,��/��
��

���"�	����������
����	�����	"�	�0�,��0������

�	��	���
���8���	����J�����
�	����D��	�*90�,��1�
��

���	����J�����"���	�������
������	�0�,��2!���
��3�1

���-�
��

���	����J�����J������	B���	!0�,��2!���
��3�1�3��

!�
�����
��	��	��������	���0������

The Model Registration Function
The model registration function has the same name as the Simulink model
from which it is generated. It is called directly by the main program during
initialization. Its purpose is to initialize and return a pointer to the real-time
model data structure.

Models Containing S-Functions
A noninlined S-function is any C or C++ MEX S-function that is not
implemented using a customized TLC file. If you create a C or C++ MEX
S-function as part of a Simulink model, it is by default noninlined unless
you write your own TLC file that inlines it within the body of the model.c
or model.cpp code. The Real-Time Workshop code generator automatically
incorporates your noninlined C or C++ S-functions into the program if they
adhere to the S-function API described in the Simulink documentation.

7-34

Rapid Prototyping Program Framework

This format defines functions and a SimStruct that are local to the S-function.
This allows you to have multiple instances of the S-function in the model. The
model’s real-time model data structure contains a pointer to each S-function’s
SimStruct.

Code Generation and S-Functions
If a model contains S-functions, the source code for the S-function must be on
the search path the make utility uses to find other source files. The directories
that are searched are specified in the template makefile that is used to build
the program.

S-functions are implemented in a way that is directly analogous to the
model code. They contain their own public registration functions (called
by the top-level model code) that initialize static function pointers in their
SimStructs. When the top-level model needs to execute the S-function, it
does so by using the function pointers in the S-function’s SimStruct. There
can be more than one S-function with the same name in your model. This is
accomplished by having function pointers to static functions.

Inlining S-Functions
You can incorporate C/C++ MEX S-functions, along with the generated code,
into the program executable. You can also write a target file for your C/C++
MEX S-function to inline the S-function, thus improving performance by
eliminating function calls to the S-function itself. For more information on
inlining S-functions, see the Target Language Compiler documentation.

Application Modules for Application Components
When the Real-Time Workshop software generates code, it produces the
following files:

• model.c or model.cpp: C or C++ code generated from the Simulink block
diagram. This code implements the block diagram’s system equations as
well as performing initialization and updating outputs.

• model_data.c or model_data.cpp: Optional file containing data for
parameters and constant block I/O, which are also declared as extern in
model.h. Only generated when model_P and model_ConstB structures
are populated.

7-35

7 Program Architecture

• model_types.h: Forward declarations for the real-time model data
structure and the parameters data structure.

• model.h: Header file containing the block diagram’s simulation
parameters, I/O structures, work structures, and other declarations.

• model_private.h: Header file containing declarations of exported signals
and parameters.

These files are named for the Simulink model from which they are generated.

In addition, a dummy include file always named rtmodel.h is generated,
which includes the above model-specific data structures and entry points.
This enables the (static) target-specific main programs to reference files
generated by the Real-Time Workshop code generator without needing to
know the names of the models involved.

Another dummy file, rtwtypes.h, is generated, which simply includes
simstruc_types.h (only for GRT and GRT-malloc targets).

If you have created custom blocks using C/C++ MEX S-functions, you need
the source code for these S-functions available during the build process.

7-36

Embedded Program Framework

Embedded Program Framework
The Real-Time Workshop Embedded Coder product provides a framework for
embedded programs. Its architecture is outlined in the next figure.

���������	

"�����	�
�

��
���
�
����
��
�
�	��	
�
�

��
�������
�������

��
���
����
��
�
�	��	
�
�

��#	��	������������
��
	

��	

!����+��
���
�����

��	����"	�B��
���

�K��
��(���
��	����

��

��	�
��	�������(���
!�
����$���	������B�
����

������	�
�8!�
��9���
�
��	"�	���
��	�"�����	����

������	����
!�
���"�����	���

Note the similarity between this architecture and the rapid prototyping
architecture in the figure “Rapid Prototyping Program Architecture” on page
7-24. The main difference is the use of the rtModel data structure in place of
the SimStruct data structure.

7-37

7 Program Architecture

Using the previous figure, you can compare the embedded style of generated
code, used in the Real-Time Workshop Embedded Coder product, with
the rapid prototyping style of generated code of the previous section. Most
of the rapid prototyping explanations in the previous section hold for the
Real-Time Workshop Embedded Coder target. The Real-Time Workshop
Embedded Coder target simplifies the process of using the generated code in
your custom-embedded applications by providing a model-specific API and
eliminating the SimStruct. This target contains the same conceptual layering
as the rapid prototyping target, but each layer has been simplified.

For a discussion of the structure of embedded real-time code, see the
Real-Time Workshop Embedded Coder documentation.

7-38

8

Models with Multiple
Sample Rates

The following sections explain and illustrate how the Simulink and Real-Time
Workshop products handle multirate (mixed-rate) models, depending
on whether code is being generated for single-tasking or multitasking
environments.

• “Introduction” on page 8-2

• “Single-Tasking and Multitasking Execution Modes” on page 8-3

• “Sample Rate Transitions” on page 8-13

• “Single-Tasking and Multitasking Execution of a Model: an Example” on
page 8-27

8 Models with Multiple Sample Rates

Introduction
Simulink models run at one or more sample times. The Simulink product
provides considerable flexibility in building multirate systems, that is,
systems with more than one sample time. However, this same flexibility
also allows you to construct models for which the code generator cannot
generate correct real-time code for execution in a multitasking environment.
To make multirate models operate correctly in real time (that is, to give
the right answers), you sometimes must modify your model or instruct the
Simulink engine to modify the model for you. In general, the modifications
involve placing Rate Transition blocks between blocks that have unequal
sample times. The following sections discuss issues you must address to
use a multirate model successfully in a multitasking environment. For a
comprehensive discussion of sample times, including rate transitions, see
“Working with Sample Times” in the Simulink User’s Guide.

8-2

Single-Tasking and Multitasking Execution Modes

Single-Tasking and Multitasking Execution Modes

In this section...

“Introduction” on page 8-3
“Executing Multitasking Models” on page 8-5
“Multitasking and Pseudomultitasking Modes” on page 8-6
“Building a Program for Multitasking Execution” on page 8-9
“Single-Tasking Mode” on page 8-9
“Building a Program for Single-Tasking Execution” on page 8-10
“Model Execution and Rate Transitions” on page 8-10
“Simulating Models with the Simulink Product” on page 8-11
“Executing Models in Real Time” on page 8-11
“Single-Tasking Versus Multitasking Operation” on page 8-12

Introduction
There are two execution modes for a fixed-step Simulink model: single-tasking
and multitasking. These modes are available only for fixed-step solvers. To
select an execution mode, use the Tasking mode for periodic sample
times menu on the Solver pane of the Configuration Parameters dialog
box. Auto mode (the default) applies multitasking execution for a multirate
model, and otherwise selects single-tasking execution. You can also select
SingleTasking or MultiTasking execution explicitly.

Execution of models in a real-time system can be done with the aid of a
real-time operating system, or it can be done on a bare-board target, where
the model runs in the context of an interrupt service routine (ISR).

The fact that a system (such as The Open Group UNIX or Microsoft Windows
systems) is multitasking does not guarantee that your program can execute in
real time. This is because it is not guaranteed that the program can preempt
other processes when required.

In operating systems (such as PC-DOS) where only one process can exist at
any given time, an interrupt service routine (ISR) must perform the steps of

8-3

8 Models with Multiple Sample Rates

saving the processor context, executing the model code, collecting data, and
restoring the processor context.

Other operating systems, such as POSIX-compliant ones, provide automatic
context switching and task scheduling. This simplifies the operations
performed by the ISR. In this case, the ISR simply enables the model execution
task, which is normally blocked. The next figure illustrates this difference.

,��������������

;��
C���

��	����"	

;��
C���

��	����"	

,��������������

+��
�����$���	��������
��������	���
�"���	��
����	���"����	�(�*�����	B�
�����
����
�	���������$��"��*

+��
�����$���	��������
���
��	����"	����(�������	���
8��������
D�C�	B���������	���
�"���	��
����	��9*�����	B�
4���	��
�	���������$��"��*

��	����"	����(���
,��	���

#$���	��!�
��

,��	�������	�$	

��(�����	�$	

������	���	�

��	����"	����(���
,��	���

��
5�	�

���	�$	
�C�	�B

!�
���#$���	���
����

#$���	��!�
��

������	���	�

��
-
��

8-4

Single-Tasking and Multitasking Execution Modes

This chapter focuses on when and how the run-time interface executes the
generated code for your model. See “Program Execution” on page 7-14 for a
description of what happens during model execution.

Executing Multitasking Models
In cases where the continuous part of a model executes at a rate that is
different from the discrete part, or a model has blocks with different sample
rates, the Simulink engine assigns each block a task identifier (tid) to
associate the block with the task that executes at the block’s sample rate.

You set sample rates and their constraints on the Solver pane of the
Configuration Parameters dialog box. To generate code with the Real-Time
Workshop software, you must select Fixed-step for the solver type. Certain
restrictions apply to the sample rates that you can use:

• The sample rate of any block must be an integer multiple of the base (that
is, the fastest) sample period.

• When Periodic sample time constraint is unconstrained, the base
sample period is determined by the Fixed step size specified on the
Solvers pane of the Configuration parameters dialog box.

• When Periodic sample time constraint is Specified, the base rate
fixed-step size is the first element of the sample time matrix that you
specify in the companion option Sample time properties. The Solver
pane from the demo model rtwdemo_mrmtbb shows an example.

8-5

8 Models with Multiple Sample Rates

• Continuous blocks always execute by using an integration algorithm that
runs at the base sample rate. The base sample period is the greatest
common denominator of all rates in the model only when Periodic sample
time constraint is set to Unconstrained and Fixed step size is Auto.

• The continuous and discrete parts of the model can execute at different
rates only if the discrete part is executed at the same or a slower rate than
the continuous part and is an integer multiple of the base sample rate.

Multitasking and Pseudomultitasking Modes
When periodic tasks execute in a multitasking mode, by default the blocks
with the fastest sample rates are executed by the task with the highest
priority, the next fastest blocks are executed by a task with the next higher
priority, and so on. Time available in between the processing of high-priority
tasks is used for processing lower priority tasks. This results in efficient
program execution.

8-6

Single-Tasking and Multitasking Execution Modes

Where tasks are asynchronous rather than periodic, there may not necessarily
be a relationship between sample rates and task priorities; the task with
the highest priority need not have the fastest sample rate. You specify
asynchronous task priorities using Async Interrupt and Task Synchronization
blocks. You can switch the sense of what priority numbers mean by selecting
or deselecting the Solver option Higher priority value indicates higher
task priority.

In multitasking environments (that is, under a real-time operating system),
you can define separate tasks and assign them priorities. In a bare-board
target (that is, no real-time operating system present), you cannot create
separate tasks. However, Real-Time Workshop application modules
implement what is effectively a multitasking execution scheme using
overlapped interrupts, accompanied by programmatic context switching.

This means an interrupt can occur while another interrupt is currently
in progress. When this happens, the current interrupt is preempted, the
floating-point unit (FPU) context is saved, and the higher priority interrupt
executes its higher priority (that is, faster sample rate) code. Once complete,
control is returned to the preempted ISR.

The next figures illustrate how timing of tasks in multirate systems
are handled by the Real-Time Workshop software in multitasking,
pseudomultitasking, and single-tasking environments.

8-7

8 Models with Multiple Sample Rates

;�
B��	�+�����	�

:�C��	�+�����	�

��		�
�������C�	B�
�C�C��
�"���	��

����C����
���	��	B����������������	���
	������C���"�����	��	���*

��		�
�������C�	B��"C��
�"���	��

����C����
���	��"����"	��������
B�
B���"�����	��	���*

H��	���������C����
���	�����"���	����B�	�*

�����
������������
���	��	�����$���	���*

;��B�
���������
���	��	����"����"	���
�����B�
B���"�����	��	���*

:�
B	�
������������
���	��	�����$���	���
���"��
��
*

��	��>

��	��=

��	���

	� 	� 	= 	> 	?

The next figure shows how overlapped interrupts are used to implement
pseudomultitasking. In this case, Interrupt 0 does not return until after
Interrupts 1, 2, and 3.

8-8

Single-Tasking and Multitasking Execution Modes

;�
B��	�+�����	�

:�C��	�+�����	�

	� 	� 	= 	> 	?

��	����"	��
 �
���

��	����"	�� ��	����"	�=
 �
���

��	����"	�>

��	����"	�>
#�
�

��	����"	�=
#�
�

��	����"	��
#�
�

��	����"	��
#�
�

Building a Program for Multitasking Execution
To use multitasking execution, select Auto (the default) or MultiTasking from
the Tasking mode for periodic sample times menu on the Solver pane
of the Configuration Parameters dialog box. This menu is active only if you
select Fixed-step as the solver type. Auto mode results in a multitasking
environment if your model has two or more different sample times. A model
with a continuous and a discrete sample time runs in single-tasking mode if
the fixed-step size is equal to the discrete sample time.

Single-Tasking Mode
You can execute model code in a strictly single-tasking manner. While this
mode is less efficient with regard to execution speed, in certain situations,
it can simplify your model.

8-9

8 Models with Multiple Sample Rates

In single-tasking mode, the base sample rate must define a time interval that
is long enough to allow the execution of all blocks within that interval.

The next figure illustrates the inefficiency inherent in single-tasking
execution.

	� 	� 	= 	> 	?

Single-tasking system execution requires a base sample rate that is long
enough to execute one step through the entire model.

Building a Program for Single-Tasking Execution
To use single-tasking execution, select SingleTasking from the Tasking
mode for periodic sample times menu on the Solver pane of the
Configuration Parameters dialog box. If you select Auto, single-tasking is
used in the following cases:

• If your model contains one sample time

• If your model contains a continuous and a discrete sample time and the
fixed step size is equal to the discrete sample time

Model Execution and Rate Transitions
To generate code that executes correctly in real time, you (or the Simulink
engine) might need to identify and properly handle sample rate transitions
within the model. In multitasking mode, by default the Simulink engine
flags errors during simulation if the model contains invalid rate transitions,
although you can use theMultitask rate transition diagnostic to alter this
behavior. A similar diagnostic, called Single task rate transition, exists for
single-tasking mode.

To avoid raising rate transition errors, insert Rate Transition blocks between
tasks. You can request that the Simulink engine handle rate transitions
automatically by inserting hidden Rate Transition blocks. See “Automatic
Rate Transition” on page 8-18 for an explanation of this option.

8-10

Single-Tasking and Multitasking Execution Modes

To understand such problems, first consider how Simulink simulations differ
from real-time programs.

Simulating Models with the Simulink Product
Before the Simulink engine simulates a model, it orders all the blocks
based upon their topological dependencies. This includes expanding virtual
subsystems into the individual blocks they contain and flattening the entire
model into a single list. Once this step is complete, each block is executed
in order.

The key to this process is the proper ordering of blocks. Any block whose
output is directly dependent on its input (that is, any block with direct
feedthrough) cannot execute until the block driving its input executes.

Some blocks set their outputs based on values acquired in a previous time
step or from initial conditions specified as a block parameter. The output of
such a block is determined by a value stored in memory, which can be updated
independently of its input. During simulation, all necessary computations
are performed prior to advancing the variable corresponding to time. In
essence, this results in all computations occurring instantaneously (that is, no
computational delay).

Executing Models in Real Time
A real-time program differs from a Simulink simulation in that the program
must execute the model code synchronously with real time. Every calculation
results in some computational delay. This means the sample intervals cannot
be shortened or lengthened (as they can be in a Simulink simulation), which
leads to less efficient execution.

Consider the following timing figure.

	� 	� 	=

����

8-11

8 Models with Multiple Sample Rates

Note the processing inefficiency in the sample interval t1. That interval
cannot be compressed to increase execution speed because, by definition,
sample times are clocked in real time.

You can circumvent this potential inefficiency by using the multitasking
mode. The multitasking mode defines tasks with different priorities to execute
parts of the model code that have different sample rates.

See “Multitasking and Pseudomultitasking Modes” on page 8-6 for a
description of how this works. It is important to understand that section
before proceeding here.

Single-Tasking Versus Multitasking Operation
Single-tasking programs require longer sample intervals, because all
computations must be executed within each clock period. This can result in
inefficient use of available CPU time, as shown in the previous figure.

Multitasking mode can improve the efficiency of your program if the model is
large and has many blocks executing at each rate.

However, if your model is dominated by a single rate, and only a few blocks
execute at a slower rate, multitasking can actually degrade performance. In
such a model, the overhead incurred in task switching can be greater than the
time required to execute the slower blocks. In this case, it is more efficient to
execute all blocks at the dominant rate.

If you have a model that can benefit from multitasking execution, you might
need to modify your Simulink model by adding Rate Transition blocks (or
instruct the Simulink engine to do so) to generate correct results. The next
section, “Sample Rate Transitions” on page 8-13, discusses issues related to
rate transition blocks.

8-12

Sample Rate Transitions

Sample Rate Transitions

In this section...

“Introduction” on page 8-13
“Data Transfer Problems” on page 8-15
“Data Transfer Assumptions” on page 8-16
“Rate Transition Block Options” on page 8-16
“Faster to Slower Transitions in a Simulink Model” on page 8-21
“Faster to Slower Transitions in Real Time” on page 8-21
“Slower to Faster Transitions in a Simulink Model” on page 8-23
“Slower to Faster Transitions in Real Time” on page 8-24

Introduction
Two periodic sample rate transitions can exist within a model:

• A faster block driving a slower block

• A slower block driving a faster block

The following sections concern models with periodic sample times with zero
offset only. Other considerations apply to multirate models that involve
asynchronous tasks. For details on how to generate code for asynchronous
multitasking, see Chapter 16, “Asynchronous Support”.

In single-tasking systems, there are no issues involving multiple sample
rates. In multitasking and pseudomultitasking systems, however, differing
sample rates can cause problems by causing blocks to be executed in the
wrong order. To prevent possible errors in calculated data, you must control
model execution at these transitions. When connecting faster and slower
blocks, you or the Simulink engine must add Rate Transition blocks between
them. Fast-to-slow transitions are illustrated in the next figure.

8-13

8 Models with Multiple Sample Rates

��4��� ��4�=�

��4���
+��	�����
0

����4���6����	�4�=� ��4�=�

���	��
 ����

���C��
 ����

,�	��������	������	��
 ����

���C��
 ����

�������

Slow-to-fast transitions are illustrated in the next figure.

��4�����4�=�

��4���
+��	�����
0

����4�=�6����	�4�����4�=�

���	��
 ����

���C��
 ����

,�	��������	��� ���	��
 ����

���C��
 ����

�������

Note Although the Rate Transition block offers a superset of the capabilities
of the Unit Delay block (for slow-to-fast transitions) and the Zero-Order Hold
block (for fast-to-slow transitions), you should use the Rate Transition block
instead of these blocks.

8-14

Sample Rate Transitions

Data Transfer Problems
Rate Transition blocks deal with issues of data integrity and determinism
associated with data transfer between blocks running at different rates.

• Data integrity: A problem of data integrity exists when the input to a block
changes during the execution of that block. Data integrity problems can be
caused by preemption.

Consider the following scenario:

- A faster block supplies the input to a slower block.

- The slower block reads an input value V1 from the faster block and
begins computations using that value.

- The computations are preempted by another execution of the faster
block, which computes a new output value V2.

- A data integrity problem now arises: when the slower block resumes
execution, it continues its computations, now using the “new” input
value V2.

Such a data transfer is called unprotected. “Faster to Slower Transitions in
Real Time” on page 8-21 shows an unprotected data transfer.

In a protected data transfer, the output V1 of the faster block is held until
the slower block finishes executing.

• Deterministic versus nondeterministic data transfer: In a deterministic
data transfer, the timing of the data transfer is completely predictable, as
determined by the sample rates of the blocks.

The timing of a nondeterministic data transfer depends on the availability
of data, the sample rates of the blocks, and the time at which the receiving
block begins to execute relative to the driving block.

You can use the Rate Transition block to ensure that data transfers in your
application are both protected and deterministic. These characteristics are
considered desirable in most applications. However, the Rate Transition
block supports flexible options that allow you to compromise data integrity
and determinism in favor of lower latency. The next section summarizes
these options.

8-15

8 Models with Multiple Sample Rates

Data Transfer Assumptions

When processing data transfers between tasks, the Real-Time Workshop
software assumes the following:

• Data transitions occur between a single reading task and a single writing
task.

• A read or write of a byte-sized variable is atomic.

• When two tasks interact through a data transition, only one of them can
preempt the other.

• For periodic tasks, the faster rate task has higher priority than the slower
rate task; the faster rate task always preempts the slower rate task.

• All tasks run on a single processor. Time slicing is not allowed.

• Processes do not crash or restart (especially while data is transferred
between tasks).

Rate Transition Block Options
Several parameters of the Rate Transition block are relevant to its use in code
generation for real-time execution, as discussed below. For a complete block
description, see Rate Transition in the Simulink documentation.

The Rate Transition block handles periodic (fast to slow and slow to fast) and
asynchronous transitions. When inserted between two blocks of differing
sample rates, the Rate Transition block automatically configures its input and
output sample rates for the appropriate type of transition; you do not need
to specify whether a transition is slow-to-fast or fast-to-slow (low-to-high or
high-to-low priorities for asynchronous tasks).

The critical decision you must make in configuring a Rate Transition block is
the choice of data transfer mechanism to be used between the two rates. Your
choice is dictated by considerations of safety, memory usage, and performance.
As the Rate Transition block parameter dialog box in the next figure shows,
the data transfer mechanism is controlled by two options.

8-16

Sample Rate Transitions

• Ensure data integrity during data transfer: When this option is
on, the integrity of data transferred between rates is guaranteed (the
data transfer is protected). When this option is off, data integrity is not
guaranteed (the data transfer is unprotected). By default, Ensure data
integrity during data transfer is on.

• Ensure deterministic data transfer (maximum delay): This option is
supported for periodic tasks with an offset of zero and fast and slow rates
that are multiples of each other. Enable this option for protected data
transfers (when Ensure data integrity during data transfer is on).
When this option is on, the Rate Transition block behaves like a Zero-Order
Hold block (for fast to slow transitions) or a Unit Delay block (for slow to
fast transitions). The Rate Transition block controls the timing of data
transfer in a completely predictable way. When this option is off, the data
transfer is nondeterministic. By default, Ensure deterministic data
transfer (maximum delay) is on for transitions between periodic rates
with an offset of zero; for asynchronous transitions, it cannot be selected.

8-17

8 Models with Multiple Sample Rates

Thus the Rate Transition block offers three modes of operation with respect to
data transfer. In order of safety, from safest to least safe, these are

• Protected/Deterministic (default): This is the safest mode. The
drawback of this mode is that it introduces deterministic latency into the
system for the case of slow-to-fast periodic rate transitions. For that case,
the latency introduced by the Rate Transition block is one sample period of
the slower task. For the case of fast-to-slow periodic rate transitions, the
Rate Transition block introduces no additional latency.

• Protected/NonDeterministic: In this mode, for slow-to-fast periodic rate
transitions, data integrity is protected by double-buffering data transferred
between rates. For fast-to-slow periodic rate transitions, a semaphore flag
is used. The blocks downstream from the Rate Transition block always use
the latest available data from the block that drives the Rate Transition
block. Maximum latency is less than or equal to one sample period of the
faster task.

The drawbacks of this mode are its nondeterministic timing. The advantage
of this mode is its low latency.

• Unprotected/NonDeterministic: This mode is the least safe, and is
not recommended for mission-critical applications. The latency of this
mode is the same as for Protected/NonDeterministic mode, but memory
requirements are reduced since neither double-buffering nor semaphores
are needed. That is, the Rate Transition block does nothing in this mode
other than to pass signals through; it simply exists to notify you that a
rate transition exists (and can cause generated code to compute incorrect
answers). Selecting this mode, however, generates the least amount of code.

Note In unprotected mode (Ensure data integrity during data
transfer option off), the Rate Transition block does nothing other than
allow the rate transition to exist in the model.

Automatic Rate Transition
The Simulink engine can detect mismatched rate transitions in a multitasking
model and automatically insert Rate Transition blocks to handle them. To
instruct the engine to do this, select Automatically handle rate transition

8-18

Sample Rate Transitions

for data transfer on the Solver pane of the Configuration Parameters
dialog box.

The Automatically handle rate transition for data transfer option is off
by default. When you select it,

• The Simulink engine handles all transitions between periodic sample times
and asynchronous tasks.

• The Simulink engine inserts “hidden” Rate Transition blocks that are not
visible on the block diagram.

• The Real-Time Workshop software generates code for the automatically
inserted Rate Transition blocks that is identical to that generated for
manually inserted Rate Transition blocks.

• Automatically inserted Rate Transition blocks operate in protected mode
for periodic tasks and asynchronous tasks, which you cannot alter. For
periodic tasks, automatically inserted Rate Transition blocks operate
with the level of determinism specified by the Solver pane parameter
Deterministic data transfer. (The default setting is Whenever
possible, which ensures determinism for data transfers between periodic
sample-times that are related by an integer multiple; for more information,
see “Deterministic data transfer” in the Simulink reference documentation.)
To use other modes, you must insert Rate Transition blocks and set their
modes manually.

For example, in the following model SineWave2 has a Sample time of 2, and
SineWave3 has a Sample time of 3.

8-19

8 Models with Multiple Sample Rates

If Automatically handle rate transition for data transfer is on, the
Simulink engine inserts an invisible Rate Transition block between each Sine
Wave block and the Product block. The inserted blocks have the parameter
values necessary to reconcile the Sine Wave block sample times.

Inserted Rate Transition Block HTML Report. When the Simulink engine
has automatically inserted Rate Transition blocks into a model, after code
generation the optional HTML code generation report includes a List of
inserted blocks that describes the blocks. For example, the following report
describes the two Rate Transition blocks that the engine automatically inserts
into the previous model.

Only automatically inserted Rate Transition blocks appear in a List of
inserted blocks. If no such blocks exist in a model, the HTML code
generation report does not include a List of inserted blocks.

Rate Transition Blocks and Continuous Time
The sample time at the output port of a Rate Transition block can only be
discrete or fixed in minor time step. This means that when a Rate Transition
block inherits continuous sample time from its destination block, it treats
the inherited sample time as Fixed in Minor Time Step. Therefore, the
output function of the Rate Transition block runs only at major time steps.
If the destination block sample time is continuous, Rate Transition block
output sample time is the base rate sample time (if solver is fixed-step), or
zero-order-hold-continuous sample time (if solver is variable-step).

8-20

Sample Rate Transitions

The next four sections describe cases in which Rate Transition blocks
are necessary for periodic sample rate transitions. The discussion and
timing diagrams in these sections are based on the assumption that the
Rate Transition block is used in its default (protected/deterministic) mode;
that is, the Ensure data integrity during data transfer and Ensure
deterministic data transfer (maximum delay) options are both on. These
are the settings used for automatically inserted Rate Transition blocks.

Faster to Slower Transitions in a Simulink Model
In a model where a faster block drives a slower block having direct
feedthrough, the outputs of the faster block are always computed first. In
simulation intervals where the slower block does not execute, the simulation
progresses more rapidly because there are fewer blocks to execute. The next
figure illustrates this situation.

��4�=���4���

���	��
 ����

���C��
 ���� ����

	�

��4���

	� 	= 	>

��4�=� ��4��� ��4��� ��4�=� ��4���

A Simulink simulation does not execute in real time, which means that it is
not bound by real-time constraints. The simulation waits for, or moves ahead
to, whatever tasks are necessary to complete simulation flow. The actual time
interval between sample time steps can vary.

Faster to Slower Transitions in Real Time
In models where a faster block drives a slower block, you must compensate
for the fact that execution of the slower block might span more than one
execution period of the faster block. This means that the outputs of the faster
block can change before the slower block has finished computing its outputs.
The next figure shows a situation in which this problem arises (T = sample
time). Note that lower priority tasks are preempted by higher priority tasks
before completion.

8-21

8 Models with Multiple Sample Rates

��4���

���	��
 ����

��4�=�

���C��
 ����

=����
����

�����
����

����

�

=

>

�B�����	���	����8�4��9����"��	��*

;�
B���"�����	��"����"	����������*

�B�����C���	����8�4=�9�����������
��	����"�	�
B�(���B��
�
*��B������
��	����"��
��	����������	�*

� �

= => >

�4=� �4=�

�4�� �4�� �4�� �4��

In the above figure, the faster block executes a second time before the slower
block has completed execution. This can cause unpredictable results because
the input data to the slow task is changing. Data integrity is not guaranteed
in this situation.

To avoid this situation, the Simulink engine must hold the outputs of the 1
second (faster) block until the 2 second (slower) block finishes executing. The
way to accomplish this is by inserting a Rate Transition block between the
1 second and 2 second blocks. This guarantees that the input to the slower
block does not change during its execution, ensuring data integrity.

����4�����	�4�=��4���� ��4�=��

���	��� ���� ,�	��������	��� ���C��� ����

It is assumed that the Rate Transition block is used in its default
(protected/deterministic) mode.

The Rate Transition block executes at the sample rate of the slower block, but
with the priority of the faster block.

8-22

Sample Rate Transitions

=����
����

�����
����

����

�4=� �4=�

�4�� ,� �4�� �4�� ,� �4��

	� 	=

	� 	� 	= 	>

Adding a Rate Transition block ensures that the Rate Transition block
executes before the 2 second block (its priority is higher) and that its output
value is held constant while the 2 second block executes (it executes at the
slower sample rate).

Slower to Faster Transitions in a Simulink Model
In a model where a slower block drives a faster block, the Simulink engine
again computes the output of the driving block first. During sample intervals
where only the faster block executes, the simulation progresses more rapidly.

The next figure shows the execution sequence.

��4�=� ��4���

���	��
 ����

���C��
 ���� ����

	�

��4���

	� 	= 	>

��4�=� ��4��� ��4�=� ��4��� ��4���

As you can see from the preceding figures, the Simulink engine can simulate
models with multiple sample rates in an efficient manner. However, a
Simulink simulation does not operate in real time.

8-23

8 Models with Multiple Sample Rates

Slower to Faster Transitions in Real Time
In models where a slower block drives a faster block, the generated code
assigns the faster block a higher priority than the slower block. This means
the faster block is executed before the slower block, which requires special
care to avoid incorrect results.

��4���

���	��
 ����

��4�=�

 ����

=����
����

�����
����

����

�

=

�B�����	����������$���	����������
�	����"����
	��	B�����"��	�������	B�����C��������*

�B�����	����������$���	����������	B�����C��������*

� � ==

�4=� �4=�

�4�� �4�� �4�� �4�� �4��

	� 	=

	� 	� 	= 	> 	?

This timing diagram illustrates two problems:

• Execution of the slower block is split over more than one faster block
interval. In this case the faster task executes a second time before the
slower task has completed execution. This means the inputs to the faster
task can have incorrect values some of the time.

• The faster block executes before the slower block (which is backward from
the way a Simulink simulation operates). In this case, the 1 second block
executes first; but the inputs to the faster task have not been computed.
This can cause unpredictable results.

To eliminate these problems, you must insert a Rate Transition block between
the slower and faster blocks.

8-24

Sample Rate Transitions

��4���

���	��
 ����

��4�=�

���C��
 ����

,�	��������	���

����4�= ���	�4��

It is assumed that the Rate Transition block is used in its default
(protected/deterministic) mode.

The next figure shows the timing sequence that results with the added Rate
Transition block.

=����
����

�����
����

����

�

>

=

�4=�

�4�� �4�� �4��

	� 	� 	= 	>

,�
�"
�	� �4=� ,�

�"
�	�

���

,�
��	"�	 �4�� ,�

��	"�	

Three key points about transitions in this diagram (refer to circled numbers):

1 The Rate Transition block output runs in the 1 second task, but at a slower
rate (2 seconds). The output of the Rate Transition block feeds the 1 second
task blocks.

2 The Rate Transition update uses the output of the 2 second task to update
its internal state.

8-25

8 Models with Multiple Sample Rates

3 The Rate Transition output in the 1 second task uses the state of the Rate
Transition that was updated in the 2 second task.

The first problem is alleviated because the Rate Transition block is updating
at a slower rate and at the priority of the slower block. The input to the Rate
Transition block (which is the output of the slower block) is read after the
slower block completes executing.

The second problem is alleviated because the Rate Transition block executes
at a slower rate and its output does not change during the computation of the
faster block it is driving. The output portion of a Rate Transition block is
executed at the sample rate of the slower block, but with the priority of the
faster block. Since the Rate Transition block drives the faster block and has
effectively the same priority, it is executed before the faster block.

Note This use of the Rate Transition block changes the model. The output
of the slower block is now delayed by one time step compared to the output
without a Rate Transition block.

8-26

Single-Tasking and Multitasking Execution of a Model: an Example

Single-Tasking and Multitasking Execution of a Model:
an Example

In this section...

“Introduction” on page 8-27
“Single-Tasking Execution” on page 8-28
“Multitasking Execution” on page 8-30

Introduction
This section examines how a simple multirate model executes in both real
time and simulation, using a fixed-step solver. It considers the operation of
both SingleTasking and MultiTasking Solver pane tasking modes.

The example model is shown in the next figure. The discussion refers to the
six blocks of the model as A through F, as labeled in the block diagram.

The execution order of the blocks (indicated in the upper right of each block)
has been forced into the order shown by assigning higher priorities to blocks F,
E, and D. The ordering shown is one possible valid execution ordering for this
model. (See “Simulating Dynamic Systems” in the Simulink documentation.)

The execution order is determined by data dependencies between blocks.
In a real-time system, the execution order determines the order in which
blocks execute within a given time interval or task. This discussion treats the
model’s execution order as a given, because it is concerned with the allocation
of block computations to tasks, and the scheduling of task execution.

8-27

8 Models with Multiple Sample Rates

Note The discussion and timing diagrams in this section are based on
the assumption that the Rate Transition blocks are used in the default
(protected/deterministic) mode, with the Ensure data integrity during
data transfer and Ensure deterministic data transfer (maximum
delay) options on.

Single-Tasking Execution
This section considers the execution of the above model when the solver
Tasking mode is SingleTasking.

In a single-tasking system, if the Block reduction option on the
Optimization pane is on, fast-to-slow Rate Transition blocks are optimized
out of the model. The default case is shown (Block reduction on), so block
B does not appear in the timing diagrams in this section. See “Reducing the
Number of Blocks in a Model” on page 9-30 for more information.

The following table shows, for each block in the model, the execution order,
sample time, and whether the block has an output or update computation.
Block A does not have discrete states, and accordingly does not have an
update computation.

Execution Order and Sample Times (Single-Tasking)

Blocks
(in Execution
Order)

Sample Time
(in Seconds) Output Update

F 0.1 Y Y
E 0.1 Y Y
D 1 Y Y
A 0.1 Y N
C 1 Y Y

8-28

Single-Tasking and Multitasking Execution of a Model: an Example

Real-Time Single-Tasking Execution
The next figure shows the scheduling of computations when the generated
code is deployed in a real-time system. The generated program is shown
running in real time, under control of interrupts from a 10 Hz timer.

*** ***

��	"�	0

<"
�	�0

����0 �*� �*� �*= �*�

��#�7 ��#�7

��#����

��#���7��

��#�����#�#
8C��	9 8C��	9

��#���7��

At time 0.0, 1.0, and every second thereafter, both the slow and fast blocks
execute their output computations; this is followed by update computations
for blocks that have states. Within a given time interval, output and update
computations are sequenced in block execution order.

The fast blocks execute on every tick, at intervals of 0.1 second. Output
computations are followed by update computations.

The system spends some portion of each time interval (labeled “wait”) idling.
During the intervals when only the fast blocks execute, a larger portion
of the interval is spent idling. This illustrates an inherent inefficiency of
single-tasking mode.

Simulated Single-Tasking Execution
The next figure shows the execution of the model during the Simulink
simulation loop.

8-29

8 Models with Multiple Sample Rates

��	"�	0

<"
�	�0

����0 �*� �*� �*= �*�

��#�7 ��#�7

��#����

��#���7��

��#�����#�#

��#���7��

Because time is simulated, the placement of ticks represents the iterations
of the simulation loop. Blocks execute in exactly the same order as in the
previous figure, but without the constraint of a real-time clock. Therefore
there is no idle time between simulated sample periods.

Multitasking Execution
This section considers the execution of the above model when the solver
Tasking mode is MultiTasking. Block computations are executed under
two tasks, prioritized by rate:

• The slower task, which gets the lower priority, is scheduled to run every
second. This is called the 1 second task.

• The faster task, which gets higher priority, is scheduled to run 10 times
per second. This is called the 0.1 second task. The 0.1 second task can
preempt the 1 second task.

The following table shows, for each block in the model, the execution order,
the task under which the block runs, and whether the block has an output
or update computation. Blocks A and B do not have discrete states, and
accordingly do not have an update computation.

8-30

Single-Tasking and Multitasking Execution of a Model: an Example

Task Allocation of Blocks in Multitasking Execution

Blocks
(in Execution
Order) Task Output Update

F 0.1 second task Y Y
E 0.1 second task Y Y
D The Rate Transition block uses

port-based sample times.
Output runs at the output port
sample time under 0.1 second
task.
Update runs at input port sample
time under 1 second task.
For more information on
port-based sample times, see
“Inheriting Sample Times” in the
Simulink documentation.

Y Y

A 0.1 second task Y N
B The Rate Transition block uses

port-based sample times.
Output runs at the output port
sample time under 0.1 second
task.
For more information on
port-based sample times, see
“Inheriting Sample Times” in the
Simulink documentation.

Y N

C 1 second task Y Y

Real-Time Multitasking Execution
The next figure shows the scheduling of computations in MultiTasking
solver mode when the generated code is deployed in a real-time system. The
generated program is shown running in real time, as two tasks under control
of interrupts from a 10 Hz timer.

8-31

8 Models with Multiple Sample Rates

��	"�	0

<"
�	�0

����0 �*� �*� �*= �*�

��#�7 ��#�7 ��#���7����#���7��

�#

��	"�	0

<"
�	�0

����0

���#��&�

�*���#��&�

�*�

�*� �*�

"����
"	���

"����
"	���

�# �# �#
8C��	9

��#�7

�� �

�6

Simulated Multitasking Execution
The next figure shows the Simulink execution of the same model, in
MultiTasking solver mode. In this case, the Simulink engine runs all blocks
in one thread of execution, simulating multitasking. No preemption occurs.

8-32

Single-Tasking and Multitasking Execution of a Model: an Example

��	"�	0

<"
�	�0

����0 �*� �*� �*= �*�

��#�7 ��#���7��#���7��

�#

��#�7

��	"�	0

<"
�	�0

����0

���#��&�
 :��-�

�*�

�*���#��&�
 :��-�

�*� �*�

�# � *** �#

��#�7

�� ��

� �

8-33

8 Models with Multiple Sample Rates

8-34

9

Optimizing a Model for
Code Generation

You can optimize memory usage and performance of code generated from
your model by the Real-Time Workshop product a number of ways. This
chapter discusses optimization techniques that are common to all target
configurations and code formats. For an overview of controlling optimization,
see “Configuring Optimizations” on page 2-32. For optimizations specific to a
particular target configuration, see the chapters relevant to that target.

• “Optimization Parameters Overview” on page 9-2

• “Optimizing Models” on page 9-5

• “Minimizing Computations and Storage for Intermediate Results” on page
9-9

• “Block Diagram Performance Tuning” on page 9-17

• “Optimizing Signals” on page 9-41

• “Inlining Parameters” on page 9-45

• “Configuring a Loop Unrolling Threshold” on page 9-47

• “Optimizing Code Generated for Vector Assignments” on page 9-49

• “Controlling Memory Allocation for Time Counters” on page 9-53

• “Optimizing Code Resulting from Floating-Point to Integer Conversions”
on page 9-54

• “Optimization Dependencies” on page 9-56

9 Optimizing a Model for Code Generation

Optimization Parameters Overview
Many options on the Optimization pane of the Configuration Parameters
dialog box affect generated code. The next figure shows the default
optimization settings, plus Inline parameters and Inline invariant
signals (which are both off by default).

Some basic optimization suggestions are given below, cross-referenced to
more extensive relevant discussions in the documentation.

• Selecting the Signal storage reuse check box directs the Real-Time
Workshop code generator to store signals in reusable memory locations.
It also enables the Enable local block outputs, Reuse block outputs,
Eliminate superfluous local variables (Expression folding), and
Minimize data copies between local and global variables options
(see below).

9-2

Optimization Parameters Overview

Disabling Signal storage reuse makes all block outputs global and
unique, which in many cases significantly increases RAM and ROM usage.
See “Reducing Memory Requirements for Signals” on page 9-41 for more
details.

• Selecting the Inline parameters check box reduces global RAM usage,
because parameters are not declared in the global parameters structure.
You can override the inlining of individual parameters by using the
Model Parameter Configuration dialog box. You tune parameters used in
referenced models differently, by declaring them as Model block parameter
arguments, rather than using the Model Parameter Configuration dialog
box. See “Inlining Parameters” on page 9-45 and “Using Model Arguments”
in the Simulink documentation for more details.

• Selecting the Enable local block outputs check box declares block signals
locally in functions instead of being declared globally (when possible). You
must select Signal storage reuse to enable Enable local block outputs.
See “Declaring Signals as Local Function Data” on page 9-42.

• Selecting the Reuse block outputs check box reduces stack size where
signals are buffered in local variables. You must select Signal storage
reuse to enable Reuse block outputs. See “Reusing Memory Allocated
for Signals” on page 9-42.

• Selecting the Inline invariant signals check box makes the Real-Time
Workshop code generator not generate code for blocks with a constant
(invariant) sample time. You must select Inline parameters to enable
Inline invariant signals. See “Inlining Invariant Signals” on page 9-43.

• Selecting the Eliminate superfluous local variables (Expression
folding) check box minimizes the computation of intermediate results
at block outputs and the storage of such results in temporary buffers or
variables. See “Minimizing Computations and Storage for Intermediate
Results” on page 9-9.

• Selecting the Minimize data copies between local and global
variables check box reuses existing global variables to store temporary
results. You must select Signal storage reuse to enableMinimize data
copies between local and global variables. See “Reusing Memory
Allocated for Signals” on page 9-42.

• Set an appropriate Loop unrolling threshold. The loop unrolling
threshold determines when a wide signal should be wrapped into a for loop

9-3

9 Optimizing a Model for Code Generation

and when it should be generated as a separate statement for each element
of the signal. See “Configuring a Loop Unrolling Threshold” on page 9-47
for details on this feature.

• If your target environment supports the memcpy function, and if your
model uses signal vector assignments to move large amounts of data,
selecting the Use memcpy for vector assignment check box can
improve the execution speed of vector assignments by replacing for loops
with memcpy function calls in the generated code. Set an appropriate
Memcpy threshold (bytes). See “Optimizing Code Generated for Vector
Assignments” on page 9-49 for details.

9-4

Optimizing Models

Optimizing Models

In this section...

“Getting Advice About Optimizing Models for Code Generation” on page 9-5
“Demos Illustrating Optimizations” on page 9-6
“Other Optimization Tools and Techniques” on page 9-6

Getting Advice About Optimizing Models for Code
Generation
Using the Model Advisor, you can quickly analyze a model for code generation
and identify aspects of your model that impede production deployment or
limit code efficiency. You can select from a set of checks to run on a model’s
current configuration. The Model Advisor analyzes the model and generates
check results providing suggestions for improvements in each area. Most
Model Advisor diagnostics do not require the model to be in a compiled state;
those that do are noted.

Before running the Model Advisor, select the target you plan to use for
code generation. The Model Advisor works most effectively with ERT and
ERT-based targets (targets based on the Real-Time Workshop Embedded
Coder software).

Use the following Model Advisor demos to investigate optimizing models for
code generation using the Model Advisor:

• rtwdemo_advisor1

• rtwdemo_advisor2

• rtwdemo_advisor3

Note Demo models rtwdemo_advisor2 and rtwdemo_advisor3 require
Stateflow and Fixed-Point Toolbox™ software.

For more information on using the Model Advisor, see “Consulting the Model
Advisor” in the Simulink documentation. For more information about the

9-5

9 Optimizing a Model for Code Generation

checks in the Model Advisor, see “Real-Time Workshop Checks” in the
Real-Time Workshop documentation.

Demos Illustrating Optimizations
The rtwdemos demo suite includes a set of demonstration models that
illustrate optimization settings and techniques. To access these demos, type

rtwdemos

or click the above command. The MATLAB Help browser opens the Real-Time
Workshop demos page. Click Optimizations in the navigation pane. Use the
listed demos to learn about the specific effects that optimization parameters
and techniques have on models.

Other Optimization Tools and Techniques
In addition to analyzing models with Model Advisor (see “Getting Advice
About Optimizing Models for Code Generation” on page 9-5), you can use a
variety of other tools and techniques that work with any code format. Here
are some particularly useful ones:

• Run the slupdate command to automatically convert older models (saved
by prior versions or by the current one) to use current features. For details
about what slupdate does, type

help slupdate

• Before building, set optimization flags for the compiler (for example, -O2
for gcc, -Ot for the Microsoft Visual C++ compiler).

• Directly inline C/C++ S-functions into the generated code by writing a
TLC file for the S-function. See Chapter 11, “S-Function Target” and the
Target Language Compiler documentation for more information on inlining
S-functions.

• Use a Simulink data type other than double when possible. The available
data types are Boolean, signed and unsigned 8-, 16-, and 32-bit integers,
and 32- and 64-bit floats (a double is a 64-bit float). See “Working with
Data” in the Simulink documentation for more information on data types.

9-6

Optimizing Models

For a block-by-block summary, click showblockdatatypetable or type the
command in the MATLAB Command Window.

• Remove repeated values in lookup table data.

• Use the Merge block to merge the output of signals wherever possible.
This block is particularly helpful when you need to control the execution
of function-call subsystems with a Stateflow chart. The following model
shows an example of how to use the Merge block.

When more than one signal connected to a Merge block has a non-Auto
storage class, all non-Auto signals connected to that block must be
identically labeled and have the same storage class. When Merge blocks
connect directly to one another, these rules apply to all signals connected to
any of the Merge blocks in the group.

Minimizing Memory Requirements for Parameters and Data
During Code Generation
When the Real-Time Workshop product generates code, it creates an
intermediate representation of your model (called model.rtw), which
the Target Language Compiler parses to transform block computations,
parameters, signals, and constant data into a high-level language, (for
example, C). Parameters and data are normally copied into the model.rtw
file, whether they originate in the model itself or come from variables or
objects in a workspace.

9-7

9 Optimizing a Model for Code Generation

Models which have large amounts of parameter and constant data (such as
lookup tables) can tax memory resources and slow down code generation
because of the need to copy their data to model.rtw. You can improve code
generation performance by limiting the size of data that is copied by using a
set_param command, described below.

Data vectors such as those for parameters, lookup tables, and constant blocks
whose sizes exceed a specified value are not copied into the model.rtw file.
In place of the data vectors, the Real-Time Workshop code generator places
a special reference key in the intermediate file that enables the Target
Language Compiler to access the data directly from the Simulink software
when it is needed and format it directly into the generated code. This results
in maintaining only one copy of large data vectors in memory.

You can specify the maximum number of elements that a parameter or other
data source can have for the Real-Time Workshop code generator to represent
it literally in the model.rtw file. Whenever this threshold size is exceeded, the
product writes a reference to the data to the model.rtw file, rather than its
values. The default threshold value is 10 elements, which you can verify with

get_param(0, 'RTWDataReferencesMinSize')

To set the threshold to a different value, type the following set_param
function in the MATLAB Command Window:

set_param(0, 'RTWDataReferencesMinSize', <size>)

Provide an integer value for size that specifies the number of data elements
above which reference keys are to be used in place of actual data values.

9-8

Minimizing Computations and Storage for Intermediate Results

Minimizing Computations and Storage for Intermediate
Results

In this section...

“Introduction” on page 9-9
“Expression Folding Example” on page 9-10
“Using and Configuring Expression Folding” on page 9-11

Introduction
Expression folding is a code optimization technique that minimizes the
computation of intermediate results at block outputs and the storage of such
results in temporary buffers or variables. Eliminate superfluous local
variables (Expression folding) is used to enable expression folding. When
expression folding is on, the Real-Time Workshop code generator collapses,
or “folds,” block computations into a single expression, instead of generating
separate code statements and storage declarations for each block in the model.

Expression folding can dramatically improve the efficiency of generated code,
frequently achieving results that compare favorably to hand-optimized code.
In many cases, entire groups of model computations fold into a single highly
optimized line of code.

By default, expression folding is on. The Real-Time Workshop code generation
options are configured to use expression folding wherever possible. Most
Simulink blocks support expression folding.

You can also take advantage of expression folding in your own inlined
S-function blocks. See “Writing S-Functions That Support Expression
Folding” on page 10-57 for information on how to do this.

In the code generation examples that follow, the Signal storage reuse
optimizations (Enable local block outputs, Reuse block outputs,
Eliminate superfluous local variables (Expression folding) and
Minimize data copies between local and global variables) are all
turned on.

9-9

9 Optimizing a Model for Code Generation

Expression Folding Example
As a simple example of how expression folding affects the code generated from
a model, consider the following model.

With expression folding on, this model generates a single-line output
computation, as shown in this model_output function.

static void exprfld_output(int_T tid)
{

/* Outport: '<Root>/Out1' incorporates:
* Gain: '<Root>/k1'
* Gain: '<Root>/k2'
* Inport: '<Root>/In1
* Inport: '<Root>/In2
* Product: '<Root>/Product'
*/

exprfld_Y.Out1 = exprfld_U.i1 * exprfld_P.k1_Gain *
(exprfld_U.i2 * exprfld_P.k2_Gain);

}

The generated comments indicate the block computations that were combined
into a single expression. The comments also document the block parameters
that appear in the expression.

With expression folding off, the same model computes temporary results for
both Gain blocks before the final output, as shown in this output function:

9-10

Minimizing Computations and Storage for Intermediate Results

static void exprfld_output(int_T tid)
{

real_T rtb_S2;

/* Gain: '<Root>/k1' incorporates:
* Inport: '<Root>/In1'
*/

exprfld_Y.Out1 = exprfld_U.i1 * exprfld_P.k1_Gain

/* Gain: '<Root>/k2' incorporates:
* Inport: '<Root>/In2'
*/

rtb_S2 = exprfld_U.i2 * exprfld_P.k2_Gain;

/* Product: '<Root>/Product' */
exprfld_Y.Out1 = exprfld_Y.Out1 * rtb_S2;

}

For an example of expression folding in the context of a more complex model,
click rtwdemo_slexprfold , or type the following command at the MATLAB
prompt.

rtwdemo_slexprfold

Using and Configuring Expression Folding
The options described in this section let you control the operation of expression
folding.

• “Enabling Expression Folding” on page 9-11

• “Expression Folding Options” on page 9-13

Enabling Expression Folding
Expression folding operates only on expressions involving local variables.
Expression folding is therefore available only when the Signal storage
reuse code generation option is on.

9-11

9 Optimizing a Model for Code Generation

For a new model, default code generation options are set to use expression
folding. If you are configuring an existing model, you can ensure that
expression folding is turned on as follows:

1 Open the Configuration Parameters dialog box and select the
Optimization pane.

2 Select the Signal storage reuse check box.

3 Select the Enable local block outputs check box.

4 Select the Reuse block outputs check box.

5 Select the Minimize data copies between local and global variables
check box.

6 Enable expression folding by selecting Eliminate superfluous local
variables (Expression folding).

9-12

Minimizing Computations and Storage for Intermediate Results

The Optimization pane appears in the next figure. All expression folding
related options are selected, as shown.

7 Click Apply.

Expression Folding Options
This section discusses the optimization code generation options related to
expression folding.

Eliminate superfluous local variables (Expression folding). This option
turns expression folding on or off.

9-13

9 Optimizing a Model for Code Generation

Ignore integer downcasts in folded expressions. This option specifies
how the Real-Time Workshop code generator should handle 8-bit operations on
16-bit microprocessors and 8- and 16-bit operations on 32-bit microprocessors.
To ensure consistency between simulation and code generation, the results of
8 and 16-bit integer expressions must be explicitly downcast.

Selecting this option improves code efficiency by avoiding casts of intermediate
variables. However, the primary effect of selecting this option is that
expressions involving 8- and 16-bit arithmetic are less likely to overflow
in code than they are in simulation. Therefore, it is good practice to clear
Ignore integer downcasts in folded expressions for safety, to ensure
that answers obtained from generated code are consistent with simulation
results. Turn the option on only if

• You are concerned with generating the least amount of code possible

• Code generation and simulation results do not need to match

As an example, consider this model.

The following code shows the output computation (within the output function)
when Ignore integer downcasts in folded expressions is off. The Gain
blocks are folded into a single expression. In addition to the typecasts
generated by the Type Conversion blocks, each Gain block output is cast to
int8_T.

int8_T rtb_Data_Type_Conversion;
.
.
.
rtY.Out1 = (int16_T)(int8_T)(rtP.Gain2_Gain * (int8_T)
(rtP.Gain1_Gain * (int8_T)(rtP.Gain_Gain *
rtb_Data_Type_Conversion)));

9-14

Minimizing Computations and Storage for Intermediate Results

If Ignore integer downcasts in folded expressions is on, the code
contains only the typecasts generated by the Type Conversion blocks, as
shown in the following code.

int8_T rtb_Data_Type_Conversion;
.
.
.
rtY.Out1 = (int16_T)(rtP.Gain2_Gain * (rtP.Gain1_Gain *
(rtP.Gain_Gain * rtb_Data_Type_Conversion)));

As another example, consider the following pseudo code:

Int16 a,b,c,d,e1,e2;
c = a + b;
e1 = c + d;

This would be bit equivalent to the following when Ignore integer
downcasts in folded expressions is off.

e1 = (Int16)(a + b) + d;

If Ignore integer downcasts in folded expressions is on, the code would
be generated as

e2 = a + b + d;

If the processor’s accumulator is 16 bits, then e1 equals e2. If the accumulator
is greater than 16 bits, e1 and e2 might not be equal. As an example,
consider a case where (a+b) would result in a value greater than 16-bits, but
(a+b+d) could be represented in 16 bits. In general, the integer down cast
implementation, e2, gives correct mathematical results over a larger range
of values.

Discussion. Suppose you create a model in which the output of a Sum block
is a signed 8-bit number. Such numbers have a range of from -128 to +127.
During simulation, the value of the Sum block’s output will always be in
the range -128 to +127. If the calculations involved in computing the output
exceeded that range, then an overflow would occur and the Simulink engine
would provide an (optional) diagnostic.

9-15

9 Optimizing a Model for Code Generation

When it comes to code running on a target processor, integer downcasts occur
frequently. Most microprocessors are designed to do direct math on integers
of certain sizes.

For example, a typical 16-bit microprocessor might only provide for direct
multiplication on 16-bit integers and direct addition for 16- and 32-bit
integers. Such a processor can perform math operations on smaller integers,
but only indirectly, according to the following steps:

1 The smaller integers are loaded into bigger CPU registers.

2 The “big math” is performed.

3 The results are “integer downcast” so they are limited to the range of the
smaller integers, for example, -128 to +127

Step 3 requires extra machine instructions, ROM code, and clock cycles.

In many situations, Step 3 is a total waste of effort. For example, you might
have designed your model so that it is impossible for the results to exceed the
range -128 to +127. With such safeguards in place, step 3 will never change
the results of calculations, and simply gives a less efficient implementation. In
this type of situation you should turn on the Ignore integer downcasts in
folded expressions optimization and bypass the range checks that decrease
your application’s efficiency without contributing any value.

If the calculations had overflowed, then turning on the Ignore integer
downcasts in folded expressions option would cause your generated code
to give different results from the Simulink model produced. You might or
might not consider this difference to be a problem, but it is something you
should be aware can happen.

9-16

Block Diagram Performance Tuning

Block Diagram Performance Tuning

In this section...

“Introduction” on page 9-17
“Lookup Tables and Polynomials” on page 9-17
“Reducing the Number of Blocks in a Model” on page 9-30
“Optimizing Code for Switch Blocks” on page 9-34
“Optimizing Data Type Usage” on page 9-35
“Additional Integer and Fixed-Point Optimizations” on page 9-39

Introduction
Certain Simulink block constructs will run faster, or require less code or data
memory, than other seemingly equivalent constructs. Knowing the tradeoffs
between similar blocks and block parameter options enables you to create
Simulink models that have intuitive diagrams, and to produce the tight code
that you want using the Real-Time Workshop product. Many of the options
and constructs discussed in this section improve the simulation speed of the
model itself, even without code generation.

Lookup Tables and Polynomials
The Simulink product provides several blocks that allow approximation of
functions. These include blocks that perform direct, interpolated, and cubic
spline lookup table operations, and a polynomial evaluation block.

There are currently six different Simulink blocks that perform lookup table
operations:

• Look-Up Table

• Look-Up Table (2-D)

• Look-Up Table (n-D)

• Direct Look-Up Table (n-D)

• PreLook-Up Index Search

9-17

9 Optimizing a Model for Code Generation

• Interpolation (n-D) Using PreLook-Up Index Search

In addition, the Repeating Sequence block uses a lookup table operation, the
output of which is a function of the real-time (or simulation-time) clock.

To get the most out of the following discussion, you should familiarize yourself
with the features of these blocks, as discussed in the Simulink documentation.

Each type of lookup table block has its own set of options and associated
tradeoffs. The examples in this section show how to use lookup tables
effectively. The techniques demonstrated here will help you achieve maximal
performance with minimal code and data sizes.

Multichannel Nonlinear Signal Conditioning
The next figure shows a Simulink model that reads input from two 8-channel,
high-speed 8-bit analog-to-digital converters (ADCs). The ADCs are connected
to Type K thermocouples through a gain circuit with an amplification of
250. Since the popular Type K thermocouples are highly nonlinear, there
is an international standard for converting their voltages to temperature.
In the range of 0 to 500 degrees Celsius, this conversion is a tenth-order
polynomial. One way to perform the conversion from ADC readings (0-255)
into temperature (in degrees Celsius) is to evaluate this polynomial. In
the best case, the polynomial evaluation requires 9 multiplications and 10
additions per channel.

A polynomial evaluation is not the fastest way to convert these 8-bit ADC
readings into measured temperature. Instead, the model uses a Direct
Look-Up (n-D) Table block (named TypeK_TC) to map 8-bit values to
temperature values. This block performs one array reference per channel.

9-18

Block Diagram Performance Tuning

Direct Look-Up Table (n-D) Block Conditions ADC Input

The block’s table parameter has 256 values that correspond to the temperature
at an ADC reading of 0, 1, 2, ... up to 255. The table data, calculated at the
MATLAB prompt, is stored in the workspace variable TypeK_0_500. The
block’s Table data parameter field references TypeK_0_500, as the preceding
figure shows.

Parameters of Direct Look-Up Table (n-D) Block

The model uses a Mux block to collect all similar signals (for example, Type
K thermocouple readings) and feed them into a single Direct Look-Up Table
block. This is more efficient than using one Direct Look-Up Table block per
device. If multiple blocks share a common parameter (such as the table in this

9-19

9 Optimizing a Model for Code Generation

example), the Real-Time Workshop code generator creates only one copy of
that parameter in the generated code.

This is the recommended approach for signal conditioning when the size of
the table can fit within your memory constraints. In this example, the table
stores 256 double (8-byte) values, utilizing 2 KB of memory.

The TypeK_TC block processes 24 channels of data sequentially.

The Real-Time Workshop product generates the following code for the
TypeK_TC block shown previously.

/* LookupNDDirect: '<Root>/TypeK_TC' */
/* 1-dimensional Direct Look-Up returning 24 Scalars */
{

int_T i1;

const uint8_T *u0 = rtb_TmpHiddenBuffer_Feeding_Typ;
real_T *y0 = rtb_TypeK_TC_k;

for (i1=0; i1 < 24; i1++) {
y0[i1] = (lookupADC_ConstP.TypeK_TC_table[u0[i1]]);

}
}

{
int32_T i1;

/* Outport: '<Root>/TCtemp' */
for(i1=0; i1<24; i1++) {

lookupADC_Y.TCtemp[i1] = rtb_TypeK_TC_k[i1];
}

}

Notice that the core of each loop is one line of code that directly retrieves a
table element from the table and places it in the block output variable. There
are two loops in the generated code because the two simulated ADCs are not
merged into a contiguous memory array in the Mux block. Instead, to avoid a
copy operation, the Direct Look-Up Table block performs the lookup on two sets
of data using a single table array (lookupADC_ConstP.TypeK_TC_table[]).

9-20

Block Diagram Performance Tuning

If the input accuracy for your application (not to be confused with the number
of I/O bits) is 24 bits or less, you can use a single-precision table for signal
conditioning. Then, cast the lookup table output to double precision for use
in the rest of the block diagram. This technique, shown in the next section,
causes no loss of precision.

Single-Precision Lookup Table Output Is Cast to Double Precision

A direct lookup table covering 24 bits of accuracy would require 64 megabytes
of memory, which is typically not practical. To create a single-precision
table, use the MATLAB single() cast function in your table calculations.
Alternatively, you can perform the typecast directly in the Table data
parameter, as shown in the next section.

9-21

9 Optimizing a Model for Code Generation

Typecasting Table Data in a Direct Lookup Block

When table size becomes impractical, you must use other nonlinear
techniques, such as interpolation or polynomial techniques. The Look-Up
Table (n-D) block supports linear interpolation and cubic spline interpolation.
The Polynomial block supports evaluation of noncomplex polynomials.

Compute-Intensive Equations
The blocks described in this section are useful for simplifying fixed, complex
relationships that are normally too time consuming to compute in real time.

The only practical way to implement some compute-intensive functions or
arbitrary nonlinear relationships in real time is to use some form of lookup
table. On processors that do not have floating-point instructions, even
functions like sqrt() can become too expensive to evaluate in real time.

An approximation to the nonlinear relationship in a known range will work
in most cases. For example, your application might require a square root
calculation that your target processor’s instruction set does not support.
The next figure shows how you can use a Look-Up Table block to calculate
an approximation of the square root function that covers a given range of
the function.

9-22

Block Diagram Performance Tuning

The interpolated values are plotted on the block icon.

For more accuracy on widely spaced points, use a cubic spline interpolation in
the Look-Up Table (n-D) block, as shown in the next figure.

9-23

9 Optimizing a Model for Code Generation

Techniques available in the Simulink product include n-dimensional support
for direct lookup, linear interpolations in a table, cubic spline interpolations
in a table, and 1-D real polynomial evaluation.

The Look-Up Table (n-D) block supports flat interval lookup, linear
interpolation and cubic spline interpolation. Extrapolation for the Look-Up
Table (n-D) block can either be disabled (clipping) or enabled for linear or
spline extrapolations.

The icons for the Direct Look-Up Table (n-D) and Look-Up Table (n-D) blocks
change depending on the type of interpolation selected and the number of
dimensions in the table, as shown in the next figure.

9-24

Block Diagram Performance Tuning

Tables with Repeated Points
The Look-Up Table and Look-Up Table (2-D) blocks, shown in the next figure,
support linear interpolation with linear extrapolation. In these blocks, the
row and column parameters can have repeated points, allowing pure step
behavior to be mixed in with the linear interpolations. This capability is not
supported by the Look-Up Table (n-D) block.

Slowly Versus Rapidly Changing Look-Up Table Block Inputs
You can optimize lookup table operations using the Look-Up Table (n-D) block
for efficiency if you know the input signal’s normal rate of change. The next
figure shows the parameters for the Look-Up Table (n-D) block.

9-25

9 Optimizing a Model for Code Generation

Parameter Dialog Box for the Look-Up Table (n-D) Block

If you do not know the input signal’s normal rate of change in advance, it
would be better to choose the Binary Search option for the index search in
the Look-Up Table (n-D) block and the PreLook-Up Index Search block.

Regardless of signal behavior, if the table’s breakpoints are evenly spaced, it
is best to select the Evenly Spaced Points option from the Look-Up Table
(n-D) block’s parameter dialog box.

If the breakpoints are not evenly spaced, first decide which of the following
best describes the input signal behavior.

• Behavior 1: The signal stays in a given breakpoint interval from one time
step to the next. When the signal moves to a new interval, it tends to move
to an adjacent interval.

9-26

Block Diagram Performance Tuning

• Behavior 2: The signal has many discontinuities. It jumps around in the
table from one time step to the next, often moving three or more intervals
per time step.

Given behavior 1, the best optimization for a given lookup table is to use the
Linear search option and Begin index searches using previous index
results options, as shown in the next figure.

Given behavior 2, the Begin index searches using previous index results
option does not necessarily improve performance. Choose the Binary Search
option, as shown in the next figure.

The choice of an index search method can be more complicated for lookup
table operations of two or more dimensions with linear interpolation. In this
case, several signals are input to the table. Some inputs may have evenly
spaced points, while others can exhibit behavior 1 or behavior 2.

Here it might be best to use PreLook-Up Index Search blocks with different
search methods (evenly spaced, linear search, or binary search) chosen
according to the input signal characteristics. The outputs of these search
blocks are then connected to an Interpolation (n-D) Using PreLook-Up Index
Search block, as shown in the block diagram in the next figure.

9-27

9 Optimizing a Model for Code Generation

You can configure each PreLook-Up Index Search block independently to use
the best search algorithm for the breakpoints and input time variation cases.

Multiple Tables with Common Inputs
The index search can be the most time consuming part of flat or linear
interpolation calculations. In large block diagrams, lookup table blocks often
have the same input values as other lookup table blocks. If this is the case
in your block diagram, you can save much computation time by making the
breakpoints common to all tables. This saving is obtained by using one set of
PreLook-Up Index Search blocks to perform the searches once for all tables,
so that only the interpolation remains to be calculated.

The next figure is an example of a block diagram that can be optimized by
this method.

9-28

Block Diagram Performance Tuning

Before Optimization

Assume that the breakpoints for Table A are the same as the first input
breakpoints for Table B, and that the breakpoints for Table C are the same as
the second input breakpoints for Table B.

A 50% reduction in index search time is obtained by pulling these common
breakpoints out into a pair of PreLook-Up Index Search blocks, and using
Interpolation (n-D) Using PreLook-Up Index Search blocks to perform the
interpolation.

The next figure shows the optimized block diagram.

9-29

9 Optimizing a Model for Code Generation

After Optimization

In the above diagram, the Look-Up Table (n-D) blocks have been replaced
with Interpolation (n-D) Using PreLook-Up blocks. The PreLook-Up Index
Search blocks have been added to perform the index searches separately from
the interpolations, to realize the savings in computation time.

In large controllers and simulations, it is not uncommon for hundreds of
multidimensional tables to rely on a dozen or so breakpoint sets. Using the
optimization technique shown in this example, you can greatly increase the
efficiency of your application.

Reducing the Number of Blocks in a Model
When you check Block reduction, the Simulink engine collapses certain
groups of blocks into a single, more efficient block, or removes them entirely.
This results in faster execution during model simulation and in generated
code. The appearance of the source model does not change.

Note that block reduction is only intended to remove the code that represents
execution of a block. Other supporting data, such as definitions for sample
time and data types might remain in the generated code.

By default, Block reduction is checked. The types of block reduction are

9-30

Block Diagram Performance Tuning

• “Accumulators” on page 9-31

• “Removal of Redundant Type Conversions” on page 9-32

• “Dead Code Elimination” on page 9-33

• “Fast-to-slow Rate Transition block in a single-tasking system” on page 9-34

To enable this option, select Block reduction on the Optimization pane of
the Configuration Parameters dialog box, as shown in the next figure.

Accumulators
The Simulink engine recognizes the block diagram shown in the next figure
as an accumulator. An accumulator construct — comprising a Constant
block, a Sum block, and feedback through a Unit Delay block — is recognized
anywhere across a block diagram, or within subsystems at lower levels.

An Accumulator Algorithm

With the Block reduction option enabled, the Simulink engine creates a
synthesized block, Sum_synth_accum. The synthesized block replaces the
previous block diagram, resulting in a simple increment calculation.

9-31

9 Optimizing a Model for Code Generation

static void accum_output(int_T tid)
{

/* UnitDelay Block: '<Root>/Unit Delay'
* Operating as an accumulator
*/

accum_DWork.UnitDelay_DSTATE++;
accum_B.UnitDelay_j = accum_DWork.UnitDelay_DSTATE;

/* Outport: '<Root>/Out1' */
accum_Y.Out1 = accum_B.UnitDelay_j;

}

With Block reduction turned off, the generated code reflects the block
diagram more literally, but less efficiently.

static void accum_output(int_T tid)
{

/* UnitDelay: '<Root>/Unit Delay' */
accum_B.UnitDelay_j = accum_DWork.UnitDelay_DSTATE;

/* Sum: '<Root>/Sum' */
accum_B.Sum_l = 1.0 + accum_B.UnitDelay_j;

/* Outport: '<Root>/Out1' */
accum_Y.Out1 = accum_B.Sum_l;

}

Removal of Redundant Type Conversions
Unnecessary type conversion blocks are removed. For example, an int type
conversion block whose input and output are of type int is redundant and
is removed.

9-32

Block Diagram Performance Tuning

Dead Code Elimination
Any blocks or signals in an unused code path are eliminated from generated
code. The following conditions need to be met for a block to be considered
part of an unused code path:

• All signal paths for the block end with a block that does not execute.
Examples of blocks that do not execute include Terminator blocks, disabled
Assertion blocks, S-Function blocks configured for block reduction, and To
Workspace blocks when MAT-file logging is disabled for code generation.

• No signal paths for the block include global signal storage downstream
from the block.

Tunable parameters do not prevent a block from being reduced by dead code
elimination.

Consider the signal paths in the following block diagram.

If you check Block reduction, the Real-Time Workshop code generator
responds to each signal path as follows:

For Signal
Path...

The Real-Time Workshop Code Generator...

In1 to Out1 Always generates code because dead code elimination
conditions are not met.

9-33

9 Optimizing a Model for Code Generation

For Signal
Path...

The Real-Time Workshop Code Generator...

In2 to Terminator Never generates code because dead code elimination
conditions are met.

In3 to Scope Generates code if MAT-file logging is enabled and
eliminates code if MAT-file logging is disabled.

Fast-to-slow Rate Transition block in a single-tasking system
In a single-tasking system, if the Block reduction option is on, fast-to-slow
Rate Transition blocks are optimized out of the model. The default case
is shown (Block reduction on), so block B does not appear in the timing
diagrams in this section.

Optimizing Code for Switch Blocks
You can optimize simulation and code generation for Switch and Multiport
Switch blocks by enabling conditional input branch execution. By default, the
Real-Time Workshop code generation parameters are configured to use the
conditional input branch optimization.

When conditional input branch optimization is on, instead of executing all
blocks driving the Switch block input ports at each time step, only the blocks
required to compute the control input and the data input selected by the
control input are executed.

Several considerations affect or limit Switch block optimization:

• Only blocks with -1 (inherited) or inf (Constant) sample time can
participate in Switch block optimization.

• Blocks with outputs flagged as test points cannot participate.

• No multirate block can participate.

• Blocks with states cannot participate.

• Only S-functions with option SS_OPTION_CAN_BE_CALLED_CONDITIONALLY
set can participate.

9-34

Block Diagram Performance Tuning

You control conditional input branch optimization by selecting and deselecting
the Conditional input branch execution parameter on the Optimization
pane of the Configuration Parameters dialog box.

To run a conditional input branch optimization demo, click
rtwdemo_condinput or type the following command at the MATLAB prompt.

rtwdemo_condinput

Optimizing Data Type Usage
In most processors, the use of integer data types can result in a significant
reduction in data storage requirements, as well as a large increase in the speed
of operation. You can achieve large performance gains on most processors
by identifying those portions of your block diagram that are really integer
calculations (such as accumulators), and implementing them with integer
data types. Floating-point DSP targets are an obvious exception to this rule.

The accumulator from the previous example used 64-bit floating-point
calculations by default. The block diagram in the next figure implements the
accumulator with 16-bit integer operations.

Accumulator Implemented with 16-bit Integers

If the Saturate on integer overflow option of the Sum block is turned
off, the code generated from the integer implementation looks the same
as code generated from the floating-point block diagram. However,
since Sum_synth_accum is performing integer arithmetic internally, the
accumulator executes more efficiently.

9-35

9 Optimizing a Model for Code Generation

By default, the Saturate on integer overflow option is on. This option
generates extra error-checking code from the integer implementation, as
shown in the following example.

static void accum_int16_output(int_T tid)
{

/* local block i/o variables */

int16_T rtb_UnitDelay_k;

/* UnitDelay: '<Root>/Unit Delay' incorporates:
* Constant: '<Root>/Constant'
*
* Regarding '<Root>/Unit Delay':
* Operating as an accumulator
*/

{
int16_T tmpVar = accum_int16_DWork.UnitDelay_DSTATE;
accum_int16_DWork.UnitDelay_DSTATE = tmpVar + (1);
if ((tmpVar >= 0) && ((1) >= 0) &&

(accum_int16_DWork.UnitDelay_DSTATE < 0))
{

accum_int16_DWork.UnitDelay_DSTATE = MAX_int16_T;
} else if ((tmpVar < 0) && ((1) < 0) &&

(accum_int16_DWork.UnitDelay_DSTATE >= 0)) {
accum_int16_DWork.UnitDelay_DSTATE = MIN_int16_T;

}
}
rtb_UnitDelay_k = accum_int16_DWork.UnitDelay_DSTATE;

/* Outport: '<Root>/Out1' */
accum_int16_Y.Out1 = rtb_UnitDelay_k;

}

The floating-point implementation would not have generated the saturation
error checks, which apply only to integers. When using integer data types,
consider whether or not you need to generate saturation checking code.

9-36

Block Diagram Performance Tuning

If you are able to ignore saturation checks, turn Saturate on integer
overflow off for the Sum block. The generated code then omits the preceding
checks:

static void accum_int16_output(int_T tid)
{

/* local block i/o variables */

int16_T rtb_UnitDelay_k;

/* UnitDelay: '<Root>/Unit Delay' incorporates:
* Constant: '<Root>/Constant'
*
* Regarding '<Root>/Unit Delay':
* Operating as an accumulator
*/

accum_int16_DWork.UnitDelay_DSTATE++;
rtb_UnitDelay_k = accum_int16_DWork.UnitDelay_DSTATE;

/* Outport: '<Root>/Out1' */
accum_int16_Y.Out1 = rtb_UnitDelay_k;

}

The next figure shows an efficient way to add a reset to an integer
accumulator. When resetSig is greater than or equal to the threshold of
the Switch block, the Switch block passes the reset value (0) back into the
accumulator.

9-37

9 Optimizing a Model for Code Generation

The reset signal can protect computations from overflows, and the size of the
resultant code is minimal. The code uses no floating-point operations.

static void accum_rst_output(int_T tid)
{

/* local block i/o variables */

int16_T rtb_Sum_j;

/* Sum: '<Root>/Sum' */
rtb_Sum_j = (int16_T)(1 + accum_rst_DWork.accumState_DSTATE);

/* Outport: '<Root>/accumVal' */
accum_rst_Y.accumVal = rtb_Sum_j;

/* Switch: '<Root>/Switch' */
if(accum_rst_U.resetSig) {

accum_rst_B.Switch_k = 0;
} else {

accum_rst_B.Switch_k = rtb_Sum_j;
}

This example uses an input to the system as the reset value, but you can
also use an int16 constant.

9-38

Block Diagram Performance Tuning

Note You should not use preprocessor compile-time mechanisms to redefine
the Real-Time Workshop data types used in generated code. Redefining
data type size or sign properties, using such mechanisms, can affect
numerical results or cause runtime exceptions due to the data not matching
properties expected by the generated code. Instead, use the Hardware
Implementation pane of the Configuration Parameters dialog box to specify
the appropriate word size for the model and specify the desired data types
(double, single, int32, ...) for signals and parameters within the model.

Additional Integer and Fixed-Point Optimizations
You may find several companion products useful in optimizing the
performance and size of integer-based generated code.

Generating Pure Integer Code with the Real-Time Workshop
Embedded Coder Target
The Real-Time Workshop Embedded Coder target (ERT) provides the
Support floating-point numbers option (the inverse of an obsolete option
named Integer code only) to control whether generated code contains
any floating-point data or operations. When this option is deselected, an
error is raised if any noninteger data or expressions are encountered during
compilation of the model. The error message reports the offending blocks
and parameters.

If pure integer code generation is important to your design, you should
consider using the Real-Time Workshop Embedded Coder target (or a target
of your own, based on the Real-Time Workshop Embedded Coder target).

The Real-Time Workshop Embedded Coder target offers many additional
optimizations. See the Real-Time Workshop Embedded Coder documentation
for more information.

Optimizing Integer Code with the Simulink Fixed Point and
Stateflow Products
The Simulink Fixed Point product is designed to deliver the highest levels of
performance for noninteger algorithms on fixed-point processors. If you have
a Simulink Fixed Point license, you can use Simulink products to simulate

9-39

9 Optimizing a Model for Code Generation

effects commonly encountered in fixed-point systems for applications such as
control systems and time-domain filtering. In addition, you can generate C
code for execution on a fixed-point embedded processor with the Real-Time
Workshop code generator. The generated code uses only integer types and
automatically includes all operations, such as shifts, needed to account for
differences in fixed-point locations. The code generation strategy maps the
integer value set to a range of expected real-world values to achieve high
efficiency.

Finite-state machine or flowchart constructs can often represent decision logic
(or mode logic) efficiently. Stateflow charts, which are fully integrated into
Simulink models, provide these capabilities and support integer data-typed
code generation.

9-40

Optimizing Signals

Optimizing Signals

In this section...

“Implementing Logic Signals as Boolean Data” on page 9-41
“Reducing Memory Requirements for Signals” on page 9-41
“Declaring Signals as Local Function Data” on page 9-42
“Reusing Memory Allocated for Signals” on page 9-42
“Inlining Invariant Signals” on page 9-43

Implementing Logic Signals as Boolean Data
When you select the Implement logic signals as boolean data (vs.
double) check box, blocks that generate logic signals output Boolean signals.
When you clear this check box, blocks that generate logic signals output
double signals.

The check box is selected by default because it reduces memory requirements
(a Boolean signal typically requires one byte in memory while a double signal
requires eight bytes in memory). Clear this check box for compatibility with
models created using earlier versions of Simulink that support only double
signals. For details about this check box, see “Implement logic signals as
boolean data (vs. double)”.

Reducing Memory Requirements for Signals
To instruct the Real-Time Workshop code generator to reuse signal memory,
which can reduce memory requirements of your real-time program, select the
configuration parameter Signal storage reuse. Disabling Signal storage
reuse makes all block outputs global and unique, which in many cases
significantly increases RAM and ROM usage.

For more details on the Signal storage reuse option, see “Signal Storage,
Optimization, and Interfacing” on page 5-31.

9-41

9 Optimizing a Model for Code Generation

Note Selecting Signal storage reuse also enables the Enable local block
outputs, Reuse block outputs, Eliminate superfluous local variables
(Expression folding), and Minimize data copies between local and
global variables options in the Optimization pane. See “Declaring Signals
as Local Function Data” on page 9-42 and “Reusing Memory Allocated for
Signals” on page 9-42.

Declaring Signals as Local Function Data
To declare block signals locally in functions instead of being declared globally
(when possible), select the Enable local block outputs configuration
parameter. This parameter is available only when you select Signal storage
reuse.

For more information on the use of the Enable local block outputs option,
see “Signal Storage, Optimization, and Interfacing” on page 5-31. Also see
“First Look at Generated Code” in Getting Started.

Reusing Memory Allocated for Signals
Two parameters provide the capability to reuse memory allocated for signals:
Reuse block output and Minimize data copies between local and
global variables.

Selecting Reuse block output directs the Real-Time Workshop code
generator reuses signal memory whenever possible. When Reuse block
output is cleared, signals are stored in unique locations.

Reuse block output is enabled only when you select Signal storage reuse.

Selecting Minimize data copies between local and global variables
reuses existing global variables to store temporary results. Clearing
Minimize data copies between local and global variables writes data
for block outputs to local variables. You must select Signal storage reuse to
enable Minimize data copies between local and global variables.

See “Signal Storage, Optimization, and Interfacing” on page 5-31 for more
information (including generated code example) on Reuse block output,

9-42

Optimizing Signals

Minimize data copies between local and global variables, and other
signal storage options.

Inlining Invariant Signals
An invariant signal is a block output signal that does not change during
Simulink simulation. For example, the signal S3 in this block diagram is an
invariant signal.

For the previous model, if you select Inline invariant signals on the
Optimization pane, the Real-Time Workshop code generator inlines the
invariant signal S3 in the generated code.

Note that an invariant signal is not the same as an invariant constant. (See
“Optimization Pane” in the Simulink documentation for information on
invariant constants.) In the preceding example, the two constants (1 and 2)
and the gain value of 3 are invariant constants. To inline these invariant
constants, select Inline parameters.

The Ignore integer downcasts in folded expressions option performs
downcasts in expressions.

9-43

9 Optimizing a Model for Code Generation

Note If your model contains Model blocks, Inline parameters must be
on for all referenced models. If a referenced model does not have Inline
Parameters set to on, the Simulink engine temporarily enables this option
while generating code for the referenced model, then turns it off again when
the build completes. Thus the referenced model is left in its previous state
and need not be resaved. For the top-level model, Inline parameters can be
either on or off.

9-44

Inlining Parameters

Inlining Parameters
When you select the Inline parameters configuration parameter:

• The Real-Time Workshop code generator uses the numerical values of
model parameters, instead of their symbolic names, in generated code.

If the value of a parameter is a workspace variable, or an expression
including one or more workspace variables, the variable or expression is
evaluated at code generation time. The hard-coded result value appears
in the generated code. An inlined parameter, because it has in effect been
transformed into a constant, is no longer tunable. That is, it is not visible
to externally written code, and its value cannot be changed at run-time.

• The Configure button becomes enabled. Clicking the Configure button
opens the Model Parameter Configuration dialog box.

The Model Parameter Configuration dialog box lets you remove individual
parameters from inlining and declare them to be tunable variables (or
global constants). When you declare a parameter tunable, the Real-Time
Workshop product generates a storage declaration that allows the
parameter to be interfaced to externally written code. This enables your
hand-written code to change the value of the parameter at run-time.

The Model Parameter Configuration dialog box lets you improve overall
efficiency by inlining most parameters, while at the same time retaining
the flexibility of run-time tuning for selected parameters.

See “Parameter Storage, Interfacing, and Tuning” on page 5-2 for more
information on interfacing parameters to externally written code.

Inline parameters also instructs the Simulink engine to propagate constant
sample times. The engine computes the output signals of blocks that have
constant sample times once during model startup. This improves performance
because such blocks do not compute their outputs at every time step of the
model.

You can select the Inline invariant signals code generation option (which
also places constant values in generated code) only when Inline parameters
is on. See “Inlining Invariant Signals” on page 9-43.

9-45

9 Optimizing a Model for Code Generation

Referenced Models
When a top-level model uses referenced models,

• All referenced models must specify Inline parameters to be on

• The top-level model can specify Inline parameters to be on or off .

When the top-level model specifies Inline parameters to be on, you cannot
use the Model Parameter Configuration dialog box to tune parameters that
are passed to referenced models. To tune such parameters, you must declare
them in the referenced model’s workspace, and then pass run-time values
(or expressions) for them in argument lists specified for each Model block
that references that model. See “Using Model Arguments” in the Simulink
documentation for details.

9-46

Configuring a Loop Unrolling Threshold

Configuring a Loop Unrolling Threshold
The Loop unrolling threshold parameter on the Optimization pane
determines when a wide signal or parameter should be wrapped into a for
loop and when it should be generated as a separate statement for each
element of the signal. The default threshold value is 5.

For example, consider the model below:

The gain parameter of the Gain block is the vector myGainVec.

Assume that the loop unrolling threshold value is set to the default, 5.

If myGainVec is declared as

myGainVec = [1:10];

9-47

9 Optimizing a Model for Code Generation

an array of 10 elements, myGainVec_P.Gain_Gain[], is declared within the
Parameters_model data structure. The size of the gain array exceeds the loop
unrolling threshold. Therefore, the code generated for the Gain block iterates
over the array in a for loop, as shown in the following code:

{
int32_T i1;

/* Gain: '<Root>/Gain' */
for(i1=0; i1<10; i1++) {

myGainVec_B.Gain_f[i1] = rtb_foo *
myGainVec_P.Gain_Gain[i1];

}
}

If myGainVec is declared as

myGainVec = [1:3];

an array of three elements, myGainVec_P.Gain_Gain[], is declared within
the Parameters data structure. The size of the gain array is below the loop
unrolling threshold. The generated code consists of inline references to each
element of the array, as in the code below.

/* Gain: '<Root>/Gain' */
myGainVec_B.Gain_f[0] = rtb_foo * myGainVec_P.Gain_Gain[0];
myGainVec_B.Gain_f[1] = rtb_foo * myGainVec_P.Gain_Gain[1];
myGainVec_B.Gain_f[2] = rtb_foo * myGainVec_P.Gain_Gain[2];

See the Target Language Compiler documentation for more information on
loop rolling.

Note When a model includes Stateflow charts or Embedded MATLAB
Function blocks, a set of Stateflow optimizations appears on the
Optimization pane. The settings you make for the Stateflow options also
apply to all Embedded MATLAB Function blocks in the model. This is
because the Embedded MATLAB Function blocks and Stateflow charts are
built on top of the same technology and share a code base. You do not need a
Stateflow license to use Embedded MATLAB Function blocks.

9-48

Optimizing Code Generated for Vector Assignments

Optimizing Code Generated for Vector Assignments

In this section...

“Overview” on page 9-49
“Example: Using memcpy for Vector Assignments” on page 9-50

Overview
The Use memcpy for vector assignment option lets you optimize
Real-Time Workshop generated code for vector assignments by replacing for
loops with memcpy function calls. The memcpy function can be more efficient
than for-loop controlled element assignment for large data sets. Where
memcpy offers improved execution speed, you can use this model option to
specify that generated code should use memcpy when assigning a vector signal.

Selecting the Use memcpy for vector assignment option enables the
associated parameter Memcpy threshold (bytes), which allows you to
specify the minimum array size in bytes for which memcpy function calls
should replace for loops in the generated code. For more information, see
“Use memcpy for vector assignment” and “Memcpy threshold (bytes)” in the
Simulink Graphical User Interface documentation.

In considering whether to use this optimization,

• Verify that your target supports the memcpy function.

• Determine whether your model uses signal vector assignments (such as
Y=expression) to move large amounts of data, for example, using the
Selector block.

To apply this optimization,

1 Consider first generating code without this optimization and measuring its
execution, to establish a baseline for evaluating the optimized assignment.

2 Select Use memcpy for vector assignment and examine the setting of
Memcpy threshold (bytes), which by default specifies 64 bytes as the
minimum array size for which for loops are replaced with memcpy function
calls. Based on the array sizes used in your application’s signal vector

9-49

9 Optimizing a Model for Code Generation

assignments, and any target environment considerations that might bear
on the threshold selection, accept the default or specify another array size.

3 Generate code, and measure its execution speed against your baseline or
previous iterations. Iterate on steps 2 and 3 until you achieve an optimal
result.

Note The memcpy optimization may not occur under certain conditions,
including when other optimizations have a higher precedence than the memcpy
optimization, or when the generated code is originating from Target Language
Compiler (TLC) code, such as a TLC file associated with an S-function block.

Note If you are licensed for Real-Time Workshop Embedded Coder software,
you can use a target function library (TFL) to provide your own custom
implementation of the memcpy function to be used in generated model code.
For more information, see “Example: Mapping the memcpy Function to a
Target-Specific Implementation” in the Real-Time Workshop Embedded
Coder documentation.

Example: Using memcpy for Vector Assignments
To examine the effect on generated vector assignment code of using the Use
memcpy for vector assignment option, perform the following steps:

1 Create a model that generates signal vector assignments. For example,

a Use In, Out, and Mux blocks to create the following model.

b Select the diagram and use Edit > Subsystem to make it a subsystem.

9-50

Optimizing Code Generated for Vector Assignments

c Open Model Explorer and configure the Signal Attributes for the In1,
In2, and In3 source blocks. For each, set Port dimensions to [1,100],
and set Data type to int32. Apply the changes.

d Go to the Optimization pane of the Configuration Parameters dialog
box and clear the Use memcpy for vector assignment option. Apply
the changes and save the model. In this example, the model is saved
to the name vectorassign.mdl.

2 Go to the Real-Time Workshop > Report pane of the Configuration
Parameters dialog box and select the Create code generation report.
Then go to the Real-Time Workshop pane, select the Generate code
only option, and generate code for the model. When code generation
completes, the HTML code generation report is displayed.

3 In the HTML code generation report, click on the model.c section (for
example, vectorassign.c) and inspect the model output function. Notice
that the vector assignments are implemented using for loops.

9-51

9 Optimizing a Model for Code Generation

4 Go to the Optimization pane of the Configuration Parameters dialog box
and select the Use memcpy for vector assignment option. Leave the
Memcpy threshold (bytes) option at its default setting of 64 Apply
the changes and regenerate code for the model. When code generation
completes, the HTML code generation report again is displayed.

5 In the HTML code generation report, click on the model.c section and
inspect the model output function. Notice that the vector assignments now
are implemented using memcpy function calls.

9-52

Controlling Memory Allocation for Time Counters

Controlling Memory Allocation for Time Counters
The Application lifespan (days) parameter lets you control the allocation
of memory for absolute and elapsed time counters. Such counters exist in the
code for blocks that use absolute or elapsed time. For a list of such blocks, see
Appendix A, “Limitations on the Use of Absolute Time”.

The size of the time counters in generated code is 8, 16, 32, or 64 bits. The
size is set automatically to the minimum that can accommodate the duration
value specified by Application lifespan (days) given the step size specified
in the Configuration Parameters Solver pane. To minimize the amount of
RAM used by time counters, specify a lifespan no longer than necessary, and
a step size no smaller than necessary.

An application is guaranteed to be able to run to its specified lifespan. It may
be able to run longer, but is not guaranteed to do so. For example, running a
model with a step size of one millisecond (0.001 seconds) for one day requires a
32-bit timer, which could continue running without overflow for 49 days more.

To maximize application lifespan, specify Application lifespan (days)
as inf. This value allocates 64 bits (two uint32 words) for each timer.
Using 64 bits to store timing data would allow a model with a step size of
0.001 microsecond (10E-09 seconds) to run for more than 500 years, which
would rarely be required. 64-bit counters do not violate the usual Real-Time
Workshop length limitation of 32 bits because the value of a time counter
never provides the value of a signal, state, or parameter.

For information about the allocation and operation of absolute and elapsed
time counters, see Chapter 15, “Timing Services”. For information about
asynchronous timing, see “Using Timers in Asynchronous Tasks” on page
16-28. For information about the effect of the Application lifespan (days)
parameter on simulation, see “Application lifespan (days)” in the Simulink
documentation.

9-53

9 Optimizing a Model for Code Generation

Optimizing Code Resulting from Floating-Point to Integer
Conversions

In this section...

“Removing Code That Wraps Out-of-Range Values” on page 9-54
“Removing Code That Maps NaN Values to Integer Zero” on page 9-55

Removing Code That Wraps Out-of-Range Values
Selecting the Remove code from floating-point to integer conversions
that wraps out-of-range values check box in the Integer and fixed-point
section of the Optimization pane causes the Real-Time Workshop code
generator to remove code that ensures that execution of the generated code
produces the same results as simulation when out-of-range conversions occur.
This action reduces the size and increases the speed of generated code at the
cost of potentially producing results that do not match simulation in the case
of out-of-range values. For more information, see “Optimization Pane” in the
Simulink Graphical User Interface.

The code generated for a conversion when you select the check box follows:

cg_in_0_20_0[i1] = (int32_T)((rtb_Switch[i1] + 9.0) / 0.09375);

The code generated for a conversion when you clear the check box follows:

_fixptlowering0 = (rtb_Switch[i1] + 9.0) / 0.09375;

_fixptlowering1 = fmod(_fixptlowering0 >= 0.0 ? floor(_fixptlowering0) :

ceil(_fixptlowering0), 4.2949672960000000E+009);

if(_fixptlowering1 < -2.1474836480000000E+009) {

_fixptlowering1 += 4.2949672960000000E+009;

} else if(_fixptlowering1 >= 2.1474836480000000E+009) {

_fixptlowering1 -= 4.2949672960000000E+009;

}

cg_in_0_20_0[i1] = (int32_T)_fixptlowering1;

The code generator applies the fmod function to handle out-of-range
conversion results.

9-54

Optimizing Code Resulting from Floating-Point to Integer Conversions

Removing Code That Maps NaN Values to Integer
Zero
Selecting the Remove code from floating-point to integer conversions
with saturation that maps NaN to zero check box in the Integer
and fixed-point section of the Optimization pane causes the Real-Time
Workshop code generator to remove code that ensures that execution of the
generated code produces the same results as simulation when mapping from
NaN to integer zero occurs. This action reduces the size and increases the
speed of generated code at the cost of producing results that do not match
simulation in the case of NaN values. For more information, see “Optimization
Pane” in the Simulink Graphical User Interface.

The code generated for a conversion when you select the check box follows:

if (tmp < 2.147483648E+09) {
if (tmp >= -2.147483648E+09) {

tmp_0 = (int32_T)tmp;
} else {

tmp_0 = MIN_int32_T;
}

} else {
tmp_0 = MAX_int32_T;

}

The code generated for a conversion when you clear the check box follows:

if (tmp < 2.147483648E+09) {
if (tmp >= -2.147483648E+09) {

tmp_0 = (int32_T)tmp;
} else {

tmp_0 = MIN_int32_T;
}

} else if (tmp >= 2.147483648E+09) {
tmp_0 = MAX_int32_T;

} else {
tmp_0 = 0;

}

9-55

9 Optimizing a Model for Code Generation

Optimization Dependencies
Several parameters available on the Optimization pane have dependencies
on settings of other options. The following table summarizes the dependencies.

Option Dependencies? Dependency Details

Block reduction No

Conditional input branch
execution

No

Implement logic signals as
boolean data (versus double)

Yes Disable for models created with a
Simulink version that supports only
signals of type double

Signal storage reuse No
Inline parameters Yes Disable for referenced models in a

model reference hierarchy
Application lifespan (days) No
Parameter structure (ERT
targets only)

Yes Enabled by Inline parameters

Enable local block outputs Yes Enabled by Signal storage reuse
Reuse block outputs Yes Enabled by Signal storage reuse
Ignore integer downcasts in
folded expressions

No

Inline invariant signals Yes Enabled by Inline parameters
Eliminate superfluous local
variables (Expression folding)

Yes Enabled by Signal storage reuse

Minimize data copies between
local and global variables

Yes Enabled by Signal storage reuse

Loop unrolling threshold No
Use memcpy for vector
assignment

No

Memcpy threshold (bytes) Yes Enabled by Use memcpy for vector
assignment

9-56

Optimization Dependencies

Option Dependencies? Dependency Details

Remove root level I/O zero
initialization (ERT targets only)

No

Use memset to initialize floats
and doubles to 0.0

No

Remove internal data zero
initialization (ERT targets only)

No

Optimize initialization code for
model reference (ERT targets
only)

Yes Disable if model includes an enabled
subsystem and the model is referred to
from another model with a Model block

Remove code from
floating-point to integer
conversions that wrap
out-of-range values

No

Remove code from
floating-point to integer
conversions with saturation
that maps NaN to zero

Yes (ERT targets)
No (GRT targets)

For ERT targets, enabled by Support
floating-point numbers and
Support non-finite numbers in the
Real-Time Workshop > Interface
pane

Remove code that protects
against division arithmetic
exceptions (ERT targets only)

No

9-57

9 Optimizing a Model for Code Generation

9-58

10

Writing S-Functions for
Real-Time Workshop Code
Generation

• “Introduction” on page 10-2

• “Writing Noninlined S-Functions” on page 10-9

• “Writing Wrapper S-Functions” on page 10-12

• “Writing Fully Inlined S-Functions” on page 10-23

• “Automating the Generation of Files for Fully Inlined S-Functions Using
Legacy Code Tool” on page 10-25

• “Writing Fully Inlined S-Functions with the mdlRTW Routine” on page
10-30

• “Guidelines for Writing Inlined S-Functions ” on page 10-56

• “Writing S-Functions That Support Expression Folding” on page 10-57

• “Writing S-Functions That Specify Port Scope and Reusability” on page
10-73

• “Writing S-Functions That Specify Sample Time Inheritance Rules” on
page 10-79

• “Writing S-Functions That Support Code Reuse” on page 10-81

• “Writing S-Functions for Multirate Multitasking Environments” on page
10-82

• “Integrating C and C++ Code” on page 10-90

• “Build Support for S-Functions” on page 10-92

10 Writing S-Functions for Real-Time Workshop® Code Generation

Introduction

In this section...

“About S-Functions” on page 10-2
“Additional Information” on page 10-3
“Classes of Problems Solved by S-Functions” on page 10-3
“Types of S-Functions” on page 10-4
“Basic Files Required for Implementation” on page 10-7
“Guidelines for Writing S-Functions for Use with Real-Time Workshop
Software” on page 10-8

About S-Functions
This chapter describes how to create S-functions that work seamlessly with
Real-Time Workshop code generation. It begins with basic concepts and
concludes with an example of how to create a highly optimized direct-index
lookup table S-Function block.

This chapter assumes that you understand the following concepts:

• Level 2 S-functions

• Target Language Compiler (TLC) scripting

• How the Real-Time Workshop software generates and builds C/C++ code

Note When this chapter refers to actions performed by the Target Language
Compiler, including parsing, caching, creating buffers, and so on, the name
Target Language Compiler is spelled out fully. When referring to code written
in the Target Language Compiler syntax, this chapter uses the abbreviation
TLC.

10-2

Introduction

Note The guidelines presented in this chapter are for Real-Time Workshop
users. Even if you do not currently use the Real-Time Workshop code
generator, you should follow the practices presented in this chapter when
writing S-functions, especially if you are creating general-purpose S-functions.

Additional Information
See the Target Language Compiler documentation and other Real-Time
Workshop documentation for more information on the code generation process.

See “Inlining S-Functions” in the Target Language Compiler documentation
for additional information on inlining S-functions.

Classes of Problems Solved by S-Functions
S-functions help solve various kinds of problems you might face when working
with the Simulink and Real-Time Workshop products. These problems include

• Extending the set of algorithms (blocks) provided by the Simulink and
Real-Time Workshop products

• Interfacing legacy (hand-written) code with the Simulink and Real-Time
Workshop products

• Interfacing to hardware through device driver S-functions

• Generating highly optimized code for embedded systems

• Verifying code generated for a subsystem as part of a Simulink simulation

S-functions are written using an application program interface (API) that
allows you to implement generic algorithms in the Simulink environment
with a great deal of flexibility. This flexibility cannot always be maintained
when you use S-functions with the Real-Time Workshop code generator.
For example, it is not possible to access the MATLAB workspace from
an S-function that is used with the code generator. However, using the
techniques presented in this chapter, you can create S-functions for most
applications that work with the Real-Time Workshop generated code.

10-3

10 Writing S-Functions for Real-Time Workshop® Code Generation

Although S-functions provide a generic and flexible solution for implementing
complex algorithms in a Simulink model, the underlying API incurs overhead
in terms of memory and computation resources. Most often the additional
resources are acceptable for real-time rapid prototyping systems. In many
cases, though, additional resources are unavailable in real-time embedded
applications. You can minimize memory and computational requirements by
using the Target Language Compiler technology provided with the Real-Time
Workshop product to inline your S-functions. If you are producing an
S-function for existing code, consider using the Simulink Legacy Code Tool.

Types of S-Functions
The implementation of S-functions changes based on your requirements.
This chapter discusses the typical problems that you may face and how to
create S-functions for applications that need to work with the Simulink and
Real-Time Workshop products. These are some (informally defined) common
situations:

1 “I’m not concerned with efficiency. I just want to write one version of my
algorithm and have it work in the Simulink and Real-Time Workshop
products automatically.”

2 “I have a lot of hand-written code that I need to interface. I want to call
my function from the Simulink and Real-Time Workshop products in an
efficient manner.”

or said another way:

“I want to create a block for my blockset that will be distributed throughout
my organization. I’d like it to be very maintainable with efficient code. I’d
like my algorithm to exist in one place but work with both the Simulink
and Real-Time Workshop products.”

3 “I want to implement a highly optimized algorithm in the Simulink and
Real-Time Workshop products that looks like a built-in block and generates
very efficient code.”

The MathWorks products have adopted terminology for these different
requirements. Respectively, the situations described above map to this
terminology:

10-4

Introduction

1 Noninlined S-function

2 Wrapper S-function

3 Fully inlined S-function

Noninlined S-Functions
A noninlined S-function is a C or C++ MEX S-function that is treated
identically by the Simulink engine and Real-Time Workshop generated code.
In general, you implement your algorithm once according to the S-function
API. The Simulink engine and Real-Time Workshop generated code call the
S-function routines (for example, mdlOutputs) at the appropriate points
during model execution.

Additional memory and computation resources are required for each instance
of a noninlined S-Function block. However, this routine of incorporating
algorithms into Simulink models and Real-Time Workshop applications
is typical during the prototyping phase of a project where efficiency is not
important. The advantage gained by forgoing efficiency is the ability to
change model parameters and structures rapidly.

Writing a noninlined S-function does not involve any TLC coding. Noninlined
S-functions are the default case for the Real-Time Workshop build process
in the sense that once you build a MEX S-function in your model, there is no
additional preparation prior to clicking Build in the Real-Time Workshop
pane of the Configuration Parameters dialog box for your model.

Some restrictions exist concerning the names and locations of noninlined
S-function files when generating makefiles. See “Writing Noninlined
S-Functions” on page 10-9.

Wrapper S-Functions
A wrapper S-function is ideal for interfacing hand-written code or a large
algorithm that is encapsulated within a few procedures. In this situation,
usually the procedures reside in modules that are separate from the MEX
S-function. The S-function module typically contains a few calls to your
procedures. Because the S-function module does not contain any parts of your
algorithm, but only calls your code, it is referred to as a wrapper S-function.

10-5

10 Writing S-Functions for Real-Time Workshop® Code Generation

In addition to the MEX S-function wrapper, you need to create a TLC wrapper
that complements your S-function. The TLC wrapper is similar to the
S-function wrapper in that it contains calls to your algorithm.

Fully Inlined S-Functions
For S-functions to work correctly in the Simulink environment, a certain
amount of overhead code is necessary. When the Real-Time Workshop
software generates code from models that contain S-functions (without
sfunction.tlc files), it embeds some of this overhead code in the generated
code. If you want to optimize your real-time code and eliminate some of the
overhead code, you must inline (or embed) your S-functions. This involves
writing a TLC (sfunction.tlc) file that eliminates all overhead code from
the generated code. The Target Language Compiler processes sfunction.tlc
files to define how to inline your S-function algorithm in the generated code.

Note The term inline should not be confused with the C++ inline keyword.
In Real-Time Workshop terminology, inline means to specify a text string
in place of the call to the general S-function API routines (for example,
mdlOutputs). For example, when a TLC file is used to inline an S-function,
the generated code contains the appropriate C/ C++ code that would normally
appear within the S-function routines and the S-function itself has been
removed from the build process.

A fully inlined S-function builds your algorithm (block) into Real-Time
Workshop generated code in a manner that is indistinguishable from a
built-in block. Typically, a fully inlined S-function requires you to implement
your algorithm twice: once for the Simulink model (C/C++ MEX S-function)
and once for Real-Time Workshop code generation (TLC file). The complexity
of the TLC file depends on the complexity of your algorithm and the level of
efficiency you’re trying to achieve in the generated code. TLC files vary from
simple to complex in structure.

The Simulink Legacy Code Tool can automate the generation of a fully
inlined S-function and a corresponding TLC file based on information that
you register in a Legacy Code Tool data structure. For more information, see
“Integrating Existing C Functions into Simulink Models with the Legacy Code
Tool” in the Simulink Writing S-Functions documentation and “Automating

10-6

Introduction

the Generation of Files for Fully Inlined S-Functions Using Legacy Code
Tool” on page 10-25.

Basic Files Required for Implementation
This section briefly describes what files and functions you need to create
noninlined, wrapper, and fully inlined S-functions.

• Noninlined S-functions require the C or C++ MEX S-function source code
(sfunction.c or sfunction.cpp).

• Wrapper S-functions that inline a call to your algorithm (your C/C++
function) require an sfunction.tlc file.

• Fully inlined S-functions also require an sfunction.tlc file. Fully inlined
S-functions produce the optimal code for a parameterized S-function. This
is an S-function that operates in a specific mode dependent upon fixed
S-function parameters that do not change during model execution. For a
given operating mode, the sfunction.tlc file specifies the exact code that
is generated to implement the algorithm for that mode. For example, the
direct-index lookup table S-function at the end of this chapter contains two
operating modes — one for evenly spaced x-data and one for unevenly
spaced x-data.

Fully inlined S-functions might require the placement of the mdlRTW routine
in your S-function MEX-file sfunction.c or sfunction.cpp. The mdlRTW
routine lets you place information in model.rtw, the record file that specifies
a model, and which the Real-Time Workshop code generator invokes the
Target Language Compiler to process prior to executing sfunction.tlc when
generating code.

Including a mdlRTW routine is useful when you want to introduce nontunable
parameters into your TLC file. Such parameters are generally used to
determine which operating mode is active in a given instance of the S-function.
Based on this information, the TLC file for the S-function can generate highly
efficient, optimal code for that operating mode.

10-7

10 Writing S-Functions for Real-Time Workshop® Code Generation

Guidelines for Writing S-Functions for Use with
Real-Time Workshop Software

• Use only C MEX S-functions with the Real-Time Workshop code generator.
You cannot use Level-1 M-file S-functions with Real-Time Workshop
software.

• To inline an S-function, use the Legacy Code Tool. The Legacy Code Tool
automatically generates fully inlined C MEX S-functions for legacy or
custom code. In addition, the tool generates other files needed to compile
and build the S-function for simulation and generate a masked S-function
block configured to call existing external code. For more information,
see “Integrating Existing C Functions into Simulink Models with the
Legacy Code Tool” in the Simulink documentation and “Automating the
Generation of Files for Fully Inlined S-Functions Using Legacy Code Tool”
on page 10-25.

• If you are rapid prototyping, inlining an S-function might not be necessary.
If you choose not to inline the C MEX S-function, write the S-function,
include it directly in the model, and let the Real-Time Workshop software
generate the code. For more information, see “Writing Noninlined
S-Functions” on page 10-9.

10-8

Writing Noninlined S-Functions

Writing Noninlined S-Functions

In this section...

“About Noninlined S-Functions” on page 10-9
“Guidelines for Writing Noninlined S-Functions” on page 10-9
“Noninlined S-Function Parameter Type Limitations” on page 10-10

About Noninlined S-Functions
Noninlined S-functions are identified by the absence of an sfunction.tlc
file for your S-function. The filename varies depending on your platform.
For example, on a 32–bit Microsoft Windows system, the file name would be
sfunction.mexw32. Type mexext in the MATLAB Command Window to see
which extension your system uses.

Guidelines for Writing Noninlined S-Functions

• The MEX-file cannot call MATLAB functions.

• If the MEX-file uses functions in the MATLAB External Interface libraries,
include the header file cg_sfun.h instead of mex.h or simulink.c. To
handle this case, include the following lines at the end of your S-function:

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? *
#include "simulink.c" /* MEX-file interface mechanism */
#else
#include "cg_sfun.h" /* Code generation registration function */
#endif

• Use only MATLAB API function that the code generator supports, which
include:

mxGetEps
mxGetInf
mxGetM
mxGetN
mxGetNaN
mxGetPr

10-9

10 Writing S-Functions for Real-Time Workshop® Code Generation

mxGetScalar
mxGetString
mxIsEmpty
mxIsFinite
mxIsInf

• MEX library calls are not supported in generated code. To use such calls in
MEX-file and not in the generated code, conditionalize the code as follows:

#ifdef MATLAB_MEX_FILE
#endif

• Use only full matrices that contain only real data.

• Do not specify a return value for calls to mxGetString . If you do specify
a return value, the MEX-file will not compile correctly. Instead, use the
function’s second input argument, which returns a pointer to a string.

• Make sure that the #define s-function_name statement is correct. The
S-function name that you specify must match the S-function’s filename.

• Use the data types real_T and int_T instead of double and int, if possible.
The data types real_T and int_T are more generic and can be used in
multiple environments.

• Provide the Real-Time Workshop build process with the names of all
modules used to build the S-function. You can do this by using the
Real-Time Workshop template make file or the set_param function. For
example, suppose you build your S-function with the following command:

mex sfun_main.c sfun_module1.c sfun_module2.c

You can then use the following call to set_param to include all the required
modules:

set_param(sfun_block, "SFunctionModules","sfun_module1 sfun_module2')

Noninlined S-Function Parameter Type Limitations
Parameters to noninlined S-functions can be of the following types only:

• Double precision

• Characters in scalars, vectors, or 2-D matrices

10-10

Writing Noninlined S-Functions

For more flexibility in the type of parameters you can supply to S-functions or
the operations in the S-function, inline your S-function and consider using an
mdlRTW S-function routine.

Use of other functions from the MATLAB matrix.h API or other MATLAB
APIs, such as mex.h and mat.h, is not supported. If you call unsupported
APIs from an S-function source file, compiler errors occur. See the file
matlabroot/rtw/c/src/rt_matrx.h(.c) for details on supported MATLAB
API functions.

If you use mxGetPr on an empty matrix, the function does not return NULL;
rather, it returns a random value. Therefore, you should protect calls to
mxGetPr with mxIsEmpty.

10-11

10 Writing S-Functions for Real-Time Workshop® Code Generation

Writing Wrapper S-Functions

In this section...

“About Wrapper S-Functions” on page 10-12
“MEX S-Function Wrapper” on page 10-12
“TLC S-Function Wrapper” on page 10-17
“The Inlined Code” on page 10-22

About Wrapper S-Functions
This section describes how to create S-functions that work seamlessly
with the Simulink and Real-Time Workshop products using the wrapper
concept. This section begins by describing how to interface your algorithms in
Simulink models by writing MEX S-function wrappers (sfunction.mex). It
finishes with a description of how to direct the code generator to insert your
algorithm into the generated code by creating a TLC S-function wrapper
(sfunction.tlc).

MEX S-Function Wrapper
Creating S-functions using an S-function wrapper allows you to insert C/C++
code algorithms in Simulink models and Real-Time Workshop generated code
with little or no change to your original C/C++ function. A MEX S-function
wrapper is an S-function that calls code that resides in another module. A
TLC S-function wrapper is a TLC file that specifies how the code generator
should call your code (the same code that was called from the C MEX
S-function wrapper).

Note A MEX S-function wrapper must only be used in the MATLAB version
in which the wrapper is created.

Suppose you have an algorithm (that is, a C function) called my_alg that
resides in the file my_alg.c. You can integrate my_alg into a Simulink model
by creating a MEX S-function wrapper (for example, wrapsfcn.c). Once
this is done, a Simulink model can call my_alg from an S-Function block.

10-12

Writing Wrapper S-Functions

However, the Simulink S-function contains a set of empty functions that the
Simulink engine requires for various API-related purposes. For example,
although only mdlOutputs calls my_alg, the engine calls mdlTerminate as
well, even though this S-function routine performs no action.

You can integrate my_alg into generated code (that is, embed the call to
my_alg in the generated code) by creating a TLC S-function wrapper (for
example, wrapsfcn.tlc). The advantage of creating a TLC S-function
wrapper is that the empty function calls can be eliminated and the overhead
of executing the mdlOutputs function and then the my_alg function can be
eliminated.

Wrapper S-functions are useful when you are creating new algorithms that
are procedural in nature or when you are integrating legacy code into a
Simulink model. However, if you want to create code that is

• Interpretive in nature (that is, highly parameterized by operating modes)

• Heavily optimized (that is, no extra tests to decide what mode the code
is operating in)

then you must create a fully inlined TLC file for your S-function.

The next figure shows the wrapper S-function concept.

10-13

10 Writing S-Functions for Real-Time Workshop® Code Generation

$������%
+�����	B���������������������	���
���	B��������	���������M��
����
���$*

7�
��%�!

������	���

7�
�����
��

�	������	�&��%����
7�
������D�	B��
�����	�
���
�D
������
��0������D
CB��B�	B���������
��
�4�

7�
������
���
,��0�����������
(
�����
��
��
�4���
)

N������	������C

�����������D�	B��������	���
������
��0������D�CB��B
���	����������
��
�4*

7�
��%�!��
���

��0�����������
(
�����
��
��
�4���
)

���	B���:��C��""��
(����������	B��������	���D

��0��������!
7�
������+��������
��
�4*

��0���������
7�
��%�!�
�+
�������$	�����
����	����
��
�4*

��
�4��
���
��
��-�
��
�4���
��-���
(
�����
����%����
)

N�B��
�		�
���������	B��"�	B�	��������	B��������	����
������	�B�(�����:��C��""��
������*����	B�����������:��C��""�������D�	B��
�����	�
���
��������
��0������*

Using an S-function wrapper to import algorithms in your Simulink model
means that the S-function serves as an interface that calls your C/C++
algorithms from mdlOutputs. S-function wrappers have the advantage that
you can quickly integrate large standalone C /C++ programs into your model
without having to make changes to the code.

The following sample model includes an S-function wrapper.

10-14

Writing Wrapper S-Functions

There are two files associated with the wrapsfcn block, the S-function wrapper
and the C/C++ code that contains the algorithm. The S-function wrapper code
for wrapsfcn.c appears below. The first three statements do the following:

1 Defines the name of the S-function (what you enter in the Simulink
S-Function block dialog).

2 Specifies that the S-function is using the level 2 format.

3 Provides access to the SimStruct data structure, which contains pointers to
data used during simulation and code generation and defines macros that
store data in and retrieve data from the SimStruct.

For more information, see “Templates for C S-Functions” in the Simulink
documentation.

#define S_FUNCTION_NAME wrapsfcn

#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

extern real_T my_alg(real_T u); /* Declare my_alg as extern */

/*

* mdlInitializeSizes - initialize the sizes array

*/

static void mdlInitializeSizes(SimStruct *S)

{

ssSetNumSFcnParams(S, 0); /*number of input arguments*/

if (!ssSetNumInputPorts(S, 1)) return;

ssSetInputPortWidth(S, 0, 1);

10-15

10 Writing S-Functions for Real-Time Workshop® Code Generation

ssSetInputPortDirectFeedThrough(S, 0, 1);

if (!ssSetNumOutputPorts(S,1)) return;

ssSetOutputPortWidth(S, 0, 1);

ssSetNumSampleTimes(S, 1);

}

/*

* mdlInitializeSampleTimes - indicate that this S-function runs

* at the rate of the source (driving block)

*/

static void mdlInitializeSampleTimes(SimStruct *S)

{

ssSetSampleTime(S, 0, INHERITED_SAMPLE_TIME);

ssSetOffsetTime(S, 0, 0.0);

}

/*

* mdlOutputs - compute the outputs by calling my_alg, which

* resides in another module, my_alg.c

*/

static void mdlOutputs(SimStruct *S, int_T tid)

{

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

real_T *y = ssGetOutputPortRealSignal(S,0);

*y = my_alg(*uPtrs[0]); /* Call my_alg in mdlOutputs */

}

/*

* mdlTerminate - called when the simulation is terminated.

*/

static void mdlTerminate(SimStruct *S)

{

}

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */

#include "simulink.c" /* MEX-file interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration function */

10-16

Writing Wrapper S-Functions

#endif

The S-function routine mdlOutputs contains a function call to my_alg, which
is the C function containing the algorithm that the S-function performs. This
is the code for my_alg.c:

#ifdef MATLAB_MEX_FILE
#include "tmwtypes.h"
#else
#include "rtwtypes.h"
#endif
real_T my_alg(real_T u)
{
return(u * 2.0);
}

See the section “Header Dependencies When Interfacing Legacy/Custom
Code with Generated Code” on page 2-108 in the Real-Time Workshop
documentation for more information.

The wrapper S-function wrapsfcn calls my_alg, which computes u * 2.0. To
build wrapsfcn.mex, use the following command:

mex wrapsfcn.c my_alg.c

TLC S-Function Wrapper
This section describes how to inline the call to my_alg in the mdlOutputs
section of the generated code. In the above example, the call to my_alg is
embedded in the mdlOutputs section as

*y = my_alg(*uPtrs[0]);

When you are creating a TLC S-function wrapper, the goal is to embed the
same type of call in the generated code.

It is instructive to look at how the code generator executes S-functions that
are not inlined. A noninlined S-function is identified by the absence of the
file sfunction.tlc and the existence of sfunction.mex. When generating
code for a noninlined S-function, the Real-Time Workshop software generates

10-17

10 Writing S-Functions for Real-Time Workshop® Code Generation

a call to mdlOutputs through a function pointer that, in this example, then
calls my_alg.

The wrapper example contains one S-function, wrapsfcn.mex. You must
compile and link an additional module, my_alg, with the generated code.
To do this, specify

set_param('wrapper/S-Function','SFunctionModules','my_alg')

Code Overhead for Noninlined S-Functions
The code generated when using grt.tlc as the system target file without
wrapsfcn.tlc is

<Generated code comments for wrapper model with noninlined wrapsfcn S-function>

#include <math.h>

#include <string.h>

#include "wrapper.h"

#include "wrapper.prm"

/* Start the model */

void mdlStart(void)

{

/* (no start code required) */

}

/* Compute block outputs */

void mdlOutputs(int_T tid)

{

/* Sin Block: <Root>/Sin */

rtB.Sin = rtP.Sin.Amplitude *

sin(rtP.Sin.Frequency * ssGetT(rtS) + rtP.Sin.Phase);

/* Level2 S-Function Block: <Root>/S-Function (wrapsfcn) */

{

/* Noninlined S-functions create a SimStruct object and

* generate a call to S-function routine mdlOutputs

*/

SimStruct *rts = ssGetSFunction(rtS, 0);

10-18

Writing Wrapper S-Functions

sfcnOutputs(rts, tid);

}

/* Outport Block: <Root>/Out */

rtY.Out = rtB.S_Function;

}

/* Perform model update */

void mdlUpdate(int_T tid)

{

/* (no update code required) */

}

/* Terminate function */

void mdlTerminate(void)

{

/* Level2 S-Function Block: <Root>/S-Function (wrapsfcn) */

{

/* Noninlined S-functions require a SimStruct object and

* the call to S-function routine mdlTerminate

*/

SimStruct *rts = ssGetSFunction(rtS, 0);

sfcnTerminate(rts);

}

}

#include "wrapper.reg"

/* [EOF] wrapper.c */

In addition to the overhead outlined above, the wrapper.reg generated file
contains the initialization of the SimStruct for the wrapper S-Function block.
There is one child SimStruct for each S-Function block in your model. You
can significantly reduce this overhead by creating a TLC wrapper for the
S-function.

How to Inline
The generated code makes the call to your S-function, wrapsfcn.c, in
mdlOutputs by using this code:

10-19

10 Writing S-Functions for Real-Time Workshop® Code Generation

SimStruct *rts = ssGetSFunction(rtS, 0);
sfcnOutputs(rts, tid);

This call has computational overhead associated with it. First, the Simulink
engine creates a SimStruct data structure for the S-Function block. Second,
the code generator constructs a call through a function pointer to execute
mdlOutputs, then mdlOutputs calls my_alg. By inlining the call to your
C/C++ algorithm, my_alg, you can eliminate both the SimStruct and the
extra function call, thereby improving the efficiency and reducing the size
of the generated code.

Inlining a wrapper S-function requires an sfunction.tlc file for the
S-function (see the Target Language Compiler documentation for details).
The TLC file must contain the function call to my_alg. The following figure
shows the relationships between the algorithm, the wrapper S-function, and
the sfunction.tlc file.

��
�4��
�������
�
�4��
�������O
�������1����
��B���2
�������P

C��""��*�
����***
����
��0������
����O
����***
������4�
��
�4��6
����***
����P
����***

C��"����*	��
������***
������Q1�2�4�
��
�48Q1�296
������***

�B��7�
��%�!����������	����
,���������3����B�"�B�C�	�
�������	B�������	��
��
�4
����
�	B����	�	����	*

To inline this call, you have to place your function call in an sfunction.tlc
file with the same name as the S-function (in this example, wrapsfcn.tlc).
This causes the Target Language Compiler to override the default method of
placing calls to your S-function in the generated code.

This is the wrapsfcn.tlc file that inlines wrapsfcn.c.

%% File : wrapsfcn.tlc

%% Abstract:

%% Example inlined tlc file for S-function wrapsfcn.c

%%

10-20

Writing Wrapper S-Functions

%implements "wrapsfcn" "C"

%% Function: BlockTypeSetup ==

%% Abstract:

%% Create function prototype in model.h as:

%% "extern real_T my_alg(real_T u);"

%%

%function BlockTypeSetup(block, system) void

%openfile buffer

extern real_T my_alg(real_T u); /* This line is placed in wrapper.h */

%closefile buffer

%<LibCacheFunctionPrototype(buffer)>

%endfunction %% BlockTypeSetup

%% Function: Outputs ===

%% Abstract:

%% y = my_alg(u);

%%

%function Outputs(block, system) Output

/* %<Type> Block: %<Name> */

%assign u = LibBlockInputSignal(0, "", "", 0)

%assign y = LibBlockOutputSignal(0, "", "", 0)

%% PROVIDE THE CALLING STATEMENT FOR "algorithm"

%% The following line is expanded and placed in mdlOutputs within wrapper.c

%<y> = my_alg(%<u>);

%endfunction %% Outputs

The first section of this code inlines the wrapsfcn S-Function block and
generates the code in C:

%implements "wrapsfcn" "C"

The next task is to tell the code generator that the routine my_alg needs
to be declared external in the generated wrapper.h file for any wrapsfcn
S-Function blocks in the model. You only need to do this once for all wrapsfcn
S-Function blocks, so use the BlockTypeSetup function. In this function, you
tell the Target Language Compiler to create a buffer and cache the my_alg
as extern in the wrapper.h generated header file.

10-21

10 Writing S-Functions for Real-Time Workshop® Code Generation

The final step is the inlining of the call to the function my_alg. This is done
by the Outputs function. In this function, you access the block’s input and
output and place a direct call to my_alg. The call is embedded in wrapper.c.

The Inlined Code
The code generated when you inline your wrapper S-function is similar to the
default generated code. The mdlTerminate function no longer contains a call
to an empty function and the mdlOutputs function now directly calls my_alg.

void mdlOutputs(int_T tid)
{

/* Sin Block: <Root>/Sin */
rtB.Sin = rtP.Sin.Amplitude *

sin(rtP.Sin.Frequency * ssGetT(rtS) + rtP.Sin.Phase);

/* S-Function Block: <Root>/S-Function */
rtB.S_Function = my_alg(rtB.Sin); /* Inlined call to my_alg */

/* Outport Block: <Root>/Out */
rtY.Out = rtB.S_Function;

}

In addition, wrapper.reg no longer creates a child SimStruct for the
S-function because the generated code is calling my_alg directly. This
eliminates over 1 K of memory usage.

10-22

Writing Fully Inlined S-Functions

Writing Fully Inlined S-Functions
Continuing the example of the previous section, you could eliminate the
call to my_alg entirely by specifying the explicit code (that is, 2.0 * u) in
wrapsfcn.tlc. This is referred to as a fully inlined S-function. While this
can improve performance, if you are working with a large amount of C/C++
code, this can be a lengthy task. In addition, you now have to maintain your
algorithm in two places, the C/C++ S-function itself and the corresponding
TLC file. However, the performance gains might outweigh the disadvantages.
To inline the algorithm used in this example, in the Outputs section of your
wrapsfcn.tlc file, instead of writing

%<y> = my_alg(%<u>);

use

%<y> = 2.0 * %<u>;

This is the code produced in mdlOutputs:

void mdlOutputs(int_T tid)

{

/* Sin Block: <Root>/Sin */

rtB.Sin = rtP.Sin.Amplitude *

sin(rtP.Sin.Frequency * ssGetT(rtS) + rtP.Sin.Phase);

/* S-Function Block: <Root>/S-Function */

rtB.S_Function = 2.0 * rtB.Sin; /* Explicit embedding of algorithm */

/* Outport Block: <Root>/Out */

rtY.Out = rtB.S_Function;

}

The Target Language Compiler has replaced the call to my_alg with the
algorithm itself.

Multiport S-Function Example
A more advanced multiport inlined S-function example
exists in matlabroot/simulink/src/sfun_multiport.c and

10-23

10 Writing S-Functions for Real-Time Workshop® Code Generation

matlabroot/toolbox/simulink/blocks/tlc_c/sfun_multiport.tlc.
This S-function demonstrates how to create a fully inlined TLC file for an
S-function that contains multiple ports. You might find that looking at this
example helps you to understand fully inlined TLC files.

10-24

Automating the Generation of Files for Fully Inlined S-Functions Using Legacy Code Tool

Automating the Generation of Files for Fully Inlined
S-Functions Using Legacy Code Tool

In this section...

“Legacy Code Tool and Code Generation” on page 10-25
“Generating Inlined S-Function Files for Code Generation Support” on
page 10-26
“Applying Model Code Style Settings to Legacy Functions” on page 10-27
“Addressing Dependencies on Files in Different Locations” on page 10-28
“Deploying Generated S-Functions for Simulation and Code Generation” on
page 10-29

Legacy Code Tool and Code Generation
The Simulink Legacy Code Tool provides a way to automatically generate
fully inlined C MEX S-functions for legacy or custom code that is optimized
for embedded components such as device drivers and lookup tables, that call
existing C or C++ functions.

Note The Legacy Code Tool can interface with C++ functions, but not C++
objects. For a work around, see “Legacy Code Tool Limitations” in the
Simulink documentation.

In addition, you can use the tool to

• Compile and build the generated S-function for simulation

• Generate a masked S-Function block that is configured to call the existing
external code

If you want to include such S-functions in models for which you intend to
generate code, you must use the tool to generate a TLC block file for the
generated S-function. The TLC block file specifies how the generated code for
a model calls the existing C or C++ function.

10-25

10 Writing S-Functions for Real-Time Workshop® Code Generation

If the S-function depends on files in directories other than the directory
containing the S-function dynamically loadable executable file and you
want to maintain those dependencies for building a model that includes the
S-function, you need the tool to also generate an rtwmakecfg.m file for the
S-function. For example, for some applications, such as custom targets, it
might be preferable to locate files in a target-specific location. The Real-Time
Workshop build process looks for the generated rtwmakecfg.m file in the same
directory as the S-function’s dynamically loadable executable and calls the
rtwmakecfg function if the file is found.

For background information and to get started using the Legacy Code Tool,
see “Integrating Existing C Functions into Simulink Models with the Legacy
Code Tool” in the Simulink Writing S-Functions documentation.

Generating Inlined S-Function Files for Code
Generation Support
Depending on your application’s code generation needs, you can choose to do
either of the following to generate code for a model that uses the S-function:

• Generate one .cpp file for the inlined S-function by setting the value of the
Options.singleCPPMexFile field of the Legacy Code Tool data structure to
true (1) before generating the S-function source file from your existing C
function. For example,

def.Options.singleCPPMexFile = 1;
legacy_code('sfcn_cmex_generate', def);

• Generate a source file and TLC block file for the inlined S-function. For
example,

def.Options.singleCPPMexFile

ans =

0
legacy_code('sfcn_cmex_generate', def);
legacy_code('sfcn_tlc_generate', def);

10-26

Automating the Generation of Files for Fully Inlined S-Functions Using Legacy Code Tool

singleCPPMexFile Limitations
You cannot set the singleCPPMexFile field to true (1) if

• Options.language='C++'

• You use one of the following Simulink objects with the IsAlias property
set to true (1):

- Simulink.Bus

- Simulink.AliasType

- Simulink.NumericType

• The Legacy Code Tool function specification includes a void* or void** to
represent scalar work data for a state argument

• - HeaderFiles field of the Legacy Code Tool structure specifies multiple
header files

Applying Model Code Style Settings to Legacy
Functions
To apply the code style specified by a model’s configuration parameters to a
legacy function,

1 Initialize the Legacy Code Tool data structure. For example,

def = legacy_code('initialize');

2 Set the value of the Options.singleCPPMexFile field of the data structure
to true (1). For example,

def.Options.singleCPPMexFile = 1;

To verify the setting, enter

def.Options.singleCPPMexFile

singleCPPMexFile Limitations
You cannot set the singleCPPMexFile field to true (1) if

10-27

10 Writing S-Functions for Real-Time Workshop® Code Generation

• Options.language='C++'

• You use one of the following Simulink objects with the IsAlias property
set to true (1):

- Simulink.Bus

- Simulink.AliasType

- Simulink.NumericType

• The Legacy Code Tool function specification includes a void* or void** to
represent scalar work data for a state argument

• - HeaderFiles field of the Legacy Code Tool structure specifies multiple
header files

Addressing Dependencies on Files in Different
Locations
By default, the Legacy Code Tool assumes that all files on which an S-function
depends reside in the same directory as the S-function’s dynamically loadable
executable file. If your S-function depends on files that reside elsewhere and
you are using the Real-Time Workshop template makefile build process,
you must generate an rtwmakecfg.m file for the S-function. For example, it
is likely that you need to generate this file if your Legacy Code Tool data
structure defines compilation resources as path names.

To generate the rtwmakecfg.m file, call the legacy_code function with
'rtwmakecfg_generate' as the first argument and the name of the Legacy
Code Tool data structure as the second argument.

legacy_code('rtwmakecfg_generate', lct_spec);

If you use multiple registration files in the same directory and generate
an S-function for each file with a single call to legacy_code, as explained
in “Handling Multiple Registration Files” in the Simulink Writing
S-Functions documentation, the call to legacy_code that specifies
'rtwmakecfg_generate' must be common to all registration files.

For example, if defs is defined as an array of Legacy Code Tool structures,
you call legacy_code with 'rtwmakecfg_generate' once.

defs = [defs1(:);defs2(:);defs3(:)];

10-28

Automating the Generation of Files for Fully Inlined S-Functions Using Legacy Code Tool

legacy_code('rtwmakecfg_generate', defs);

For more information, see “Build Support for S-Functions” on page 10-92.

Deploying Generated S-Functions for Simulation and
Code Generation
You can deploy the S-functions that you generate with the Legacy Code Tool
for use by others. To deploy an S-function for simulation and code generation,
you need to share the following files:

• Registration file

• Compiled dynamically loadable executable

• TLC block file

• rtwmakecfg.m file

• All header, source, and include files on which the generated S-function
depends

Users of the deployed files might need to:

• Add the directory that contains the S-function files to the MATLAB path
before using them in a Simulink model.

• Regenerate the rtwmakecfg.m file if the Legacy Code Tool data structure
registers any required files as absolute paths and the location of the files
changes.

10-29

10 Writing S-Functions for Real-Time Workshop® Code Generation

Writing Fully Inlined S-Functions with the mdlRTW Routine

In this section...

“About S-Functions and mdlRTW” on page 10-30
“S-Function RTWdata” on page 10-31
“The Direct-Index Lookup Table Algorithm” on page 10-32
“The Direct-Index Lookup Table Example” on page 10-33

About S-Functions and mdlRTW
You can inline more complex S-functions that use the S-function mdlRTW
routine. The purpose of the mdlRTW routine is to provide the code generation
process with more information about how the S-function is to be inlined,
by creating a parameter record of a nontunable parameter for use with
a TLC file. The mdlRTW routine does this by placing information in
the model.rtw file. The mdlRTW function is described in the text file
matlabroot/simulink/src/sfuntmpl_doc.c.

As an example of how to use the mdlRTW function, this section discusses
the steps you must take to create a direct-index lookup S-function. Lookup
tables are collections of ordered data points of a function. Typically, these
tables use some interpolation scheme to approximate values of the associated
function between known data points. To incorporate the example lookup table
algorithm into a Simulink model, the first step is to write an S-function that
executes the algorithm in mdlOutputs. To produce the most efficient code,
the next step is to create a corresponding TLC file to eliminate computational
overhead and improve the performance of the lookup computations.

For your convenience, the Simulink product provides support for two
general-purpose lookup 1-D and 2-D algorithms. You can use these algorithms
as they are or create a custom lookup table S-function to fit your requirements.
This section demonstrates how to create a 1-D lookup S-function,
sfun_directlook.c, and its corresponding inlined sfun_directlook.tlc
file. (See the Target Language Compiler documentation for more details on
the Target Language Compiler.) This 1-D direct-index lookup table example
demonstrates the following concepts that you need to know to create your
own custom lookup tables:

10-30

Writing Fully Inlined S-Functions with the mdlRTW Routine

• Error checking of S-function parameters

• Caching of information for the S-function that doesn’t change during model
execution

• How to use the mdlRTW function to customize Real-Time Workshop
generated code to produce the optimal code for a given set of block
parameters

• How to generate an inlined TLC file for an S-function in a combination of
the fully inlined form and/or the wrapper form

S-Function RTWdata
There is a property of blocks called RTWdata, which can be used by the Target
Language Compiler when inlining an S-function. RTWdata is a structure of
strings that you can attach to a block. It is saved with the model and placed in
the model.rtw file when generating code. For example, this set of MATLAB
commands,

mydata.field1 = 'information for field1';
mydata.field2 = 'information for field2';
set_param(gcb,'RTWdata',mydata)
get_param(gcb,'RTWdata')

produces this result:

ans =

field1: 'information for field1'
field2: 'information for field2'

Inside the model.rtw file for the associated S-Function block is this
information.

Block {
Type "S-Function"
RTWdata {

field1 "information for field1"
field2 "information for field2"

}

10-31

10 Writing S-Functions for Real-Time Workshop® Code Generation

The Direct-Index Lookup Table Algorithm
The 1-D lookup table block provided in the Simulink library uses interpolation
or extrapolation when computing outputs. This extra accuracy is not needed in
all situations. In this example, you create a lookup table that directly indexes
the output vector (y-data vector) based on the current input (x-data) point.

This direct 1-D lookup example computes an approximate solution p(x) to a
partially known function f(x) at x=x0, given data point pairs (x,y) in the form
of an x-data vector and a y-data vector. For a given data pair (for example, the
i’th pair), y_i = f(x_i). It is assumed that the x-data values are monotonically
increasing. If x0 is outside the range of the x-data vector, the first or last
point is returned.

The parameters to the S-function are

XData, YData, XEvenlySpaced

XData and YData are double vectors of equal length representing the values
of the unknown function. XDataEvenlySpaced is a scalar, 0.0 for false and
1.0 for true. If the XData vector is evenly spaced, XDataEvenlySpaced is 1.0
and more efficient code is generated.

The following graph shows how the parameters XData=[1:6]and
YData=[1,2,7,4,5,9] are handled. For example, if the input (x-value) to the
S-Function block is 3, the output (y-value) is 7.

10-32

Writing Fully Inlined S-Functions with the mdlRTW Routine

The Direct-Index Lookup Table Example
This section shows how to improve the lookup table by inlining a direct-index
S-function with a TLC file. This direct-index lookup table S-function does not
require a TLC file. Here the example uses a TLC file for the direct-index
lookup table S-function to reduce the code size and increase efficiency of the
generated code.

Implementation of the direct-index algorithmwith inlined TLC file requires the
S-function main module, matlabroot/simulink/src/sfun_directlook.c,

10-33

10 Writing S-Functions for Real-Time Workshop® Code Generation

and a corresponding matlabroot/simulink/src/lookup_index.c module.
The lookup_index.c module contains the GetDirectLookupIndex function
that is used to locate the index in the XData for the current x input value
when the XData is unevenly spaced. The GetDirectLookupIndex routine is
called from both the S-function and the generated code. Here the example
uses the wrapper concept for sharing C/C++ code between Simulink MEX-files
and the generated code.

If the XData is evenly spaced, then both the S-function main module and the
generated code contain the lookup algorithm (not a call to the algorithm) to
compute the y-value of a given x-value, because the algorithm is short. This
demonstrates the use of a fully inlined S-function for generating optimal code.

The inlined TLC file, which either performs a
wrapper call or embeds the optimal C/C++ code, is
matlabroot/toolbox/simulink/blocks/tlc_c/sfun_directlook.tlc (see
the example in “mdlRTW Usage” on page 10-35).

Error Handling
In this example, the mdlCheckParameters routine verifies that

• The new parameter settings are correct.

• XData and YData are vectors of the same length containing real finite
numbers.

• XDataEvenlySpaced is a scalar.

• The XData vector is a monotonically increasing vector and evenly spaced if
needed.

The mdlInitializeSizes function explicitly calls mdlCheckParameters
after it verifies that the number of parameters passed to the S-function is
correct. After the Simulink engine calls mdlInitializeSizes, it then calls
mdlCheckParameters whenever you change the parameters or there is a need
to reevaluate them.

User Data Caching
The mdlStart routine shows how to cache information that does not change
during the simulation (or while the generated code is executing). The example

10-34

Writing Fully Inlined S-Functions with the mdlRTW Routine

caches the value of the XDataEvenlySpaced parameter in UserData, a field of
the SimStruct. The following line in mdlInitializeSizes tells the Simulink
engine to disallow changes to XDataEvenlySpaced.

ssSetSFcnParamTunable(S, iParam, SS_PRM_NOT_TUNABLE);

During execution, mdlOutputs accesses the value of XDataEvenlySpaced
from UserData rather than calling the mxGetPr MATLAB API function. This
increases performance.

mdlRTW Usage
The Real-Time Workshop code generator calls the mdlRTW routine while
generating the model.rtw file. To produce optimal code for your Simulink
model, you can add information to the model.rtw file about the mode in which
your S-Function block is operating.

The following example adds parameter settings to the model.rtw file.
The parameter settings do not change during execution. In this case,
the XDataEvenlySpaced S-function parameter cannot change during
execution (ssSetSFcnParamTunable was specified as false (0) for it in
mdlInitializeSizes). The example writes it out as a parameter setting
(XSpacing) using the function ssWriteRTWParamSettings.

Because xData and yData are registered as run-time parameters in
mdlSetWorkWidths, the code generator handles writing to the model.rtw
file automatically.

Before examining the S-function and the inlined TLC file, consider the
generated code for the following model.

10-35

10 Writing S-Functions for Real-Time Workshop® Code Generation

The model uses evenly spaced XData in the top S-Function block and unevenly
spaced XData in the bottom S-Function block. When creating this model, you
need to specify the following for each S-Function block.

set_param(`sfun_directlook_ex/S-Function','SFunctionModules','lookup_index')

set_param(`sfun_directlook_ex/S-Function1','SFunctionModules','lookup_index')

This informs the Real-Time Workshop build process that the module
lookup_index.c is needed when creating the executable.

When generating code for this model, the Real-Time Workshop software uses
the S-function’s mdlRTW method to generate a model.rtw file with the value
EvenlySpaced for the XSpacing parameter for the top S-Function block,
and the value UnEvenlySpaced for the XSpacing parameter for the bottom
S-Function block. The TLC-file uses the value of XSpacing to determine
what algorithm to include in the generated code. The generated code
contains the lookup algorithm when the XData is evenly spaced, but calls
the GetDirectLookupIndex routine when the XData is unevenly spaced The
generated model.c or model.cpp code for the lookup table example model is

/*

* sfun_directlook_ex.c

*

* Real-Time Workshop code generation for Simulink model

* "sfun_directlook_ex.mdl".

*

* Model Version : 1.2

10-36

Writing Fully Inlined S-Functions with the mdlRTW Routine

* Real-Time Workshop version : 6.0 (R14) 06-Apr-2004

* C source code generated on : Fri Apr 09 09:15:12 2004

*/

#include "sfun_directlook_ex.h"

#include "sfun_directlook_ex_private.h"

/* External output (root outports fed by signals with auto storage) */

ExternalOutputs_sfun_directlook_ex sfun_directlook_ex_Y;

/* Real-time model */

rtModel_sfun_directlook_ex sfun_directlook_ex_M_;

rtModel_sfun_directlook_ex *sfun_directlook_ex_M = &sfun_directlook_ex_M_;

/* Model output function */

static void sfun_directlook_ex_output(int_T tid)

{

/* local block i/o variables */

real_T rtb_SFunction_h;

real_T rtb_temp1;

/* Sin: '<Root>/Sine Wave' */

rtb_temp1 = sfun_directlook_ex_P.SineWave_Amp *

sin(sfun_directlook_ex_P.SineWave_Freq * sfun_directlook_ex_M->Timing.t[0] +

sfun_directlook_ex_P.SineWave_Phase) + sfun_directlook_ex_P.SineWave_Bias;

/* Code that is inlined for the top S-function block in the

* sfun_directlook_ex model

*/

/* S-Function Block: <Root>/S-Function */

{

const real_T *xData = &sfun_directlook_ex_P.SFunction_XData[0];

const real_T *yData = &sfun_directlook_ex_P.SFunction_YData[0];

real_T spacing = xData[1] - xData[0];

if (rtb_temp1 <= xData[0]) {

rtb_SFunction_h = yData[0];

} else if (rtb_temp1 >= yData[20]) {

10-37

10 Writing S-Functions for Real-Time Workshop® Code Generation

rtb_SFunction_h = yData[20];

} else {

int_T idx = (int_T)((rtb_temp1 - xData[0]) / spacing);

rtb_SFunction_h = yData[idx];

}

}

/* Outport: '<Root>/Out1' */

sfun_directlook_ex_Y.Out1 = rtb_SFunction_h;

/* Code that is inlined for the bottom S-function block in the

* sfun_directlook_ex model

*/

/* S-Function Block: <Root>/S-Function1 */

{

const real_T *xData = &sfun_directlook_ex_P.SFunction1_XData[0];

const real_T *yData = &sfun_directlook_ex_P.SFunction1_YData[0];

int_T idx;

idx = GetDirectLookupIndex(xData, 5, rtb_temp1);

rtb_temp1 = yData[idx];

}

/* Outport: '<Root>/Out2' */

sfun_directlook_ex_Y.Out2 = rtb_temp1;

}

/* Model update function */

static void sfun_directlook_ex_update(int_T tid)

{

/* Update absolute time for base rate */

if(!(++sfun_directlook_ex_M->Timing.clockTick0))

++sfun_directlook_ex_M->Timing.clockTickH0;

sfun_directlook_ex_M->Timing.t[0] = sfun_directlook_ex_M->Timing.clockTick0 *

sfun_directlook_ex_M->Timing.stepSize0 +

sfun_directlook_ex_M->Timing.clockTickH0 *

sfun_directlook_ex_M->Timing.stepSize0 * 0x10000;

10-38

Writing Fully Inlined S-Functions with the mdlRTW Routine

{

/* Update absolute timer for sample time: [0.1s, 0.0s] */

if(!(++sfun_directlook_ex_M->Timing.clockTick1))

++sfun_directlook_ex_M->Timing.clockTickH1;

sfun_directlook_ex_M->Timing.t[1] = sfun_directlook_ex_M->Timing.clockTick1

* sfun_directlook_ex_M->Timing.stepSize1 +

sfun_directlook_ex_M->Timing.clockTickH1 *

sfun_directlook_ex_M->Timing.stepSize1 * 0x10000;

}

}

...

matlabroot/simulink/src/sfun_directlook.c

/*

* File : sfun_directlook.c

* Abstract:

*

* Direct 1-D lookup. Here we are trying to compute an approximate

* solution, p(x) to an unknown function f(x) at x=x0, given data point

* pairs (x,y) in the form of a x data vector and a y data vector. For a

* given data pair (say the i'th pair), we have y_i = f(x_i). It is

* assumed that the x data values are monotonically increasing. If the

* x0 is outside of the range of the x data vector, then the first or

* last point will be returned.

*

* This function returns the "nearest" y0 point for a given x0. No

* interpolation is performed.

*

* The S-function parameters are:

* XData - double vector

* YData - double vector

* XDataEvenlySpacing - double scalar 0 (false) or 1 (true)

* The third parameter cannot be changed during simulation.

*

* To build:

* mex sfun_directlook.c lookup_index.c

*

10-39

10 Writing S-Functions for Real-Time Workshop® Code Generation

* Copyright 1990-2004 The MathWorks, Inc.

* $Revision: 1.1.4.94 $

*/

#define S_FUNCTION_NAME sfun_directlook

#define S_FUNCTION_LEVEL 2

#include <math.h>

#include "simstruc.h"

#include <float.h>

/* use utility function IsRealVect() */

#if defined(MATLAB_MEX_FILE)

#include "sfun_slutils.h"

#endif

/*================*

* Build checking *

================/

#if !defined(MATLAB_MEX_FILE)

/*

* This file cannot be used directly with Real-Time Workshop. However,

* this S-function does work with Real-Time Workshop via

* the Target Language Compiler technology. See

* matlabroot/toolbox/simulink/blocks/tlc_c/sfun_directlook.tlc

* for the C version

*/

error This_file_can_be_used_only_during_simulation_inside_Simulink

#endif

/*=========*

* Defines *

=========/

#define XVECT_PIDX 0

#define YVECT_PIDX 1

#define XDATAEVENLYSPACED_PIDX 2

#define NUM_PARAMS 3

10-40

Writing Fully Inlined S-Functions with the mdlRTW Routine

#define XVECT(S) ssGetSFcnParam(S,XVECT_PIDX)

#define YVECT(S) ssGetSFcnParam(S,YVECT_PIDX)

#define XDATAEVENLYSPACED(S) ssGetSFcnParam(S,XDATAEVENLYSPACED_PIDX)

/*==============*

* misc defines *

==============/

#if !defined(TRUE)

#define TRUE 1

#endif

#if !defined(FALSE)

#define FALSE 0

#endif

/*===========*

* typedef's *

===========/

typedef struct SFcnCache_tag {

boolean_T evenlySpaced;

} SFcnCache;

/*===*

* Prototype define for the function in separate file lookup_index.c *

===/

extern int_T GetDirectLookupIndex(const real_T *x, int_T xlen, real_T u);

/*====================*

* S-function methods *

====================/

#define MDL_CHECK_PARAMETERS /* Change to #undef to remove function */

#if defined(MDL_CHECK_PARAMETERS) && defined(MATLAB_MEX_FILE)

/* Function: mdlCheckParameters ==

* Abstract:

* This routine will be called after mdlInitializeSizes, whenever

10-41

10 Writing S-Functions for Real-Time Workshop® Code Generation

* parameters change or get re-evaluated. The purpose of this routine is

* to verify that the new parameter setting are correct.

*

* You should add a call to this routine from mdlInitalizeSizes

* to check the parameters. After setting your sizes elements, you should:

* if (ssGetSFcnParamsCount(S) == ssGetNumSFcnParams(S)) {

* mdlCheckParameters(S);

* }

*/

static void mdlCheckParameters(SimStruct *S)

{

if (!IsRealVect(XVECT(S))) {

ssSetErrorStatus(S,"1st, X-vector parameter must be a real finite "

" vector");

return;

}

if (!IsRealVect(YVECT(S))) {

ssSetErrorStatus(S,"2nd, Y-vector parameter must be a real finite "

"vector");

return;

}

/*

* Verify that the dimensions of X and Y are the same.

*/

if (mxGetNumberOfElements(XVECT(S)) != mxGetNumberOfElements(YVECT(S)) ||

mxGetNumberOfElements(XVECT(S)) == 1) {

ssSetErrorStatus(S,"X and Y-vectors must be of the same dimension "

"and have at least two elements");

return;

}

/*

* Verify we have a valid XDataEvenlySpaced parameter.

*/

if ((!mxIsNumeric(XDATAEVENLYSPACED(S)) &&

!mxIsLogical(XDATAEVENLYSPACED(S))) ||

mxIsComplex(XDATAEVENLYSPACED(S)) ||

10-42

Writing Fully Inlined S-Functions with the mdlRTW Routine

mxGetNumberOfElements(XDATAEVENLYSPACED(S)) != 1) {

ssSetErrorStatus(S,"3rd, X-evenly-spaced parameter must be logical

scalar");

return;

}

/*

* Verify x-data is correctly spaced.

*/

{

int_T i;

boolean_T spacingEqual;

real_T *xData = mxGetPr(XVECT(S));

int_T numEl = mxGetNumberOfElements(XVECT(S));

/*

* spacingEqual is TRUE if user XDataEvenlySpaced

*/

spacingEqual = (mxGetScalar(XDATAEVENLYSPACED(S)) != 0.0);

if (spacingEqual) { /* XData is 'evenly-spaced' */

boolean_T badSpacing = FALSE;

real_T spacing = xData[1] - xData[0];

real_T space;

if (spacing <= 0.0) {

badSpacing = TRUE;

} else {

real_T eps = DBL_EPSILON;

for (i = 2; i < numEl; i++) {

space = xData[i] - xData[i-1];

if (space <= 0.0 ||

fabs(space-spacing) >= 128.0*eps*spacing){

badSpacing = TRUE;

break;

}

}

}

10-43

10 Writing S-Functions for Real-Time Workshop® Code Generation

if (badSpacing) {

ssSetErrorStatus(S,"X-vector must be an evenly spaced "

"strictly monotonically increasing vector");

return;

}

} else { /* XData is 'unevenly-spaced' */

for (i = 1; i < numEl; i++) {

if (xData[i] <= xData[i-1]) {

ssSetErrorStatus(S,"X-vector must be a strictly "

"monotonically increasing vector");

return;

}

}

}

}

}

#endif /* MDL_CHECK_PARAMETERS */

/* Function: mdlInitializeSizes ==

* Abstract:

* The sizes information is used by Simulink to determine the S-function

* block's characteristics (number of inputs, outputs, states, and so on).

*/

static void mdlInitializeSizes(SimStruct *S)

{

ssSetNumSFcnParams(S, NUM_PARAMS); /* Number of expected parameters */

/*

* Check parameters passed in, providing the correct number was specified

* in the S-function dialog box. If an incorrect number of parameters

* was specified, Simulink will detect the error since ssGetNumSFcnParams

* and ssGetSFcnParamsCount will differ.

* ssGetNumSFcnParams - This sets the number of parameters your

* S-function expects.

* ssGetSFcnParamsCount - This is the number of parameters entered by

* the user in the Simulink S-function dialog box.

*/

#if defined(MATLAB_MEX_FILE)

10-44

Writing Fully Inlined S-Functions with the mdlRTW Routine

if (ssGetNumSFcnParams(S) == ssGetSFcnParamsCount(S)) {

mdlCheckParameters(S);

if (ssGetErrorStatus(S) != NULL) {

return;

}

} else {

return; /* Parameter mismatch will be reported by Simulink */

}

#endif

{

int iParam = 0;

int nParam = ssGetNumSFcnParams(S);

for (iParam = 0; iParam < nParam; iParam++)

{

switch (iParam)

{

case XDATAEVENLYSPACED_PIDX:

ssSetSFcnParamTunable(S, iParam, SS_PRM_NOT_TUNABLE);

break;

default:

ssSetSFcnParamTunable(S, iParam, SS_PRM_TUNABLE);

break;

}

}

}

ssSetNumContStates(S, 0);

ssSetNumDiscStates(S, 0);

if (!ssSetNumInputPorts(S, 1)) return;

ssSetInputPortWidth(S, 0, DYNAMICALLY_SIZED);

ssSetInputPortDirectFeedThrough(S, 0, 1);

ssSetInputPortOptimOpts(S, 0, SS_REUSABLE_AND_LOCAL);

ssSetInputPortOverWritable(S, 0, TRUE);

10-45

10 Writing S-Functions for Real-Time Workshop® Code Generation

if (!ssSetNumOutputPorts(S, 1)) return;

ssSetOutputPortWidth(S, 0, DYNAMICALLY_SIZED);

ssSetOutputPortOptimOpts(S, 0, SS_REUSABLE_AND_LOCAL);

ssSetNumSampleTimes(S, 1);

ssSetOptions(S,

SS_OPTION_WORKS_WITH_CODE_REUSE |

SS_OPTION_EXCEPTION_FREE_CODE |

SS_OPTION_USE_TLC_WITH_ACCELERATOR);

} /* mdlInitializeSizes */

/* Function: mdlInitializeSampleTimes ==

* Abstract:

* The lookup inherits its sample time from the driving block.

*/

static void mdlInitializeSampleTimes(SimStruct *S)

{

ssSetSampleTime(S, 0, INHERITED_SAMPLE_TIME);

ssSetOffsetTime(S, 0, 0.0);

ssSetModelReferenceSampleTimeDefaultInheritance(S);

} /* end mdlInitializeSampleTimes */

/* Function: mdlSetWorkWidths ===

* Abstract:

* Set up the [X,Y] data as run-time parameters

* that is, these values can be changed during execution.

*/

#define MDL_SET_WORK_WIDTHS

static void mdlSetWorkWidths(SimStruct *S)

{

const char_T *rtParamNames[] = {"XData","YData"};

ssRegAllTunableParamsAsRunTimeParams(S, rtParamNames);

}

#define MDL_START /* Change to #undef to remove function */

10-46

Writing Fully Inlined S-Functions with the mdlRTW Routine

#if defined(MDL_START)

/* Function: mdlStart ==

* Abstract:

* Here we cache the state (true/false) of the XDATAEVENLYSPACED parameter.

* We do this primarily to illustrate how to "cache" parameter values (or

* information which is computed from parameter values) which do not change

* for the duration of the simulation (or in the generated code). In this

* case, rather than repeated calls to mxGetPr, we save the state once.

* This results in a slight increase in performance.

*/

static void mdlStart(SimStruct *S)

{

SFcnCache *cache = malloc(sizeof(SFcnCache));

if (cache == NULL) {

ssSetErrorStatus(S,"memory allocation error");

return;

}

ssSetUserData(S, cache);

if (mxGetScalar(XDATAEVENLYSPACED(S)) != 0.0){

cache->evenlySpaced = TRUE;

}else{

cache->evenlySpaced = FALSE;

}

}

#endif /* MDL_START */

/* Function: mdlOutputs ==

* Abstract:

* In this function, you compute the outputs of your S-function

* block. Generally outputs are placed in the output vector, ssGetY(S).

*/

static void mdlOutputs(SimStruct *S, int_T tid)

{

SFcnCache *cache = ssGetUserData(S);

10-47

10 Writing S-Functions for Real-Time Workshop® Code Generation

real_T *xData = mxGetPr(XVECT(S));

real_T *yData = mxGetPr(YVECT(S));

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

real_T *y = ssGetOutputPortRealSignal(S,0);

int_T ny = ssGetOutputPortWidth(S,0);

int_T xLen = mxGetNumberOfElements(XVECT(S));

int_T i;

/*

* When the XData is evenly spaced, we use the direct lookup algorithm

* to calculate the lookup

*/

if (cache->evenlySpaced) {

real_T spacing = xData[1] - xData[0];

for (i = 0; i < ny; i++) {

real_T u = *uPtrs[i];

if (u <= xData[0]) {

y[i] = yData[0];

} else if (u >= xData[xLen-1]) {

y[i] = yData[xLen-1];

} else {

int_T idx = (int_T)((u - xData[0])/spacing);

y[i] = yData[idx];

}

}

} else {

/*

* When the XData is unevenly spaced, we use a bisection search to

* locate the lookup index.

*/

for (i = 0; i < ny; i++) {

int_T idx = GetDirectLookupIndex(xData,xLen,*uPtrs[i]);

y[i] = yData[idx];

}

}

} /* end mdlOutputs */

10-48

Writing Fully Inlined S-Functions with the mdlRTW Routine

/* Function: mdlTerminate ==

* Abstract:

* Free the cache which was allocated in mdlStart.

*/

static void mdlTerminate(SimStruct *S)

{

SFcnCache *cache = ssGetUserData(S);

if (cache != NULL) {

free(cache);

}

} /* end mdlTerminate */

#define MDL_RTW /* Change to #undef to remove function */

#if defined(MDL_RTW) && (defined(MATLAB_MEX_FILE) || defined(NRT))

/* Function: mdlRTW ==

* Abstract:

* This function is called when Real-Time Workshop is generating the

* model.rtw file. In this routine, you can call the following functions

* which add fields to the model.rtw file.

*

* Important! Since this s-function has this mdlRTW method, it is required

* to have a correcponding .tlc file so as to work with RTW. You will find

* the sfun_directlook.tlc in <matlaroot>/toolbox/simulink/blocks/tlc_c/.

*/

static void mdlRTW(SimStruct *S)

{

/*

* Write out the spacing setting as a param setting, that is, this cannot be

* changed during execution.

*/

{

boolean_T even = (mxGetScalar(XDATAEVENLYSPACED(S)) != 0.0);

if (!ssWriteRTWParamSettings(S, 1,

SSWRITE_VALUE_QSTR,

"XSpacing",

even ? "EvenlySpaced" : "UnEvenlySpaced")){

10-49

10 Writing S-Functions for Real-Time Workshop® Code Generation

return;/* An error occurred which will be reported by Simulink */

}

}

}

#endif /* MDL_RTW */

/*=============================*

* Required S-function trailer *

=============================/

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */

#include "simulink.c" /* MEX-file interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration function */

#endif

/* [EOF] sfun_directlook.c */

matlabroot/simulink/src/lookup_index.c

/* File : lookup_index.c

* Abstract:

*

* Contains a routine used by the S-function sfun_directlookup.c to

* compute the index in a vector for a given data value.

*

* Copyright 1990-2004 The MathWorks, Inc.

* $Revision: 1.1.4.94 $

*/

#include "tmwtypes.h"

/*

* Function: GetDirectLookupIndex ==

* Abstract:

* Using a bisection search to locate the lookup index when the x-vector

* isn't evenly spaced.

*

10-50

Writing Fully Inlined S-Functions with the mdlRTW Routine

* Inputs:

* *x : Pointer to table, x[0]x[xlen-1]

* xlen : Number of values in xtable

* u : input value to look up

*

* Output:

* idx : the index into the table such that:

* if u is negative

* x[idx] <= u < x[idx+1]

* else

* x[idx] < u <= x[idx+1]

*/

int_T GetDirectLookupIndex(const real_T *x, int_T xlen, real_T u)

{

int_T idx = 0;

int_T bottom = 0;

int_T top = xlen-1;

/*

* Deal with the extreme cases first:

*

* i] u <= x[bottom] then idx = bottom

* ii] u >= x[top] then idx = top-1

*

*/

if (u <= x[bottom]) {

return(bottom);

} else if (u >= x[top]) {

return(top);

}

/*

* We have: x[bottom] < u < x[top], onward

* with search for the appropriate index ...

*/

for (;;) {

idx = (bottom + top)/2;

if (u < x[idx]) {

top = idx;

} else if (u > x[idx+1]) {

10-51

10 Writing S-Functions for Real-Time Workshop® Code Generation

bottom = idx + 1;

} else {

/*

* We have: x[idx] <= u <= x[idx+1], only need

* to do two more checks and we have the answer

*/

if (u < 0) {

/*

* We want right continuity, that is,

* if u == x[idx+1]

* then x[idx+1] <= u < x[idx+2]

* else x[idx] <= u < x[idx+1]

*/

return((u == x[idx+1]) ? (idx+1) : idx);

} else {

/*

* We want left continuity, that is,

* if u == x[idx]

* then x[idx-1] < u <= x[idx]

* else x[idx] < u <= x[idx+1]

*/

return((u == x[idx]) ? (idx-1) : idx);

}

}

}

} /* end GetDirectLookupIndex */

/* [EOF] lookup_index.c */

matlabroot/toolbox/simulink/blocks/tlc_c/sfun_directlook.tlc

%% File : sfun_directlook.tlc

%% Abstract:

%% Level-2 S-function sfun_directlook block target file.

%% It is using direct lookup algorithm without interpolation

%%

%% Copyright 1990-2004 The MathWorks, Inc.

%% $Revision: 1.1.4.94 $

10-52

Writing Fully Inlined S-Functions with the mdlRTW Routine

%implements "sfun_directlook" "C"

%% Function: BlockTypeSetup ==

%% Abstract:

%% Place include and function prototype in the model's header file.

%%

%function BlockTypeSetup(block, system) void

%% To add this external function's prototype in the header of the generated

%% file.

%%

%openfile buffer

extern int_T GetDirectLookupIndex(const real_T *x, int_T xlen, real_T u);

%closefile buffer

%<LibCacheFunctionPrototype(buffer)>

%endfunction

%% Function: mdlOutputs ==

%% Abstract:

%% Direct 1-D lookup table S-function example.

%% Here we are trying to compute an approximate solution, p(x) to an

%% unknown function f(x) at x=x0, given data point pairs (x,y) in the

%% form of a x data vector and a y data vector. For a given data pair

%% (say the i'th pair), we have y_i = f(x_i). It is assumed that the x

%% data values are monotonically increasing. If the first or last x is

%% outside of the range of the x data vector, then the first or last

%% point will be returned.

%%

%% This function returns the "nearest" y0 point for a given x0.

%% No interpolation is performed.

%%

%% The S-function parameters are:

%% XData

%% YData

%% XEvenlySpaced: 0 or 1

%% The third parameter cannot be changed during execution and is

%% written to the model.rtw file in XSpacing filed of the SFcnParamSettings

10-53

10 Writing S-Functions for Real-Time Workshop® Code Generation

%% record as "EvenlySpaced" or "UnEvenlySpaced". The first two parameters

%% can change during execution and show up in the parameter vector.

%%

%function Outputs(block, system) Output

/* %<Type> Block: %<Name> */

{

%assign rollVars = ["U", "Y"]

%%

%% Load XData and YData as local variables

%%

const real_T *xData = %<LibBlockParameterAddr(XData, "", "", 0)>;

const real_T *yData = %<LibBlockParameterAddr(YData, "", "", 0)>;

%assign xDataLen = SIZE(XData.Value, 1)

%%

%% When the XData is evenly spaced, we use the direct lookup algorithm

%% to locate the lookup index.

%%

%if SFcnParamSettings.XSpacing == "EvenlySpaced"

real_T spacing = xData[1] - xData[0];

%roll idx = RollRegions, lcv = RollThreshold, block, "Roller", rollVars

%assign u = LibBlockInputSignal(0, "", lcv, idx)

%assign y = LibBlockOutputSignal(0, "", lcv, idx)

if (%<u> <= xData[0]) {

%<y> = yData[0];

} else if (%<u> >= yData[%<xDataLen-1>]) {

%<y> = yData[%<xDataLen-1>];

} else {

int_T idx = (int_T)((%<u> - xData[0]) / spacing);

%<y> = yData[idx];

}

%%

%% Generate an empty line if we are not rolling,

%% so that it looks nice in the generated code.

%%

%if lcv == ""

%endif

%endroll

%else

10-54

Writing Fully Inlined S-Functions with the mdlRTW Routine

%% When the XData is unevenly spaced, we use a bisection search to

%% locate the lookup index.

int_T idx;

%assign xDataAddr = LibBlockParameterAddr(XData, "", "", 0)

%roll idx = RollRegions, lcv = RollThreshold, block, "Roller", rollVars

%assign u = LibBlockInputSignal(0, "", lcv, idx)

idx = GetDirectLookupIndex(xData, %<xDataLen>, %<u>);

%assign y = LibBlockOutputSignal(0, "", lcv, idx)

%<y> = yData[idx];

%%

%% Generate an empty line if we are not rolling,

%% so that it looks nice in the generated code.

%%

%if lcv == ""

%endif

%endroll

%endif

}

%endfunction

%% EOF: sfun_directlook.tlc

10-55

10 Writing S-Functions for Real-Time Workshop® Code Generation

Guidelines for Writing Inlined S-Functions
• Consider using the block property RTWdata (see “S-Function RTWdata” on
page 10-31). This property is a structure of strings that you can associate
with a block. The code generator saves the structure with the model in
the model.rtw file and makes the .rtw file more readable. For example,
suppose you enter the following commands in the MATLAB Command
Window:

mydata.field1 = 'information for field1';
mydata.field2 = 'information for field2';
set_param(sfun_block, 'RTWdata', mydata);

The .rtw file that Real-Time Workshop generates for the block, will include
the comments specified in the structure mydata.

• Consider using the mdlRTW function to inline your C MEX S-function in the
generated code. This is useful when you want to

- Rename tunable parameters in the generated code

- Introduce nontunable parameters into a TLC file

10-56

Writing S-Functions That Support Expression Folding

Writing S-Functions That Support Expression Folding

In this section...

“Introduction” on page 10-57
“Categories of Output Expressions” on page 10-58
“Acceptance or Denial of Requests for Input Expressions” on page 10-63
“Utilizing Expression Folding in Your TLC Block Implementation” on
page 10-67

Introduction
This section describes how you can take advantage of expression folding to
increase the efficiency of code generated by your own inlined S-Function
blocks, by calling macros provided in the S-Function API. This section
assumes that you are familiar with:

• Writing inlined S-functions (see “Overview of S-Functions” in the Simulink
Writing S-Functions documentation).

• The Target Language Compiler (see the Target Language Compiler
documentation)

The S-Function API lets you specify whether a given S-Function block should
nominally accept expressions at a given input port. A block should not always
accept expressions. For example, if the address of the signal at the input
is used, expressions should not be accepted at that input, because it is not
possible to take the address of an expression.

The S-Function API also lets you specify whether an expression can represent
the computations associated with a given output port. When you request an
expression at a block’s input or output port, the Simulink engine determines
whether or not it can honor that request, given the block’s context. For
example, the engine might deny a block’s request to output an expression if the
destination block does not accept expressions at its input, if the destination
block has an update function, or if there are multiple output destinations.

10-57

10 Writing S-Functions for Real-Time Workshop® Code Generation

The decision to honor or deny a request to output an expression can also
depend on the category of output expression the block uses (see “Categories of
Output Expressions” on page 10-58).

The sections that follow explain

• When and how you can request that a block accept expressions at an input
port

• When and how you can request that a block generate expressions at an
outport

• The conditions under which the Simulink engine will honor or deny such
requests

To take advantage of expression folding in your S-functions, you need to
understand when it is appropriate to request acceptance and generation of
expressions for specific blocks. It is not necessary for you to understand the
algorithm by which the Simulink engine chooses to accept or deny these
requests. However, if you want to trace between the model and the generated
code, it is helpful to understand some of the more common situations that
lead to denial of a request.

Categories of Output Expressions
When you implement a C MEX S-function, you can specify whether the code
corresponding to a block’s output is to be generated as an expression. If
the block generates an expression, you must specify that the expression is
constant, trivial, or generic.

A constant output expression is a direct access to one of the block’s
parameters. For example, the output of a Constant block is defined as a
constant expression because the output expression is simply a direct access to
the block’s Value parameter.

A trivial output expression is an expression that can be repeated, without any
performance penalty, when the output port has multiple output destinations.
For example, the output of a Unit Delay block is defined as a trivial expression
because the output expression is simply a direct access to the block’s state.
Because the output expression involves no computations, it can be repeated
more than once without degrading the performance of the generated code.

10-58

Writing S-Functions That Support Expression Folding

A generic output expression is an expression that should be assumed to have a
performance penalty if repeated. As such, a generic output expression is not
suitable for repeating when the output port has multiple output destinations.
For instance, the output of a Sum block is a generic rather than a trivial
expression because it is costly to recompute a Sum block output expression as
an input to multiple blocks.

Examples of Trivial and Generic Output Expressions
Consider the following block diagram. The Delay block has multiple
destinations, yet its output is designated as a trivial output expression, so that
it can be used more than once without degrading the efficiency of the code.

The following code excerpt shows code generated from the Unit Delay block
in this block diagram. The three root outputs are directly assigned from the
state of the Unit Delay block, which is stored in a field of the global data
structure rtDWork. Since the assignment is direct, involving no expressions,
there is no performance penalty associated with using the trivial expression
for multiple destinations.

void MdlOutputs(int_T tid)
{

...
/* Outport: <Root>/Out1 incorporates:

* UnitDelay: <Root>/Unit Delay */
rtY.Out1 = rtDWork.Unit_Delay_DSTATE;

/* Outport: <Root>/Out2 incorporates:
* UnitDelay: <Root>/Unit Delay */

rtY.Out2 = rtDWork.Unit_Delay_DSTATE;

10-59

10 Writing S-Functions for Real-Time Workshop® Code Generation

/* Outport: <Root>/Out3 incorporates:
* UnitDelay: <Root>/Unit Delay */

rtY.Out3 = rtDWork.Unit_Delay_DSTATE;

...
}

On the other hand, consider the Sum blocks in the following model:

The upper Sum block in the preceding model generates the signal labeled
non_triv. Computation of this output signal involves two multiplications
and an addition. If the Sum block’s output were permitted to generate
an expression even when the block had multiple destinations, the block’s
operations would be duplicated in the generated code. In the case illustrated,
the generated expressions would proliferate to four multiplications and two
additions. This would degrade the efficiency of the program. Accordingly the
output of the Sum block is not allowed to be an expression because it has
multiple destinations

The code generated for the previous block diagram shows how code is
generated for Sum blocks with single and multiple destinations.

The Simulink engine does not permit the output of the upper Sum block
to be an expression because the signal non_triv is routed to two output
destinations. Instead, the result of the multiplication and addition operations
is stored in a temporary variable (rtb_non_triv) that is referenced twice in
the statements that follow, as seen in the code excerpt below.

10-60

Writing S-Functions That Support Expression Folding

In contrast, the lower Sum block, which has only a single output destination
(Out2), does generate an expression.

void MdlOutputs(int_T tid)
{

/* local block i/o variables */
real_T rtb_non_triv;
real_T rtb_Sine_Wave;

/* Sum: <Root>/Sum incorporates:
* Gain: <Root>/Gain
* Inport: <Root>/u1
* Gain: <Root>/Gain1
* Inport: <Root>/u2
*
* Regarding <Root>/Gain:
* Gain value: rtP.Gain_Gain
*
* Regarding <Root>/Gain1:
* Gain value: rtP.Gain1_Gain
*/

rtb_non_triv = (rtP.Gain_Gain * rtU.u1) + (rtP.Gain1_Gain *
rtU.u2);

/* Outport: <Root>/Out1 */
rtY.Out1 = rtb_non_triv;

/* Sin Block: <Root>/Sine Wave */

rtb_Sine_Wave = rtP.Sine_Wave_Amp *
sin(rtP.Sine_Wave_Freq * rtmGetT(rtM_model) +
rtP.Sine_Wave_Phase) + rtP.Sine_Wave_Bias;

/* Outport: <Root>/Out2 incorporates:
* Sum: <Root>/Sum1
*/

rtY.Out2 = (rtb_non_triv + rtb_Sine_Wave);
}

10-61

10 Writing S-Functions for Real-Time Workshop® Code Generation

Specifying the Category of an Output Expression
The S-Function API provides macros that let you declare whether an output
of a block should be an expression, and if so, to specify the category of the
expression. The following table specifies when to declare a block output to be
a constant, trivial, or generic output expression.

Types of Output Expressions

Category of
Expression When to Use

Constant Use only if block output is a direct memory access to a
block parameter.

Trivial Use only if block output is an expression that can appear
multiple times in the code without reducing efficiency
(for example, a direct memory access to a field of the
DWork vector, or a literal).

Generic Use if output is an expression, but not constant or
trivial.

You must declare outputs as expressions in the mdlSetWorkWidthsfunction
using macros defined in the S-Function API. The macros have the following
arguments:

• SimStruct *S: pointer to the block’s SimStruct.

• int idx: zero-based index of the output port.

• bool value: pass in TRUE if the port generates output
expressions.

The following macros are available for setting an output to be a constant,
trivial, or generic expression:

• void ssSetOutputPortConstantOutputExprInRTW(SimStruct *S, int
idx, bool value)

• void ssSetOutputPortTrivialOutputExprInRTW(SimStruct *S, int
idx, bool value)

10-62

Writing S-Functions That Support Expression Folding

• void ssSetOutputPortOutputExprInRTW(SimStruct *S, int idx,
bool value)

The following macros are available for querying the status set by any prior
calls to the macros above:

• bool ssGetOutputPortConstantOutputExprInRTW(SimStruct *S, int
idx)

• bool ssGetOutputPortTrivialOutputExprInRTW(SimStruct *S, int
idx)

• bool ssGetOutputPortOutputExprInRTW(SimStruct *S, int idx)

The set of generic expressions is a superset of the set of trivial expressions, and
the set of trivial expressions is a superset of the set of constant expressions.

Therefore, when you query an output that has been set to be a constant
expression with ssGetOutputPortTrivialOutputExprInRTW, it returns True.
A constant expression is considered a trivial expression, because it is a direct
memory access that can be repeated without degrading the efficiency of the
generated code.

Similarly, an output that has been configured to be a constant or trivial
expression returns True when queried for its status as a generic expression.

Acceptance or Denial of Requests for Input
Expressions
A block can request that its output be represented in code as an expression.
Such a request can be denied if the destination block cannot accept expressions
at its input port. Furthermore, conditions independent of the requesting block
and its destination blocks can prevent acceptance of expressions.

This section discusses block-specific conditions under which requests for input
expressions are denied. For information on other conditions that prevent
acceptance of expressions, see “Generic Conditions for Denial of Requests to
Output Expressions” on page 10-67.

A block should not be configured to accept expressions at its input port under
the following conditions:

10-63

10 Writing S-Functions for Real-Time Workshop® Code Generation

• The block must take the address of its input data. It is not possible to take
the address of most types of input expressions.

• The code generated for the block references the input more than once
(for example, the Abs or Max blocks). This would lead to duplication of
a potentially complex expression and a subsequent degradation of code
efficiency.

If a block refuses to accept expressions at an input port, then any block that
is connected to that input port is not permitted to output a generic or trivial
expression.

A request to output a constant expression is never denied, because there is no
performance penalty for a constant expression, and it is always possible to
take the parameter’s address.

Example: Acceptance and Denial of Expressions at Block Inputs
This example shows how various built-in blocks handle requests to accept
different categories of expressions at their inputs.

The following sample model contains

• Two Gain blocks. Gain blocks request their destination blocks to accept
generic expressions.

• An Abs block. This block always denies expressions at its input
port. The Abs block code uses the macro rt_ABS(u), which evaluates
the input u twice. (See the TLC implementation of the Abs block in
matlabroot/rtw/c/tlc/blocks/absval.tlc.)

• A Trigonometric Function block. This block accepts expressions at its
input port.

10-64

Writing S-Functions That Support Expression Folding

The Gain1 block request to output an expression is denied by the Abs
block. The Gain2 block request to output an expression is accepted by the
Trigonometric Function block.

The generated code is shown in the code excerpt below. The output of the
Gain1 block is stored in the temporary variable rtb_Gain1, rather than
generating an input expression to the Abs block.

void MdlOutputs(int_T tid)
{
/* local block i/o variables */
real_T rtb_Gain1;

/* Gain: '<Root>/Gain1' incorporates:
* Inport: '<Root>/In1'
*
* Regarding '<Root>/Gain':
* Gain value: 2.0
*/

rtb_Gain1 = rtU.In1 * 2.0;

/* Outport: '<Root>/Out1' incorporates:
* Abs: '<Root>/Abs'
*/

rtY.Out1 = rt_ABS(rtb_Gain1);

/* Outport: '<Root>/Out2' incorporates:
* Trigonometry: '<Root>/Trigonometric Function'
* Gain: '<Root>/Gain2'

10-65

10 Writing S-Functions for Real-Time Workshop® Code Generation

* Inport: '<Root>/In2'
*
* Regarding '<Root>/Gain2':
* Gain value: 2.0
*/

rtY.Out2 = sin((2.0 * rtU.In2));
}

Using the S-Function API to Specify Input Expression
Acceptance
The S-Function API provides macros that let you

• Specify whether a block input should accept nonconstant expressions (that
is, trivial or generic expressions)

• Query whether a block input accepts nonconstant expressions

By default, block inputs do not accept nonconstant expressions.

You should call the macros in your mdlSetWorkWidths function. The macros
have the following arguments:

• SimStruct *S: pointer to the block’s SimStruct.

• int idx: zero-based index of the input port.

• bool value: pass in TRUE if the port accepts input
expressions; otherwise pass in FALSE.

The macro available for specifying whether or not a block input should accept
a nonconstant expression is as follows:

void ssSetInputPortAcceptExprInRTW(SimStruct *S, int portIdx, bool value)

The corresponding macro available for querying the status set by any prior
calls to ssSetInputPortAcceptExprInRTW is as follows:

bool ssGetInputPortAcceptExprInRTW(SimStruct *S, int portIdx)

10-66

Writing S-Functions That Support Expression Folding

Generic Conditions for Denial of Requests to Output
Expressions
Even after a specific block requests that it be allowed to generate an output
expression, that request can be denied, for generic reasons. These reasons
include, but are not limited to

• The output expression is nontrivial, and the output has multiple
destinations.

• The output expression is nonconstant, and the output is connected to at
least one destination that does not accept expressions at its input port.

• The output is a test point.

• The output has been assigned an external storage class.

• The output must be stored using global data (for example is an input to a
merge block or a block with states).

• The output signal is complex.

You do not need to consider these generic factors when deciding whether or
not to utilize expression folding for a particular block. However, these rules
can be helpful when you are examining generated code and analyzing cases
where the expression folding optimization is suppressed.

Utilizing Expression Folding in Your TLC Block
Implementation
To take advantage of expression folding, you must modify the TLC block
implementation of an inlined S-Function such that it informs the Simulink
engine whether it generates or accepts expressions at its

• Input ports, as explained in “Using the S-Function API to Specify Input
Expression Acceptance” on page 10-66.

• Output ports, as explained in “Categories of Output Expressions” on page
10-58.

This section discusses required modifications to the TLC implementation.

10-67

10 Writing S-Functions for Real-Time Workshop® Code Generation

Expression Folding Compliance
In the BlockInstanceSetup function of your S-function, you must ensure that
your block registers that it is compliant with expression folding. If you fail to
do this, any expression folding requested or allowed at the block’s outputs or
inputs will be disabled, and temporary variables will be used.

To register expression folding compliance, call the TLC library function

%LibBlockSetIsExpressionCompliant (block)

You can conditionally disable expression folding at the inputs and outputs of a
block by making the call to this function conditionally.

If you have overridden one of the TLC block implementations provided by the
Real-Time Workshop product with your own implementation, you should not
make the preceding call until you have updated your implementation, as
described by the guidelines for expression folding in the following sections.

Outputting Expressions
The BlockOutputSignal function is used to generate code for a scalar output
expression or one element of a nonscalar output expression. If your block
outputs an expression, you should add a BlockOutputSignal function. The
prototype of the BlockOutputSignal is

%function BlockOutputSignal(block,system,portIdx,ucv,lcv,idx,retType) void

The arguments to BlockOutputSignal are as follows:

• block: the record for the block for which an output expression is being
generated

• system: the record for the system containing the block

• portIdx: zero-based index of the output port for which an expression is
being generated

• ucv: user control variable defining the output element for which code is
being generated

• lcv: loop control variable defining the output element for which code is
being generated

10-68

Writing S-Functions That Support Expression Folding

• idx: signal index defining the output element for which code is being
generated

• retType: string defining the type of signal access desired:

"Signal" specifies the contents or address of the output signal.

"SignalAddr" specifies the address of the output signal

The BlockOutputSignal function returns an appropriate text string for
the output signal or address. The string should enforce the precedence of
the expression by using opening and terminating parentheses, unless the
expression consists of a function call. The address of an expression can only be
returned for a constant expression; it is the address of the parameter whose
memory is being accessed. The code implementing the BlockOutputSignal
function for the Constant block is shown below.

%% Function: BlockOutputSignal ===

%% Abstract:

%% Return the appropriate reference to the parameter. This function *may*

%% be used by Simulink when optimizing the Block IO data structure.

%%

%function BlockOutputSignal(block,system,portIdx,ucv,lcv,idx,retType) void

%switch retType

%case "Signal"

%return LibBlockParameter(Value,ucv,lcv,idx)

%case "SignalAddr"

%return LibBlockParameterAddr(Value,ucv,lcv,idx)

%default

%assign errTxt = "Unsupported return type: %<retType>"

%<LibBlockReportError(block,errTxt)>

%endswitch

%endfunction

The code implementing the BlockOutputSignal function for the Relational
Operator block is shown below.

%% Function: BlockOutputSignal ===

%% Abstract:

%% Return an output expression. This function *may*

%% be used by Simulink when optimizing the Block IO data structure.

%%

10-69

10 Writing S-Functions for Real-Time Workshop® Code Generation

%function BlockOutputSignal(block,system,portIdx,ucv,lcv,idx,retType) void

%switch retType

%case "Signal"

%assign logicOperator = ParamSettings.Operator

%if ISEQUAL(logicOperator, "~=")

%assign op = "!="

elseif ISEQUAL(logicOperator, "==") %assign op = "=="

%else

%assign op = logicOperator

%endif

%assign u0 = LibBlockInputSignal(0, ucv, lcv, idx)

%assign u1 = LibBlockInputSignal(1, ucv, lcv, idx)

%return "(%<u0> %<op> %<u1>)"

%default

%assign errTxt = "Unsupported return type: %<retType>"

%<LibBlockReportError(block,errTxt)>

%endswitch

%endfunction

Expression Folding for Blocks with Multiple Outputs
When a block has a single output, the Outputs function in the block’s TLC
file is called only if the output port is not an expression. Otherwise, the
BlockOutputSignal function is called.

If a block has multiple outputs, the Outputs function is called if any output
port is not an expression. The Outputs function should guard against
generating code for output ports that are expressions. This is achieved by
guarding sections of code corresponding to individual output ports with calls
to LibBlockOutputSignalIsExpr().

For example, consider an S-Function with two inputs and two outputs, where

• The first output, y0, is equal to two times the first input.

• The second output, y1, is equal to four times the second input.

The Outputs and BlockOutputSignal functions for the S-function are shown
in the following code excerpt.

%% Function: BlockOutputSignal ===

10-70

Writing S-Functions That Support Expression Folding

%% Abstract:

%% Return an output expression. This function *may*

%% be used by Simulink when optimizing the Block IO data structure.

%%

%function BlockOutputSignal(block,system,portIdx,ucv,lcv,idx,retType) void

%switch retType

%assign u = LibBlockInputSignal(portIdx, ucv, lcv, idx)

%case "Signal"

%if portIdx == 0

%return "(2 * %<u>)"

%elseif portIdx == 1

%return "(4 * %<u>)"

%endif

%default

%assign errTxt = "Unsupported return type: %<retType>"

%<LibBlockReportError(block,errTxt)>

%endswitch

%endfunction

%%

%% Function: Outputs ===

%% Abstract:

%% Compute output signals of block

%%

%function Outputs(block,system) Output

%assign rollVars = ["U", "Y"]

%roll sigIdx = RollRegions, lcv = RollThreshold, block, "Roller", rollVars

%assign u0 = LibBlockInputSignal(0, "", lcv, sigIdx)

%assign u1 = LibBlockInputSignal(1, "", lcv, sigIdx)

%assign y0 = LibBlockOutputSignal(0, "", lcv, sigIdx)

%assign y1 = LibBlockOutputSignal(1, "", lcv, sigIdx)

%if !LibBlockOutputSignalIsExpr(0)

%<y0> = 2 * %<u0>;

%endif

%if !LibBlockOutputSignalIsExpr(1)

%<y1> = 4 * %<u1>;

%endif

%endroll

%endfunction

10-71

10 Writing S-Functions for Real-Time Workshop® Code Generation

Comments for Blocks That Are Expression-Folding-Compliant
In the past, all blocks preceded their outputs code with comments of the form

/* %<Type> Block: %<Name> */

When a block is expression-folding-compliant, the initial line shown above
is generated automatically. You should not include the comment as part of
the block’s TLC implementation. Additional information should be registered
using the LibCacheBlockComment function.

The LibCacheBlockComment function takes a string as an input, defining the
body of the comment, except for the opening header, the final newline of a
single or multiline comment, and the closing trailer.

The following TLC code illustrates registering a block comment. Note the
use of the function LibBlockParameterForComment, which returns a string,
suitable for a block comment, specifying the value of the block parameter.

%openfile commentBuf
$c(*) Gain value: %<LibBlockParameterForComment(Gain)>
%closefile commentBuf
%<LibCacheBlockComment(block, commentBuf)>

10-72

Writing S-Functions That Specify Port Scope and Reusability

Writing S-Functions That Specify Port Scope and
Reusability

You can use the following SimStruct macros in the mdlInitializeSizes
method to specify the scope and reusability of the memory used for your
S-function’s input and output ports:

• ssSetInputPortOptimOpts: Specify the scope and reusability of the
memory allocated to an S-function input port

• ssSetOutputPortOptimOpts: Specify the scope and reusability of the
memory allocated to an S-function output port

• ssSetInputPortOverWritable: Specify whether one of your S-function’s
input ports can be overwritten by one of its output ports

• ssSetOutputPortOverwritesInputPort: Specify whether an output port
can share its memory buffer with an input port

You declare an input or output as local or global, and indicate its reusability,
by passing one of the following four options to the ssSetInputPortOptimOpts
and ssSetOutputPortOptimOpts macros:

• SS_NOT_REUSABLE_AND_GLOBAL: Indicates that the input and output ports
are stored in separate memory locations in the global block input and
output structure

• SS_NOT_REUSABLE_AND_LOCAL: Indicates that the Real-Time Workshop
software can declare individual local variables for the input and output
ports

• SS_REUSABLE_AND_LOCAL: Indicates that the Real-Time Workshop software
can reuse a single local variable for these input and output ports

• SS_REUSABLE_AND_GLOBAL: Indicates that these input and output ports are
stored in a single element in the global block input and output structure

10-73

10 Writing S-Functions for Real-Time Workshop® Code Generation

Note Marking an input or output port as a local variable does not guarantee
the Real-Time Workshop code generator uses a local variable in the generated
code. If your S-function accesses the inputs and outputs only in its mdlOutputs
routine, the code generator declares the inputs and outputs as local variables.
However, if the inputs and outputs are used elsewhere in the S-function, the
code generator includes them in the global block input and output structure.

The reusability setting indicates if the memory associated with an input or
output port can be overwritten. To reuse input and output port memory:

1 Indicate the ports are reusable using either the SS_REUSABLE_AND_LOCAL
or SS_REUSABLE_AND_GLOBAL option in the ssSetInputPortOptimOpts and
ssSetOutputPortOptimOpts macros

2 Indicate the input port memory is overwritable using
ssSetInputPortOverWritable

3 If your S-function has multiple input and output ports, use
ssSetOutputPortOverwritesInputPort to indicate which output and
input ports share memory

The following example shows how different scope and reusability settings effect
the generated code. The following model contains an S-function block pointing
to the C MEX S-function matlabroot/simulink/src/sfun_directlook.c,
which models a direct 1-D lookup table.

The S-function’s mdlInitializeSizes method declares the input port as
reusable, local, and overwritable and the output port as reusable and local, as
follows:

static void mdlInitializeSizes(SimStruct *S)

{

/* snip */

10-74

Writing S-Functions That Specify Port Scope and Reusability

ssSetInputPortOptimOpts(S, 0, SS_REUSABLE_AND_LOCAL);

ssSetInputPortOverWritable(S, 0, TRUE);

/* snip */

ssSetOutputPortOptimOpts(S, 0, SS_REUSABLE_AND_LOCAL);

/* snip */

}

The generated code for this model stores the input and output signals in
a single local variable rtb_SFunction, as shown in the following output
function:

static void sl_directlook_output(int_T tid)

{

/* local block i/o variables */

real_T rtb_SFunction[2];

/* Sin: '<Root>/Sine Wave' */

rtb_SFunction[0] = sin(((real_T)sl_directlook_DWork.counter[0] +

sl_directlook_P.SineWave_Offset) * 2.0 * 3.1415926535897931E+000 /

sl_directlook_P.SineWave_NumSamp) * sl_directlook_P.SineWave_Amp[0] +

sl_directlook_P.SineWave_Bias;

rtb_SFunction[1] = sin(((real_T)sl_directlook_DWork.counter[1] +

sl_directlook_P.SineWave_Offset) * 2.0 * 3.1415926535897931E+000 /

sl_directlook_P.SineWave_NumSamp) * sl_directlook_P.SineWave_Amp[1] +

sl_directlook_P.SineWave_Bias;

/* S-Function Block: <Root>/S-Function */

{

const real_T *xData = &sl_directlook_P.SFunction_XData[0];

const real_T *yData = &sl_directlook_P.SFunction_YData [0];

real_T spacing = xData[1] - xData[0];

if (rtb_SFunction[0] <= xData[0]) {

rtb_SFunction[0] = yData[0];

} else if (rtb_SFunction[0] >= yData[20]) {

rtb_SFunction[0] = yData[20];

} else {

int_T idx = (int_T)((rtb_SFunction[0] - xData[0]) / spacing);

rtb_SFunction[0] = yData[idx];

10-75

10 Writing S-Functions for Real-Time Workshop® Code Generation

}

if (rtb_SFunction[1] <= xData[0]) {

rtb_SFunction[1] = yData[0];

} else if (rtb_SFunction[1] >= yData[20]) {

rtb_SFunction[1] = yData[20];

} else {

int_T idx = (int_T)((rtb_SFunction[1] - xData[0]) / spacing);

rtb_SFunction[1] = yData[idx];

}

}

/* Outport: '<Root>/Out1' */

sl_directlook_Y.Out1[0] = rtb_SFunction[0];

sl_directlook_Y.Out1[1] = rtb_SFunction[1];

UNUSED_PARAMETER(tid);

}

The following table shows variations of the code generated for this model
when using the generic real-time target (GRT). Each row explains a different
setting for the scope and reusability of the S-function’s input and output ports.

Scope and
reusability

S-function mdlInitializeSizes
code

Generated code

Inputs: Local,
reusable,
overwritable
Outputs: Local,
reusable

ssSetInputPortOptimOpts(S, 0,

SS_REUSABLE_AND_LOCAL);

ssSetInputPortOverWritable(S, 0,

TRUE);

ssSetOutputPortOptimOpts(S, 0,

SS_REUSABLE_AND_LOCAL);

The model.c file declares a local
variable in the output function.

/* local block i/o variables */

real_T rtb_SFunction[2];

10-76

Writing S-Functions That Specify Port Scope and Reusability

Scope and
reusability

S-function mdlInitializeSizes
code

Generated code

Inputs: Global,
reusable,
overwritable
Outputs:
Global, reusable

ssSetInputPortOptimOpts(S, 0,

SS_REUSABLE_AND_GLOBAL);

ssSetInputPortOverWritable(S, 0,

TRUE);

ssSetOutputPortOptimOpts(S, 0,

SS_REUSABLE_AND_GLOBAL);

The model.h file defines a block
signals structure with a single
element to store the S-function’s
input and output.

/* Block signals (auto storage) */

typedef struct {

real_T SFunction[2];

} BlockIO_sl_directlook;

The model.c file uses this element of
the structure in calculations of the
S-function’s input and output signals.

/* Sin: '<Root>/Sine Wave' */

sl_directlook_B.SFunction[0] = sin ...

/* snip */

/*S-Function Block:<Root>/S-Function*/

{

const real_T *xData =

&sl_directlook_P.SFunction_XData[0]

10-77

10 Writing S-Functions for Real-Time Workshop® Code Generation

Scope and
reusability

S-function mdlInitializeSizes
code

Generated code

Inputs: Local,
not reusable
Outputs: Local,
not reusable

ssSetInputPortOptimOpts(S, 0,

SS_NOT_REUSABLE_AND_LOCAL);

ssSetInputPortOverWritable(S, 0,

FALSE);

ssSetOutputPortOptimOpts(S, 0,

SS_NOT_REUSABLE_AND_LOCAL);

The model.c file declares local
variables for the S-function’s input
and output in the output function

/* local block i/o variables */

real_T rtb_SineWave[2];

real_T rtb_SFunction[2];

Inputs: Global,
not reusable
Outputs:
Global, not
reusable

ssSetInputPortOptimOpts(S, 0,

SS_NOT_REUSABLE_AND_GLOBAL);

ssSetInputPortOverWritable(S, 0,

FALSE);

ssSetOutputPortOptimOpts(S, 0,

SS_NOT_REUSABLE_AND_GLOBAL);

The model.h file defines a block
signal structure with individual
elements to store the S-function’s
input and output.

/* Block signals (auto storage) */

typedef struct {

real_T SineWave[2];

real_T SFunction[2];

} BlockIO_sl_directlook;

The model.c file uses the different
elements in this structure when
calculating the S-function’s input
and output.

/* Sin: '<Root>/Sine Wave' */

sl_directlook_B.SineWave[0] = sin ...

/* snip */

/*S-Function Block:<Root>/S-Function*/

{

const real_T *xData =

&sl_directlook_P.SFunction_XData[0]

10-78

Writing S-Functions That Specify Sample Time Inheritance Rules

Writing S-Functions That Specify Sample Time Inheritance
Rules

For the Simulink engine to accurately determine whether a model can
inherit a sample time, the S-functions in the model need to specify
how they use sample times. You can specify this information by calling
the macro ssSetModelReferenceSampleTimeInheritanceRule from
mdlInitializeSizes or mdlSetWorkWidths. To use this macro:

1 Check whether the S-function calls any of the following macros:

• ssGetSampleTime

• ssGetInputPortSampleTime

• ssGetOutputPortSampleTime

• ssGetInputPortOffsetTime

• ssGetOutputPortOffsetTime

• ssGetSampleTimePtr

• ssGetInputPortSampleTimeIndex

• ssGetOutputPortSampleTimeIndex

• ssGetSampleTimeTaskID

• ssGetSampleTimeTaskIDPtr

2 Check for the following in your S-function TLC code:

• LibBlockSampleTime

• CompiledModel.SampleTime

• LibBlockInputSignalSampleTime

• LibBlockInputSignalOffsetTime

• LibBlockOutputSignalSampleTime

• LibBlockOutputSignalOffsetTime

3 Depending on your search results, use
ssSetModelReferenceSampleTimeInheritanceRule as indicated in the
following table.

10-79

10 Writing S-Functions for Real-Time Workshop® Code Generation

If... Use...

None of the macros or functions
are present, the S-function does
not preclude the model from
inheriting a sample time.

ssSetModelReferenceSampleTimeInheritanceRule
(S, USE_DEFAULT_FOR_DISCRETE_INHERITANCE)

Any of the macros or functions
are used for

• Throwing errors if sample time
is inherited, continuous, or
constant

• Checking ssIsSampleHit

• Checking whether sample
time is inherited in either
mdlSetInputPortSampleTime
or
mdlSetOutputPortSampleTime
before setting

ssSetModelReferenceSampleTimeInheritanceRule...
(S,USE_DEFAULT_FOR_DISCRETE_INHERITANCE)

The S-function uses its sample
time for computing parameters,
outputs, and so on

ssSetModelReferenceSampleTimeInheritanceRule
(S, DISALLOW_SAMPLE_TIME_INHERITANCE)

Note If an S-function does not set the
ssSetModelReferenceSampleTimeInheritanceRule macro, by default the
Simulink engine assumes that the S-function does not preclude the model
containing that S-function from inheriting a sample time. However, the
engine issues a warning indicating that the model includes S-functions
for which this macro is not set.

You can use settings on the Diagnostics/Solver pane of the Configuration
Parameters dialog box or Model Explorer to control how the Simulink engine
responds when it encounters S-functions that have unspecified sample time
inheritance rules. Toggle the Unspecified inheritability of sample time
diagnostic to none, warning, or error. The default is warning.

10-80

Writing S-Functions That Support Code Reuse

Writing S-Functions That Support Code Reuse
The Real-Time Workshop code reuse feature generates code for a subsystem in
the form of a single function that is invoked wherever the subsystem occurs
in the model (see “Nonvirtual Subsystem Code Generation” on page 4-2). If
a subsystem contains S-functions, the S-functions must be compatible with
the code reuse feature. Otherwise, the code generator might not generate
reusable code from the subsystem or might generate incorrect code.

If you want your S-function to support the subsystem code reuse feature, you
must ensure that the S-function meets the following requirements:

• The S-function must be inlined.

• Code generated from the S-function must not use static variables.

• The TLC code that generates the inlined S-function code must not use
the BlockInstanceData function.

• The S-function must initialize its pointer work vector in mdlStart and
not before.

• The S-function must not be a sink that logs data to the workspace.

• The S-function must register its parameters as run-time parameters in
mdlSetWorkWidths. (It must not use ssWriteRTWParameters in its mdlRTW
function for this purpose.)

• The S-function must not be a device driver.

In addition to meeting the preceding requirements, your S-function must
set the SS_OPTION_WORKS_WITH_CODE_REUSE flag (see the description of
ssSetOptions in the Simulink Writing S-Function documentation). This flag
assures the code generator that your S-function meets the requirements for
subsystem code reuse.

10-81

10 Writing S-Functions for Real-Time Workshop® Code Generation

Writing S-Functions for Multirate Multitasking
Environments

In this section...

“Introduction” on page 10-82
“Rate Grouping Support in S-Functions” on page 10-82
“Creating Multitasking-Safe, Multirate, Port-Based Sample Time
S-Functions” on page 10-83

Introduction
S-functions can be used in models with multiple sample rates and deployed in
multitasking target environments. Likewise, S-functions themselves can have
multiple rates at which they operate. The Real-Time Workshop Embedded
Coder product generates code for multirate multitasking models using an
approach called rate grouping. In code generated for ERT-based targets,
rate grouping generates separate model_step functions for the base rate
task and each subrate task in the model. Although rate grouping is a code
generation feature found in ERT targets only, your S-functions can use it in
other contexts when you code them as explained below.

Rate Grouping Support in S-Functions
To take advantage of rate grouping, you must inline your multirate
S-functions if you have not done so. You need to follow certain Target
Language Compiler protocols to exploit rate grouping. Coding TLC to exploit
rate grouping does not prevent your inlined S-functions from functioning
properly in GRT. Likewise, your inlined S-functions will still generate valid
ERT code even if you do not make them rate-grouping-compliant. If you do so,
however, they will generate more efficient code for multirate models.

For instructions and examples of Target Language Compiler code illustrating
how to create and upgrade S-functions to generate rate-grouping-compliant
code, see “Rate Grouping Compliance and Compatibility Issues” in the
Real-Time Workshop Embedded Coder documentation.

10-82

Writing S-Functions for Multirate Multitasking Environments

For each multirate S-function that is not rate grouping-compliant, the
Real-Time Workshop software issues the following warning when you build:

Warning: Real-Time Workshop: Code of output function for multirate block

'<Root>/S-Function' is guarded by sample hit checks rather than being rate

grouped. This will generate the same code for all rates used by the block,

possibly generating dead code. To avoid dead code, you must update the TLC

file for the block.

You will also find a comment such as the following in code generated for each
noncompliant S-function:

/* Because the output function of multirate block
<Root>/S-Function is not rate grouped,
the following code might contain unreachable blocks of code.
To avoid this, you must update your block TLC file. */

The words “update function” are substituted for “output function” in these
warnings, as appropriate.

Creating Multitasking-Safe, Multirate, Port-Based
Sample Time S-Functions
The following instructions show how to support both data determinism and
data integrity in multirate S-functions. They do not cover cases where there
is no determinism nor integrity. Support for frame-based processing does
not affect the requirements.

Note The slow rates must be multiples of the fastest rate. The instructions
do not apply when two rates being interfaced are not multiples or when the
rates are not periodic.

Rules for Properly Handling Fast-to-Slow Transitions
The rules that multirate S-functions should observe for inputs are

10-83

10 Writing S-Functions for Real-Time Workshop® Code Generation

• The input should only be read at the rate that is associated with the input
port sample time.

• Generally, the input data is written to DWork, and the DWork can then be
accessed at the slower (downstream) rate.

The input can be read at every sample hit of the input rate and written into
DWork memory, but this DWork memory cannot then be directly accessed
by the slower rate. Any DWork memory that will be read by the slow rate
must only be written by the fast rate when there is a special sample hit. A
special sample hit occurs when both this input port rate and rate to which
it is interfacing have a hit. Depending on their requirements and design,
algorithms can process the data in several locations.

The rules that multirate S-functions should observe for outputs are

• The output should not be written by any rate other than the rate assigned
to the output port, except in the optimized case described below.

• The output should always be written when the sample rate of the output
port has a hit.

If these conditions are met, the S-Function block can always safely specify
that the input port and output port can both be made local and reusable.

You can include an optimization when little or no processing needs to be done
on the data. In such cases, the input rate code can directly write to the output
(instead of by using DWork) when there is a special sample hit. If you do this,
however, you must declare the outport port to be global and not reusable.
This optimization results in one less memcpy but does introduce nonuniform
processing requirements on the faster rate.

Whether you use this optimization or not, the most recent input data, as
seen by the slower rate, is always the value when both the faster and slower
rate had their hits (and possible earlier input data as well, depending on
the algorithm). Any subsequent steps by the faster rate and the associated
input data updates are not seen by the slower rate until the next hit for the
slow rate occurs.

10-84

Writing S-Functions for Multirate Multitasking Environments

Pseudocode Examples of Fast-to-Slow Rate Transition
The pseudocode below abstracts how you should write your C MEX code to
handle fast-to-slow transitions, illustrating with an input rate of 0.1 second
driving an output rate of one second. A similar approach can be taken when
inlining the code. The block has following characteristics:

• File: sfun_multirate_zoh.c, Equation: y = u(tslow)

• Input: local and reusable

• Output: local and reusable

• DirectFeedthrough: yes

OutputFcn
if (ssIsSampleHit(".1")) {

if (ssIsSepcialSampleHit("1")) {
DWork = u;

}
}
if (ssIsSampleHit("1")) {

y = DWork;
}

An alternative, slightly optimized approach for simple algorithms:

• Input: local and reusable

• Output: global and not reusable because it needs to persist between special
sample hits

• DirectFeedthrough: yes

OutputFcn
if (ssIsSampleHit(".1")) {

if (ssIsSpecialSampleHit("1")) {
y = u;

}
}

Example adding a simple algorithm:

• File: sfun_multirate_avg.c; Equation: y = average(u)

10-85

10 Writing S-Functions for Real-Time Workshop® Code Generation

• Input: local and reusable

• Output: local and reusable

• DirectFeedthrough: yes

(Assume DWork[0:10] and DWork[mycounter] are initialized to zero)

OutputFcn
if (ssIsSampleHit(".1")) {

/* In general, processing on 'u' could be done here,
it runs on every hit of the fast rate. */

DWork[DWork[mycounter]++] = u;
if (ssIsSpecialSampleHit("1")) {
/* In general, processing on DWork[0:10] can be done

here, but it does cause the faster rate to have
nonuniform processing requirements (every 10th hit,
more code needs to be run).*/
DWork[10] = sum(DWork[0:9])/10;
DWork[mycounter] = 0;

}
}
if (ssIsSampleHit("1")) {

/* Processing on DWork[10] can be done here before
outputing. This code runs on every hit of the
slower task. */

y = DWork[10];
}

Rules for Properly Handling Slow-to-Fast Transitions
When output rates are faster than input rates, input should only be read at
the rate that is associated with the input port sample time, observing the
following rules:

• Always read input from the update function.

• Use no special sample hit checks when reading input.

• Write the input to a DWork.

10-86

Writing S-Functions for Multirate Multitasking Environments

• When there is a special sample hit between the rates, copy the DWork into
a second DWork in the output function.

• Write the second DWork to the output at every hit of the output sample
rate.

The block can request that the input port be made local but it cannot be set to
reusable. The output port can be set to local and reusable.

As in the fast-to-slow transition case, the input should not be read by any rate
other than the one assigned to the input port. Similarly, the output should
not be written to at any rate other than the rate assigned to the output port.

An optimization can be made when the algorithm being implemented is only
required to run at the slow rate. In such cases, only one DWork is needed.
The input still writes to the DWork in the update function. When there is a
special sample hit between the rates, the output function copies the same
DWork directly to the output. You must set the output port to be global
and not reusable in this case. This optimization results in one less memcpy
operation per special sample hit.

In either case, the data that the fast rate computations operate on is always
delayed, that is, the data is from the previous step of the slow rate code.

Pseudocode Examples of Slow-to-Fast Rate Transition
The pseudocode below abstracts what your S-function needs to do to handle
slow-to-fast transitions, illustrating with an input rate of one second driving
an output rate of 0.1 second. The block has following characteristics:

• File: sfun_multirate_delay.c, Equation: y = u(tslow-1)

• Input: Set to local, will be local if output/update are combined (ERT)
otherwise will be global. Set to not reusable because input needs to be
preserved until the update function runs.

• Output: local and reusable

• DirectFeedthrough: no

OutputFcn
if (ssIsSampleHit(".1") {

10-87

10 Writing S-Functions for Real-Time Workshop® Code Generation

if (ssIsSpecialSampleHit("1") {
DWork[1] = DWork[0];

}
y = DWork[1];

}
UpdateFcn
if (ssIsSampleHit("1")) {

DWork[0] = u;
}

An alternative, optimized approach can be used by some algorithms:

• Input: Set to local, will be local if output/update are combined (ERT)
otherwise will be global. Set to not reusable because input needs to be
preserved until the update function runs.

• Output: global and not reusable because it needs to persist between special
sample hits.

• DirectFeedthrough: no

OutputFcn
if (ssIsSampleHit(".1") {

if (ssIsSpecialSampleHit("1") {
y = DWork;

}
}
UpdateFcn
if (ssIsSampleHit("1")) {

DWork = u;
}

Example adding a simple algorithm:

• File: sfun_multirate_modulate.c, Equation: y = sin(tfast) +
u(tslow-1)

• Input: Set to local, will be local if output/update are combined (an ERT
feature) otherwise will be global. Set to not reusable because input needs
to be preserved until the update function runs.

• Output: local and reusable

10-88

Writing S-Functions for Multirate Multitasking Environments

• DirectFeedthrough: no

OutputFcn
if (ssIsSampleHit(".1") {

if (ssIsSpecialSampleHit("1") {
/* Processing not likely to be done here. It causes
* the faster rate to have nonuniform processing
* requirements (every 10th hit, more code needs to
* be run).*/

DWork[1] = DWork[0];
}
/* Processing done at fast rate */
y = sin(ssGetTaskTime(".1")) + DWork[1];

}
UpdateFcn
if (ssIsSampleHit("1")) {

/* Processing on 'u' can be done here. There is a delay of
one slow rate period before the fast rate sees it.*/

DWork[0] = u;}

10-89

10 Writing S-Functions for Real-Time Workshop® Code Generation

Integrating C and C++ Code
The Real-Time Workshop product includes a variety of mechanisms for
integrating generated code with legacy or custom code. A summary of these
mechanisms is available in “Integrating Legacy and Custom Code” on page
2-150.

If you need to integrate legacy or custom C code with generated C++ code
or vice versa, you must modify your legacy or custom code to be language
compatible with the generated code. Options for making the code language
compatible include

• Writing or rewriting the legacy or custom code in the same language as
the generated code.

• If the generated code is in C++ and your legacy or custom code is in C, for
each C function, create a header file that prototypes the function, using
the following format:

#ifdef __cplusplus
extern "C" {
#endif
int my_c_function_wrapper();
#ifdef __cplusplus
}
#endif

The prototype serves as a function wrapper. The value __cplusplus is
defined if your compiler supports C++ code. The linkage specification
extern "C" specifies C linkage with no name mangling.

• If the generated code is in C and your legacy or custom code is in C++,
include an extern "C" linkage specification in each .cpp file. For example,
the following shows a portion of C++ code in the file my_func.cpp:

extern "C" {

int my_cpp_function()
{

...
}

10-90

Integrating C and C++ Code

}

10-91

10 Writing S-Functions for Real-Time Workshop® Code Generation

Build Support for S-Functions

In this section...

“Introduction” on page 10-92
“Implicit Build Support” on page 10-93
“Specifying Additional Source Files for an S-Function” on page 10-93
“Using TLC Library Functions” on page 10-95
“Using the rtwmakecfg.m API to Customize Generated Makefiles” on page
10-95

Introduction
User-written S-Function blocks provide a powerful way to incorporate legacy
and custom code into the Simulink and Real-Time Workshop development
environment. In most cases, you should use S-functions to integrate existing
code with Real-Time Workshop generated code. Several approaches to writing
S-functions are available as discussed in

• “Writing Noninlined S-Functions” on page 10-9

• “Writing Wrapper S-Functions” on page 10-12

• “Writing Fully Inlined S-Functions” on page 10-23

• “Writing Fully Inlined S-Functions with the mdlRTW Routine” on page
10-30

• “Writing S-Functions That Support Code Reuse” on page 10-81

• “Writing S-Functions for Multirate Multitasking Environments” on page
10-82

S-functions also provide the most flexible and capable way of including build
information for legacy and custom code files in the Real-Time Workshop build
process.

This section discusses the different ways of adding S-functions to the
Real-Time Workshop build process.

10-92

Build Support for S-Functions

Implicit Build Support
When building models with S-functions, the Real-Time Workshop code
generator automatically adds the appropriate rules, include paths, and source
filenames to the generated makefile. For this to occur, the source files (.h, .c,
and .cpp) for the S-function must be in the same directory as the S-function
MEX-file. The code generator propagates this information through the token
expansion mechanism of converting a template makefile (TMF) to a makefile.
The propagation requires the TMF to support the appropriate tokens.

Details of the implicit build support follow:

• If the file sfcnname.h exists in the same directory as the S-function
MEX-file (for example, sfcnname.mexext), the directory is added to the
include path.

• If the file sfcnname.c or sfcnname.cpp exists in the same directory as
the S-function MEX-file, the Real-Time Workshop code generator adds a
makefile rule for compiling files from that directory.

• When an S-function is not inlined with a TLC file, the Real-Time Workshop
code generator must compile the S-function’s source file. To determine
the name of the source file to add to the list of files to compile, the code
generator searches for sfcnname.cpp on the MATLAB path. If the source
file is found, the code generator adds the source filename to the makefile.
If sfcnname.cpp is not found on the path, the code generator adds the
filename sfcnname.c to the makefile, whether or not it is on the MATLAB
path.

Note For the Simulink engine to find the MEX-file for simulation and
code generation, it must exist on the MATLAB path or be in your current
MATLAB working directory.

Specifying Additional Source Files for an S-Function
If your S-function has additional source file dependencies, you must add the
names of the additional modules to the build process. You can do this by
specifying the filenames

10-93

10 Writing S-Functions for Real-Time Workshop® Code Generation

• In the S-function modules field of the S-Function block parameter dialog
box

• With the SFunctionModules parameter in a call to the set_param function

For example, suppose you build your S-function with multiple modules, as in

mex sfun_main.c sfun_module1.c sfun_module2.c

You can then add the modules to the build process by doing one of the
following:

• Specifying sfun_main, sfun_module1, and sfun_module2 in the
S-function modules field in the S-Function block dialog box

• Entering the following command at the MATLAB command prompt:

set_param(sfun_block,'SFunctionModules','sfun_module1 sfun_module2')

Alternatively, you can define a variable to represent the parameter value.

modules = 'sfun_module1 sfun_module2'
set_param(sfun_block,'SFunctionModules', modules)

Note The S-function modules field and SFunctionsModules parameter do
not support complete source file path specifications. To use the parameter,
the Real-Time Workshop software must be able to find the additional source
files when executing the makefile. To ensure that the Real-Time Workshop
software can locate the additional files, place them in the same directory as
the S-function MEX-file. This will enable you to leverage the implicit build
support discussed in “Implicit Build Support” on page 10-93.

For more complicated S-function file dependencies, such as specifying
source files in other locations or specifying libraries or object files, use
the rtwmakecfg.m API, as explained in “Using the rtwmakecfg.m API to
Customize Generated Makefiles” on page 10-95.

10-94

Build Support for S-Functions

Using TLC Library Functions
If you inline your S-function by writing a TLC file, you can add source
filenames to the build process by using the TLC library function
LibAddToModelSources. For details, see “LibAddSourceFileCustomSection
(file, builtInSection, newSection)” in the Target Language Compiler
documentation.

Note This function does not support complete source file path specifications
and assumes the Real-Time Workshop software can find the additional source
files when executing the makefile.

Another useful TLC library function is LibAddToCommonIncludes.
Use this function in a #include statement to include S-function
header files in the generated model.h header file. For details, see
“LibAddToCommonIncludes(incFileName)” in the Target Language Compiler
documentation.

For more complicated S-function file dependencies, such as specifying
source files in other locations or specifying libraries or object files, use
the rtwmakecfg.m API, as explained in “Using the rtwmakecfg.m API to
Customize Generated Makefiles” on page 10-95.

Using the rtwmakecfg.m API to Customize Generated
Makefiles

• “Overview” on page 10-95

• “Creating the rtwmakecfg.m M-File Function” on page 10-96

• “Modifying the Template Makefile” on page 10-99

• “Precompiling S-Function Libraries” on page 10-101

Overview
Real-Time Workshop TMFs provide tokens that let you add the following
items to generated makefiles:

10-95

10 Writing S-Functions for Real-Time Workshop® Code Generation

• Source directories

• Include directories

• Run-time library names

• Run-time module objects

S-functions can add this information to the makefile by using an
rtwmakecfg.m M-file function. This function is particularly useful when
building a model that contains one or more of your S-Function blocks, such as
device driver blocks.

To add information pertaining to an S-function to the makefile,

1 Create the M-file function rtwmakecfg in a file rtwmakecfg.m. The
Real-Time Workshop software associates this file with your S-function
based on its directory location. “Creating the rtwmakecfg.m M-File
Function” on page 10-96 discusses the requirements for the rtwmakecfg
function and the data it should return.

2 Modify your target’s TMF such that it supports macro expansion for the
information returned by rtwmakecfg functions. “Modifying the Template
Makefile” on page 10-99 discusses the required modifications.

After the TLC phase of the build process, when generating a makefile from the
TMF, the Real-Time Workshop code generator searches for an rtwmakecfg.m
file in the directory that contains the S-function component. If it finds the file,
the code generator calls the rtwmakecfg function.

Creating the rtwmakecfg.m M-File Function
Create the rtwmakecfg.m M-file function in the same directory as your
S-function component (sfcname.mexext on a Microsoft Windows system and
sfcname and a platform-specific extension on The Open Group UNIX system).
The function must return a structured array that contains the following fields:

10-96

Build Support for S-Functions

Field Description

makeInfo.includePath A cell array that specifies additional include directory
names, organized as a row vector. The Real-Time Workshop
code generator expands the directory names into include
instructions in the generated makefile.

makeInfo.sourcePath A cell array that specifies additional source directory
names, organized as a row vector. You must include
the directory names of files entered into the S-function
modules field on the S-Function Block Parameters dialog
box or into the block’s SFunctionModules parameter if
they are not in the same directory as the S-function. The
Real-Time Workshop code generator expands the directory
names into make rules in the generated makefile.

makeInfo.sources A cell array that specifies additional source filenames (C or
C++), organized as a row vector. Do not include the name
of the S-function or any files entered into the S-function
modules field on the S-Function Block Parameters dialog
box or into the block’s SFunctionModules parameter. The
Real-Time Workshop code generator expands the filenames
into make variables that contain the source files. You
should specify only filenames (with extension). Specify path
information with the sourcePath field.

makeInfo.linkLibsObjs A cell array that specifies additional, fully qualified paths
to object or library files against which the Real-Time
Workshop generated code should link. The Real-Time
Workshop code generator does not compile the specified
objects and libraries. However, it includes them when
linking the final executable. This can be useful for
incorporating libraries that you do not want the Real-Time
Workshop code generator to recompile or for which the
source files are not available. You might also use this
element to incorporate source files from languages other
than C and C++. This is possible if you first create a C
compatible object file or library outside of the Real-Time
Workshop build process.

10-97

10 Writing S-Functions for Real-Time Workshop® Code Generation

Field Description

makeInfo.precompile A Boolean flag that indicates whether the libraries specified
in the rtwmakecfg.m file exist in a specified location
(precompile==1) or if the libraries need to be created in
the build directory during the Real-Time Workshop build
process (precompile==0).

makeInfo.library A structure array that specifies additional run-time
libraries and module objects, organized as a row vector.
The Real-Time Workshop code generator expands the
information into make rules in the generated makefile. See
the next table for a list of the library fields.

The makeInfo.library field consists of the following elements:

Element Description

makeInfo.library(n).Name A character array that specifies the name of the library
(without an extension).

makeInfo.library(n).Location A character array that specifies the directory in which
the library is located when precompiled. See the
description of makeInfo.precompile in the preceding
table for more information. A target can use the
TargetPreCompLibLocation parameter to override this
value. See “Specifying the Location of Precompiled
Libraries” on page 2-135 for details.

makeInfo.library(n).Modules A cell array that specifies the C or C++ source file base
names (without an extension) that comprise the library.
Do not include the file extension. The makefile appends
the appropriate object extension.

Note The makeInfo.library field must fully specify each library and
how to build it. The modules list in the makeInfo.library(n).Modules
element cannot be empty. If you need to specify a link-only library, use the
makeInfo.linkLibsObjs field instead.

10-98

Build Support for S-Functions

Example:

disp(['Running rtwmakecfg from directory: ',pwd]);

makeInfo.includePath = { fullfile(pwd, 'somedir2') };

makeInfo.sourcePath = {fullfile(pwd, 'somedir2'), fullfile(pwd, 'somedir3')};

makeInfo.sources = { 'src1.c', 'src2.cpp'};

makeInfo.linkLibsObjs = { fullfile(pwd, 'somedir3', 'src3.object'),...

fullfile(pwd, 'somedir4', 'mylib.library')};

makeInfo.precompile = 1;

makeInfo.library(1).Name = 'myprecompiledlib';

makeInfo.library(1).Location = fullfile(pwd,'somdir2','lib');

makeInfo.library(1).Modules = {'srcfile1' 'srcfile2' 'srcfile3' };

Note If a path that you specify in the rtwmakecfg.m API contains spaces, the
Real-Time Workshop code generator does not automatically convert the path
to its non-space equivalent. If the build environments you intend to support
do not support spaces in paths, use the utility command rtw_alt_pathname to
convert them as explained in “Enabling the Real-Time Workshop Software to
Build When Path Names Contain Spaces” on page 2-16.

For example:

makeInfo.includePath = {rtw_alt_pathname(fullfile(pwd, 'somedir2'))};

Modifying the Template Makefile
To expand the information generated by an rtwmakecfg function, you can
modify the following sections of your target’s TMF:

• Include Path

• C Flags and/or Additional Libraries

• Rules

The TMF code examples below may not be appropriate for your make
utility. For additional examples, see the GRT or ERT TMFs located in
matlabroot/rtw/c/grt/*.tmf or matlabroot/rtw/c/ert/*.tmf.

10-99

10 Writing S-Functions for Real-Time Workshop® Code Generation

Example — Adding Directory Names to the Makefile Include Path.
The following TMF code example adds directory names to the include path in
the generated makefile:

ADD_INCLUDES = \

|>START_EXPAND_INCLUDES<| -I|>EXPAND_DIR_NAME<| \

|>END_EXPAND_INCLUDES<|

Additionally, the ADD_INCLUDES macro must be added to the INCLUDES line,
as shown below.

INCLUDES = -I. -I.. $(MATLAB_INCLUDES) $(ADD_INCLUDES) $(USER_INCLUDES)

Example — Adding Library Names to the Makefile. The following TMF
code example adds library names to the generated makefile.

LIBS =

|>START_PRECOMP_LIBRARIES<|

LIBS += |>EXPAND_LIBRARY_NAME<|.a |>END_PRECOMP_LIBRARIES<|

|>START_EXPAND_LIBRARIES<|

LIBS += |>EXPAND_LIBRARY_NAME<|.a |>END_EXPAND_LIBRARIES<|

For more information on how to use configuration parameters to control
library names and location during the build process, see “Controlling the
Location and Naming of Libraries During the Build Process” on page 2-134.

Example — Adding Rules to the Makefile. The following TMF code
example adds rules to the generated makefile.

|>START_EXPAND_RULES<|

$(BLD)/%.o: |>EXPAND_DIR_NAME<|/%.c $(SRC)/$(MAKEFILE) rtw_proj.tmw

@$(BLANK)

@echo ### "|>EXPAND_DIR_NAME<|\$*.c"

$(CC) $(CFLAGS) $(APP_CFLAGS) -o (BLD)(DIRCHAR)$*.o \

|>EXPAND_DIR_NAME<|$(DIRCHAR)$*.c > (BLD)(DIRCHAR)$*.lst

|>END_EXPAND_RULES<|

|>START_EXPAND_LIBRARIES<|MODULES_|>EXPAND_LIBRARY_NAME<| = \

|>START_EXPAND_MODULES<| |>EXPAND_MODULE_NAME<|.o \

|>END_EXPAND_MODULES<|

10-100

Build Support for S-Functions

|>EXPAND_LIBRARY_NAME<|.a : $(MAKEFILE) rtw_proj.tmw

$(MODULES_|>EXPAND_LIBRARY_NAME<|:%.o=$(BLD)/%.o)

@$(BLANK)

@echo ### Creating $@

$(AR) -r $@ $(MODULES_|>EXPAND_LIBRARY_NAME<|:%.o=$(BLD)/%.o)

|>END_EXPAND_LIBRARIES<|

|>START_PRECOMP_LIBRARIES<|MODULES_|>EXPAND_LIBRARY_NAME<| = \

|>START_EXPAND_MODULES<| |>EXPAND_MODULE_NAME<|.o \

|>END_EXPAND_MODULES<|

|>EXPAND_LIBRARY_NAME<|.a : $(MAKEFILE) rtw_proj.tmw

$(MODULES_|>EXPAND_LIBRARY_NAME<|:%.o=$(BLD)/%.o)

@$(BLANK)

@echo ### Creating $@

$(AR) -r $@ $(MODULES_|>EXPAND_LIBRARY_NAME<|:%.o=$(BLD)/%.o)

|>END_PRECOMP_LIBRARIES<|

Precompiling S-Function Libraries
You can precompile new or updated S-function libraries (MEX-files) for a
model by using the M-file function rtw_precompile_libs. Using a specified
model and a library build specification, this function builds and places the
libraries in a precompiled library directory.

By precompiling S-function libraries, you can optimize system builds. Once
your precompiled libraries exist, the Real-Time Workshop code generator
can omit library compilation from subsequent builds. For models that use
numerous libraries, the time savings for build processing can be significant.

To use rtw_precompile_libs,

1 Set the library file suffix, including the file type extension, based on the
platform in use.

2 Set the precompiled library directory.

3 Define a build specification.

4 Issue a call to rtw_precompile_libs.

10-101

10 Writing S-Functions for Real-Time Workshop® Code Generation

The following procedure explains these steps in more detail.

1 Set the library file suffix, including the file type extension, based on the
platform in use.

Consider checking for the type of platform in use and then using the
TargetLibSuffix parameter to set the library suffix accordingly. For
example, you might set the suffix to .a for a UNIX platform and _vc.lib
otherwise.

if isunix
suffix = '.a';

else
suffix = '_vc.lib';

end

set_param(my_model,'TargetLibSuffix', suffix);

2 Set the precompiled library directory.

Use one of the following methods to set the precompiled library directory.

• Set the TargetPreCompLibLocation parameter, as explained in
“Specifying the Location of Precompiled Libraries” on page 2-135.

• Set the makeInfo.precompile field in an rtwmakecfg M-file function.

If you set both TargetPreCompLibLocation and makeInfo.precompile,
the setting for TargetPreCompLibLocation takes precedence.

The following command sets the precompiled library directory for model
my_model to directory lib under the current working directory.

set_param(my_model,'TargetPreCompLibLocation', fullfile(pwd,'lib'));

Note If you set both the target directory for the precompiled library files
and a target library file suffix, the Real-Time Workshop code generator
automatically detects whether any precompiled library files are missing
while processing builds.

10-102

Build Support for S-Functions

3 Define a build specification.

Set up a structure that defines a build specification. The following
table describes fields you can define in the structure. All fields except
rtwmakecfgDirs are optional.

Field Description

rtwmakecfgDirs A cell array of strings that name the directories containing rtwmakecfg
files for libraries to be precompiled. The function uses the Name and
Location elements of makeInfo.library, as returned by rtwmakecfg,
to specify the name and location of the precompiled libraries. If you
set the TargetPreCompLibLocation parameter to specify the library
directory, that setting overrides the makeInfo.library.Location
setting.
Note: The specified model must contain blocks that use precompiled
libraries specified by the rtwmakecfg files. This is necessary because
the TMF-to-makefile conversion generates the library rules only if the
libraries are needed.

libSuffix A string that specifies the suffix, including the file type extension, to
be appended to the name of each library (for example, .a or _vc.lib).
The string must include a period (.). You must set the suffix with either
this field or the TargetLibSuffix parameter. If you specify a suffix
with both mechanisms, the TargetLibSuffix setting overrides the
setting of this field.

intOnlyBuild A Boolean flag. When set to true, the flag indicates the libraries are to
be optimized such that they are compiled from integer code only. This
field applies to ERT targets only.

10-103

10 Writing S-Functions for Real-Time Workshop® Code Generation

Field Description

makeOpts A string that specifies an option to be included in the rtwMake command
line.

addLibs A cell array of structures that specify libraries to be built that are not
specified by an rtwmakecfg function. Each structure must be defined
with two fields that are character arrays:

• libName — the name of the library without a suffix

• libLoc — the location for the precompiled library

The TMF can specify other libraries and how those libraries are to be
built. Use this field if you need to precompile those libraries.

The following commands set up build specification build_spec, which
indicates that the files to be compiled are in directory src under the current
working directory.

build_spec = [];
build_spec.rtwmakecfgDirs = {fullfile(pwd,'src')};

4 Issue a call to rtw_precompile_libs.

Issue a call to rtw_precompile_libs that specifies the model for which
you want to build the precompiled libraries and the build specification.
For example:

rtw_precompile_libs(my_model,build_spec);

10-104

11

S-Function Target

S-functions are an important class of target for which the Real-Time
Workshop product can generate code. The ability to encapsulate a subsystem
into an S-function allows you to increase its execution efficiency and shield
its internal logic from inspection and modification.

The following sections describe the properties of S-function targets and
demonstrate how to generate them. For more details on the structure of
S-functions, see the Simulink Writing S-Functions documentation.

• “Introduction” on page 11-2

• “Creating an S-Function Block from a Subsystem” on page 11-5

• “Tunable Parameters in Generated S-Functions” on page 11-11

• “Automated S-Function Generation” on page 11-14

• “System Target File and Template Makefiles” on page 11-19

• “Checksums and the S-Function Target” on page 11-20

• “S-Function Target Limitations” on page 11-21

11 S-Function Target

Introduction

In this section...

“S-Function Target Overview” on page 11-2
“Intellectual Property Protection for S-Function in Simulation” on page 11-3
“Required Files for S-Function Deployment” on page 11-3
“Sample Time Propagation in Generated S-Functions” on page 11-4
“Choice of Solver Type” on page 11-4

S-Function Target Overview
Using the S-function target, you can build an S-function component and use
it as an S-Function block in another model. The S-function code format
used by the S-function target generates code that conforms to the Simulink
C MEX S-function application programming interface (API). Applications
of this format include

• Conversion of a model to a component. You can generate an S-Function
block for a model, m1. Then, you can place the generated S-Function
block in another model, m2. Regenerating code for m2 does not require
regenerating code for m1.

• Conversion of a subsystem to a component. By extracting a subsystem to
a separate model and generating an S-Function block from that model,
you can create a reusable component from the subsystem. See “Creating
an S-Function Block from a Subsystem” on page 11-5 for an example of
this procedure.

• Speeding up simulation. In many cases, an S-function generated from a
model performs more efficiently than the original model.

• Code reuse. You can incorporate multiple instances of one model inside
another without replicating the code for each instance. Each instance will
continue to maintain its own unique data.

The S-function target generates noninlined S-functions. Within the same
release, you can generate an executable from a model that contains generated
S-functions by using the generic real-time or real-time malloc targets. This is

11-2

Introduction

not supported when incorporating a generated S-function from one release
into a model that you build with a different release.

You can place a generated S-Function block into another model from which
you can generate another S-function format. This allows any level of nested
S-functions.

You should avoid nesting S-functions in a model or subsystem having
the same name as the S-function (possibly several levels apart). In such
situations, the S-function can be called recursively. The Real-Time Workshop
software currently does not detect such loops in S-function dependency, which
can result in aborting or hanging your MATLAB session.

To prevent this from happening, you should be sure to name the subsystem or
model to be generated as an S-function target uniquely, to avoid duplicating
any existing MEX filenames on the MATLAB path.

Intellectual Property Protection for S-Function in
Simulation
In addition to the technical applications of the S-function target listed above,
you can use the S-function target to protect your designs and algorithms. By
generating an S-function from a proprietary model or algorithm, you can
share the model’s functionality for simulation use without providing the
source code. You need only provide the binary MEX-file object to users.

Required Files for S-Function Deployment
To deploy your generated S-Function block for inclusion in other models
for simulation, you need only provide the binary MEX-file object that was
generated in the current working directory when the S-Function block was
created:

subsys_sf.mexext

where subsys is the subsystem name and mexext is a platform-dependent
MEX-file extension (see mexext). For example, SourceSubsys_sf.mexw32.

11-3

11 S-Function Target

To deploy your generated S-Function block for inclusion in other models for
code generation, you must provide all of the files that were generated in the
current working directory when the S-Function block was created:

• subsys_sf.c or .cpp, where subsys is the subsystem name (for example,
SourceSubsys_sf.c)

• subsys_sf.h

• subsys_sf.mexext, where mexext is a platform-dependent MEX-file
extension (see mexext)

• Subdirectory subsys_sfcn_rtw and its contents

Sample Time Propagation in Generated S-Functions
A generated S-Function block can inherit its sample time from the model
in which it is placed if certain criteria are met. Six conditions that govern
sample time propagation for S-functions and for the S-function code format
are described in “Inheriting Sample Times” in the Simulink documentation.
These conditions also apply to sample times propagated to Model blocks,
and are further discussed in “Inherited Sample Time for Referenced Models”
on page 4-41.

Choice of Solver Type
If the model containing the subsystem from which you generate an S-function
uses a variable-step solver, the generated S-function contains zero-crossing
functions and will work properly only in models that use variable-step solvers.

If the model containing the subsystem from which you generate an S-function
uses a fixed-step solver, the generated S-function contains no zero-crossing
functions and the generated S-function will work properly in models that use
variable-step or fixed-step solvers.

11-4

Creating an S-Function Block from a Subsystem

Creating an S-Function Block from a Subsystem
This section demonstrates how to extract a subsystem from a model and
generate a reusable S-function component from it.

The next figure shows SourceModel, a simple model that inputs signals to a
subsystem. The subsequent figure shows the subsystem, SourceSubsys. The
signals, which have different widths and sample times, are

• A Step block with sample time 1

• A Sine Wave block with sample time 0.5

• A Constant block whose value is the vector [-2 3]

SourceModel

11-5

11 S-Function Target

SourceSubsys

The objective is to extract SourceSubsys from the model and build an
S-Function block from it, using the S-function target. The S-Function block
must perform identically to the subsystem from which it was generated.

In this model, SourceSubsys inherits sample times and signal widths from its
input signals. However, S-Function blocks created from a model using the
S-function target will have all signal attributes (such as signal widths or
sample times) hard-wired. (The sole exception to this rule concerns sample
times, as described in “Sample Time Propagation in Generated S-Functions”
on page 11-4.)

In this example, you want the S-Function block to retain the properties of
SourceSubsys as it exists in SourceModel. Therefore, before you build the
subsystem as a separate S-function component, you must set the inport
sample times and widths explicitly. In addition, the solver parameters of the
S-function component must be the same as those of the original model. This
ensures that the generated S-function component will operate identically
to the original subsystem (see “Choice of Solver Type” on page 11-4 for an
exception to this rule).

To build SourceSubsys as an S-function component,

1 Create a new model and copy/paste SourceSubsys into the empty window.

11-6

Creating an S-Function Block from a Subsystem

2 Set the signal widths and sample times of inports inside SourceSubsys
such that they match those of the signals in the original model. Inport 1,
Filter, has a width of 1 and a sample time of 1. Inport 2, Xferfcn, has
a width of 1 and a sample time of 0.5. Inport 3, offsets, has a width of
2 and a sample time of 0.5.

3 The generated S-Function block should have three inports and one outport.
Connect inports and an outport to SourceSubsys, as shown in the next
figure.

The correct signal widths and sample times are propagated to these ports.

4 Set the solver type, mode, and other solver parameters such that they
are identical to those of the source model. This is easiest to do if you use
Model Explorer.

5 In Model Explorer or the Configuration Parameters dialog box, click the
Real-Time Workshop tab.

6 Click Browse to open the System Target File Browser.

7 In the System Target File Browser, select the S-function target,
rtwsfcn.tlc, and click OK. The Real-Time Workshop pane appears as
follows.

11-7

11 S-Function Target

8 Select the Real-Time Workshop S-Function Code Generation
Options tab (in Model Explorer) or pane (in the Configuration Parameters
dialog box).

9 Make sure that Create NewModel is selected, as shown in the next figure:

11-8

Creating an S-Function Block from a Subsystem

When this option is selected, the build process creates a new model after it
builds the S-function component. The new model contains an S-Function
block, linked to the S-function component.

Click Apply if necessary.

10 Save the new model containing your subsystem, for example as
SourceSubsys.mdl.

11 Build the model.

12 The Real-Time Workshop build process builds the S-function component in
the working directory. After the build, a new model window is displayed.

Optionally you can save the generated model, for example as
SourceSubsys_Sfunction.mdl.

11-9

11 S-Function Target

13 You can now copy the Real-Time Workshop S-Function block from the new
model and use it in other models or in a library.

Note For a list of files required to deploy your S-Function block for
simulation or code generation, see “Required Files for S-Function
Deployment” on page 11-3.

The next figure shows the S-Function block plugged into the original model.
Given identical input signals, the S-Function block will perform identically
to the original subsystem.

Generated S-Function Configured Like SourceModel

The speed at which the S-Function block executes is typically faster than the
original model. This difference in speed is more pronounced for larger and
more complicated models. By using generated S-functions, you can increase
the efficiency of your modeling process.

11-10

Tunable Parameters in Generated S-Functions

Tunable Parameters in Generated S-Functions
You can use tunable parameters in generated S-functions in two ways:

• Use the Generate S-function feature (see “Automated S-Function
Generation” on page 11-14).

or

• Use the Model Parameter Configuration dialog box (see “Parameter
Storage, Interfacing, and Tuning” on page 5-2) to declare desired block
parameters tunable.

Block parameters that are declared tunable with the auto storage class in the
source model become tunable parameters of the generated S-function.

These parameters do not become part of a generated model_P (formerly
rtP) parameter data structure, as they would in code generated from other
targets. Instead, the generated code accesses these parameters by using MEX
API calls such as mxGetPr or mxGetData. Your code should access these
parameters in the same way.

For more information on MEX API calls, see “Writing S-Functions in C” in
the Simulink Writing S-Functions documentation and External Interfaces in
the MATLAB online documentation.

S-Function blocks created by using the S-function target are automatically
masked. The mask displays each tunable parameter in an edit field. By
default, the edit field displays the parameter by variable name, as in the
following example.

11-11

11 S-Function Target

You can choose to display the value of the parameter rather than its variable
name by selecting Use Value for Tunable Parameters in the Options
section.

When this option is chosen, the value of the variable (at code generation time)
is displayed in the edit field, as in the following example.

11-12

Tunable Parameters in Generated S-Functions

11-13

11 S-Function Target

Automated S-Function Generation
The Generate S-function feature automates the process of generating an
S-function from a subsystem. In addition, the Generate S-function feature
presents a display of parameters used within the subsystem, and lets you
declare selected parameters tunable.

As an example, consider SourceSubsys, the same subsystem illustrated in
the previous example, “Creating an S-Function Block from a Subsystem” on
page 11-5. The objective is to automatically extract SourceSubsys from the
model and build an S-Function block from it, as in the previous example. In
addition, the gain factor of the Gain block should be set within SourceSubsys
to the workspace variable K (as illustrated in the next figure) and declare K as
a tunable parameter.

To auto-generate an S-function from SourceSubsys with tunable parameter K,

1 Click the SourceSubsys subsystem to select it.

2 Select Generate S-function from the Real-Time Workshop submenu of
the Tools menu. This menu item is enabled when a subsystem is selected
in the current model.

11-14

Automated S-Function Generation

Alternatively, you can right-click the subsystem and select Real-Time
Workshop > Generate S-Function from the subsystem block’s context
menu.

3 The Generate S-function window is displayed (see the next figure). This
window shows all variables (or data objects) that are referenced as block
parameters in the subsystem, and lets you declare them as tunable.

The upper pane of the window displays three columns:

• Variable Name: name of the parameter.

• Class: If the parameter is a workspace variable, its data type is shown.
If the parameter is a data object, its name and class is shown

• Tunable: Lets you select tunable parameters. To declare a parameter
tunable, select the check box. In the next figure, the parameter K is
declared tunable.

When you select a parameter in the upper pane, the lower pane shows all
the blocks that reference the parameter, and the parent system of each
such block.

Generate S-Function Window

4 If you have installed the Real-Time Workshop Embedded Coder product,
and if the subsystem does not have a continuous sample time, the Use

11-15

11 S-Function Target

Embedded Coder check box is available, as shown above. Otherwise,
it is grayed out. When Use Embedded Coder is selected, the build
process generates a wrapper S-function by using the Real-Time Workshop
Embedded Coder product. See “Automatic S-Function Wrapper Generation”
in the Real-Time Workshop Embedded Coder documentation for more
information.

5 After selecting tunable parameters, click the Build button. This initiates
code generation and compilation of the S-function, using the S-function
target. The Create New Model option is automatically enabled.

6 The build process displays status messages in the MATLAB Command
Window. When the build completes, the tunable parameters window closes,
and a new untitled model window opens.

7 The model window contains an S-Function block with the same name
as the subsystem from which the block was generated (in this example,
SourceSubsys). Optionally, you can save the generated model containing
the generated block.

8 The generated code for the S-Function block is stored in the current
working directory. The following files are written to the top level directory:

• subsys_sf.c or .cpp, where subsys is the subsystem name (for example,
SourceSubsys_sf.c)

11-16

Automated S-Function Generation

• subsys_sf.h

• subsys_sf.mexext, where mexext is a platform-dependent MEX-file
extension (for example, SourceSubsys_sf.mexw32)

The source code for the S-function is written to the subdirectory
subsys_sfcn_rtw. The top-level .c or .cpp file is a stub file that simply
contains an include directive that you can use to interface other C/C++
code to the generated code.

Note For a list of files required to deploy your S-Function block for
simulation or code generation, see “Required Files for S-Function
Deployment” on page 11-3.

9 The generated S-Function block has inports and outports whose widths and
sample times correspond to those of the original model.

The following code, from the mdlOutputs routine of the generated S-function
code (in SourceSubsys_sf.c), shows how the tunable variable K is referenced
by using calls to the MEX API.

static void mdlOutputs(SimStruct *S, int_T tid)
...

/* Gain: '<S1>/Gain' incorporates:
* Sum: '<S1>/Sum'
*/

rtb_Gain_n[0] = (rtb_Product_p + (*(((const
real_T**)ssGetInputPortSignalPtrs(S, 2))[0]))) * (*(real_T
*)(mxGetData(K(S))));

rtb_Gain_n[1] = (rtb_Product_p + (*(((const
real_T**)ssGetInputPortSignalPtrs(S, 2))[1]))) * (*(real_T
*)(mxGetData(K(S))));

11-17

11 S-Function Target

Notes

• In automatic S-function generation, the Use Value for Tunable
Parameters option is always set to its default value (off).

• A MEX S-function wrapper must only be used in the MATLAB version in
which the wrapper is created.

11-18

System Target File and Template Makefiles

System Target File and Template Makefiles

In this section...

“Introduction” on page 11-19
“System Target File” on page 11-19
“Template Makefiles” on page 11-19

Introduction
This section lists the target file and template makefiles that are provided
for use with the S-function target.

System Target File

• rtwsfcn.tlc

Template Makefiles

• rtwsfcn_lcc.tmf — Lcc compiler

• rtwsfcn_unix.tmf — The Open Group UNIX host

• rtwsfcn_vc.tmf — Microsoft Visual C++ compiler

• rtwsfcn_watc.tmf — Watcom C compiler

11-19

11 S-Function Target

Checksums and the S-Function Target
The Real-Time Workshop software creates a checksum for a Simulink model
and uses the checksum during the build process for code reuse, model
reference, and external mode features.

The Real-Time Workshop software calculates a model’s checksum by

1 Calculating a checksum for each subsystem in the model. A subsystem’s
checksum is the combination of properties (data type, complexity, sample
time, port dimensions, and so forth) of the subsystem’s blocks.

2 Combining the subsystem checksums and other model-level information.

An S-function can add additional information, not captured during the block
property analysis, to a checksum by calling the function ssSetChecksumVal.
For the S-Function target, the value that gets added to the checksum is the
checksum of the model or subsystem from which the S-function is generated.

The Real-Time Workshop software applies the subsystem and model
checksums as follows:

• Code reuse — If two subsystems in a model have the same checksum, the
Real-Time Workshop build process generates code for one function only.

• Model reference — If the current model checksum matches the checksum
when the model was built, the Real-Time Workshop build process does
not rebuild submodels.

• External mode — If the current model checksum does not match the
checksum of the code that is running on the target, the Real-Time
Workshop build process generates an error.

11-20

S-Function Target Limitations

S-Function Target Limitations

In this section...

“Run-Time Parameters and S-Function Compatibility Diagnostics” on
page 11-21
“Goto and From Block Limitations” on page 11-21
“Building and Updating Limitations” on page 11-23
“Unsupported Blocks” on page 11-23

Run-Time Parameters and S-Function Compatibility
Diagnostics
If you set the S-function upgrades needed option on the
Diagnostics > Compatibility pane of the Configuration Parameters dialog
box to warning or error, the Real-Time Workshop software reports that
an upgrade is needed for any S-function you create with the Generate
S-function feature. This is because the S-function target does not register
run-time parameters. Run-time parameters are only supported for inlined
S-Functions and the generated S-Function supports features that prevent
it from being inlined (for example, it can call or contain other noninlined
S-functions).

You can work around this limitation by setting the S-function upgrades
needed option to none. Alternatively, if you have a Real-Time Workshop
Embedded Coder license, select the Use Embedded Coder option on the
Generate S-function for Subsystem dialog box and generate an ERT
S-function. In this case, you do not receive the upgrade messages. However,
you cannot include ERT S-functions inside other generated S-functions
recursively.

Goto and From Block Limitations
When using the S-function target, the Real-Time Workshop code generator
restricts I/O to correspond to the root model’s Inport and Outport blocks (or the
Inport and Outport blocks of the Subsystem block from which the S-function
target was generated). No code is generated for Goto or From blocks.

11-21

11 S-Function Target

To work around this restriction, create your model and subsystem with the
required Inport and Outport blocks, instead of using Goto and From blocks
to pass data between the root model and subsystem. In the model that
incorporates the generated S-function, you would then add needed Goto and
From blocks.

Example Before Work Around

• Root model with a From block and subsystem, Subsystem1

• Subsystem1 with a Goto block, which has global visibility and passes its
input to the From block in the root model

• Subsystem1 replaced with an S-function generated with the S-Function
target — a warning results when you run the model because the generated
S-function does not implement the Goto block

Example After Work Around

11-22

S-Function Target Limitations

An Outport block replaces the GoTo block in Subsystem1. When you plug the
generated S-function into the root model, its output connects directly to the
To Workspace block.

Building and Updating Limitations
The following limitations apply to building and regenerating S-functions
using the Real-Time Workshop S-function target:

• You cannot build models that contain Model blocks using the Real-Time
Workshop S-function target. This also means that you cannot build a
subsystem module by right-clicking (or by using Tools > Real-Time
Workshop > Build subsystem) if the subsystem contains Model blocks.
This restriction applies only to S-functions generated using the S-function
target, not to ERT S-functions.

• If you modify the model that generated an S-Function block, the Real-Time
Workshop build process does not automatically rebuild models containing
the generated S-Function block. This is in contrast to the practice of
automatically rebuilding models referenced by Model blocks when they
are modified (depending on the Model Reference Rebuild options
configuration setting).

• Handwritten S-functions without corresponding TLC files must contain
exception-free code. For more information on exception-free code, see
“Exception Free Code” in the Simulink Writing S-Functions documentation.

Unsupported Blocks
The S-function format does not support the following built-in blocks:

11-23

11 S-Function Target

• MATLAB Fcn block

• S-Function blocks containing any of the following:

- M-file S-functions (unless you supply a TLC file for C code generation)

- Fortran S-functions (unless you supply a TLC file for C code generation)

- C/C++ MEX S-functions that call into the MATLAB environment

• Scope block

• To Workspace block

11-24

12

Running Rapid Simulations

• “Introduction” on page 12-2

• “General Rapid Simulation Workflow” on page 12-4

• “Identifying Your Rapid Simulation Requirements” on page 12-6

• “Configuring Inport Blocks to Provide Rapid Simulation Source Data” on
page 12-8

• “Configuring and Building a Model for Rapid Simulation” on page 12-9

• “Setting Up Rapid Simulation Input Data” on page 12-12

• “Programming Scripts for Batch and Monte Carlo Simulations” on page
12-23

• “Running Rapid Simulations” on page 12-24

• “Rapid Simulation Target Limitations” on page 12-37

12 Running Rapid Simulations

Introduction

In this section...

“About Rapid Simulation” on page 12-2
“Rapid Simulation Performance” on page 12-2

About Rapid Simulation
After you create a model, you can use the Real-Time Workshop rapid
simulation (RSim) target to characterize the model’s behavior. The RSim
target executable that results from the build process is for non-real-time
execution on your host computer. The executable is highly optimized for
simulating models of hybrid dynamic systems, including models that use
variable-step solvers and zero-crossing detection. The speed of the generated
code makes the RSim target ideal for batch or Monte Carlo simulations.

Use the RSim target to generate an executable that runs fast, standalone
simulations. You can repeat simulations with varying data sets, interactively
or programmatically with scripts, without rebuilding the model. This can
accelerate the characterization and tuning of model behavior and code
generation testing.

Using command-line options, you can

• Define parameter values and input signals in one or more MAT-files that
you can load and reload at the start of simulations without rebuilding
your model

• Redirect logging data to one or more MAT-files that you can then analyze
and compare

• Control simulation time

• Specify external mode options

Rapid Simulation Performance
The performance advantage gained from rapid simulation varies. Larger
simulations achieve speed improvements of up to 10 times faster than
standard Simulink simulations. Some models might not show any noticeable

12-2

Introduction

improvement in simulation speed. To determine the speed difference for your
model, time your standard Simulink simulation and compare the results
with a rapid simulation.

12-3

12 Running Rapid Simulations

General Rapid Simulation Workflow
Like other stages of Model-Based Design, characterization and tuning of model
behavior is an iterative process as shown in the general workflow diagram in
the next figure. The following steps summarize tasks in the workflow.

1 Identify your rapid simulation requirements.

2 Configure Inport blocks that will provide input source data for rapid
simulations.

3 Configure the model for rapid simulation.

4 Set up simulation input data.

5 Run the rapid simulations.

12-4

General Rapid Simulation Workflow

�����
���
��"��	�������

+��
��������"	

'��

&�
�����
������

����
���
��

��	��"���"�	�
�	�

,���������	���

!�
��������
��
��"��	�������%

�
��	������"�
�������	���
��E�������	�

'��

&�

7����J��������	���
�����	�

�B��
����"�	

�	�%

'��
����

 �	�B
���!��	�������
������	����%

12-5

12 Running Rapid Simulations

Identifying Your Rapid Simulation Requirements
The first step to setting up a rapid simulation is to identify your simulation
requirements.

Question... For More Information, See...

For how long do you want simulations
to run?

“Configuring and Building a Model for Rapid
Simulation” on page 12-9

Are there any solver requirements? Do
you expect to use the same solver for
which the model is configured for your
rapid simulations?

“Configuring and Building a Model for Rapid
Simulation” on page 12-9

Will your rapid simulations need to
accommodate flexible custom code
interfacing? Or, do your simulations
need to retain storage class settings?

“Configuring and Building a Model for Rapid
Simulation” on page 12-9

Will you be running simulations with
multiple data sets?

“Setting Up Rapid Simulation Input Data” on page
12-12

Will the input data consist of global
parameters, signals, or both?

“Setting Up Rapid Simulation Input Data” on page
12-12

What type of source blocks provide input
data to the model — From File, Inport,
From Workspace?

“Setting Up Rapid Simulation Input Data” on page
12-12

Will the model’s parameter vector
(model_P) be used as input data?

“Creating a MAT-File That Includes a Model’s
Parameter Structure” on page 12-13

What is the data type of the input
parameters and signals?

“Setting Up Rapid Simulation Input Data” on page
12-12

Will the source data consist of one
variable or multiple variables?

“Setting Up Rapid Simulation Input Data” on page
12-12

Does the input data include tunable
parameters?

“Creating a MAT-File That Includes a Model’s
Parameter Structure” on page 12-13

12-6

Identifying Your Rapid Simulation Requirements

Question... For More Information, See...

Do you need to gain access to tunable
parameter information — model
checksum and parameter data types,
identifiers, and complexity?

“Creating a MAT-File That Includes a Model’s
Parameter Structure” on page 12-13

Will you have a need to vary the
simulation stop time for simulation
runs?

“Configuring and Building a Model for Rapid
Simulation” on page 12-9 and“Overriding a Model’s
Simulation Stop Time” on page 12-27

Do you want to set a time limit for the
simulation? Consider setting a time
limit if your model experiences frequent
zero crossings and has a small minor
step size.

“Setting a Clock Time Limit for a Rapid Simulation”
on page 12-26

Do you need to preserve the output of
each simulation run?

“Specifying a New Output Filename for a Simulation”
on page 12-36 and “Specifying New Output Filenames
for To File Blocks” on page 12-36

Do you expect to run the simulations
interactively or in batch mode?

“Programming Scripts for Batch and Monte Carlo
Simulations” on page 12-23

12-7

12 Running Rapid Simulations

Configuring Inport Blocks to Provide Rapid Simulation
Source Data

You can use Inport blocks as a source of input data for rapid simulations. To
do so, you must configure the blocks such that they can import data from
external MAT-files. By default, the Inport block inherits parameter settings
from downstream blocks. In most cases, to import data from an external
MAT-file, you need to explicitly set the following parameters to match the
source data in the MAT-file.

• Main > Interpolate data

• Signal Attributes > Port dimensions

• Signal Attributes > Data type

• Signal Attributes > Signal type

If you do not have control over the model content, you might need to modify
the data in the MAT-file to conform to what the model expects for input.
Characteristics of the input data and specifications of the Inport block that
receives the data must match.

For details on adjusting these parameters and on creating a MAT-file for use
with an Inport block, see “Creating a MAT-File for an Inport Block” on page
12-17. For descriptions of the preceding block parameters, see the description
of the Inport block in the Simulink documentation.

12-8

Configuring and Building a Model for Rapid Simulation

Configuring and Building a Model for Rapid Simulation
After you identify your rapid simulation requirements, configure the model
for rapid simulation.

1 Open the Configuration Parameters dialog box.

2 Click Real-Time Workshop.

3 On the Real-Time Workshop pane, click Browse. The System Target
File Browser opens.

4 Select rsim.tlc (Rapid Simulation Target) and click OK.

The Real-Time Workshop software populates the Make command and
Template makefile fields on the Real-Time Workshop pane with
default settings and adds the RSim Target tab or node under Real-Time
Workshop.

5 Click RSim Target to view the RSim Target pane.

12-9

12 Running Rapid Simulations

6 Set the RSim target configuration parameters to your rapid simulation
requirements.

If You Want to... Then...

Generate code that allows the RSim
executable to load parameters from a
MAT-file

Select Enable RSim executable to load
parameters from a MAT-file (default).

Let the target choose a solver based on the
solver already configured for the model.

Set Solver selection to auto (default). The
Real-Time Workshop software uses a built-in
solver if a fixed-step solver is specified on the
Solver pane or calls the Simulink solver module
(a shared library) if a variable-step solver is
specified.

Explicitly instruct the target to use a
fixed-step solver

Set Solver selection to Use RTW fixed-step
solvers. A fixed-step solver must be specified on
the Solver pane of the Configuration Parameters
dialog box.

12-10

Configuring and Building a Model for Rapid Simulation

If You Want to... Then...

Explicitly instruct the target to use a
variable-step solver

Set Solver selection to Use Simulink solver
module. A variable-step solver must be specified
on the Solver pane of the Configuration
Parameters dialog box.

Force all storage classes to Auto for flexible
custom code interfacing

Select Force storage classes to AUTO (default).

Retain storage class settings, such as
ExportedGlobal or ImportedExtern, due to
application requirements

Clear Force storage classes to AUTO.

7 Set up data import and export options. In the Save to Workspace section
of the Data Import/Export pane, select the Time, States, Outputs, and
Final States options, as needed. By default, the Real-Time Workshop
software saves simulation logging results to a file named model.mat. For
more information, see “Importing and Exporting Data” in the Simulink
documentation.

8 If appropriate for your simulations, set up external mode communications
on the Real-Time Workshop > Interface pane. See Chapter 6, “External
Mode” for details.

9 Return to the Real-Time Workshop pane and click Build. The Real-Time
Workshop code generator builds a highly optimized executable that you can
run on your host computer with varying data without rebuilding.

See “Choosing and Configuring a Compiler” on page 2-18 and “Template
Makefiles and Make Options” on page 2-10 for additional information on
compilers that are compatible with the Real-Time Workshop product.

12-11

12 Running Rapid Simulations

Setting Up Rapid Simulation Input Data

In this section...

“Introduction” on page 12-12
“Creating a MAT-File That Includes a Model’s Parameter Structure” on
page 12-13
“Creating a MAT-File for a From File Block” on page 12-17
“Creating a MAT-File for an Inport Block” on page 12-17

Introduction
The format and setup of input data for a rapid simulation depends on your
requirements.

If the Input Data Source Is... Then...

The model’s global parameter
vector (model_P)

Use the rsimgetrtp function to get
the vector content and then save it to a
MAT-file

The model’s global parameter
vector and you want a mapping
between the vector and tunable
parameters

Use the rsimgetrtp function with the
AddTunableParamInfo option to get the
model’s global parameter structure and
then save it to a MAT-file

Provided by a From File block Create a MAT-file that a From File block
can read

Provided by an Inport block Create a MAT-file that adheres to one of
the three data file formats that the Inport
block can read

Provided by a From Workspace
block

Create structure variables in the
MATLAB workspace

The RSim target requires that MAT-files used as input for From File and
Inport blocks contain data. The grt target inserts MAT-file data directly into
the generated code, which is then compiled and linked as an executable. In
contrast, RSim allows you to replace data sets for each successive simulation.

12-12

Setting Up Rapid Simulation Input Data

A MAT-file containing From File or Inport block data must be present if any
From File or Inport blocks exist in your model.

Creating a MAT-File That Includes a Model’s
Parameter Structure
To create a MAT-file that includes a model’s global parameter structure
(model_P),

1 Get the structure by calling the function rsimgetrtp.

2 Save the parameter structure to a MAT-file.

If you want to run simulations over varying data sets, consider converting
the parameter structure to a cell array and saving the parameter variations
to a single MAT-file.

Getting the Parameter Structure for a Model
Get the global parameter structure (model_P) for a model by calling the
function rsimgetrtp.

param_struct = rsimgetrtp('model')

Argument Description

model The model for which you are running the rapid
simulations.

The rsimgetrtp function forces an update diagram action for the specified
model and returns a structure that contains the following fields:

12-13

12 Running Rapid Simulations

Field Description

modelChecksum A four-element vector that encodes the structure of the
model. The Real-Time Workshop software uses the
checksum to check whether the structure of the model
has changed since the RSim executable was generated.
If you delete or add a block, and then generate a new
model_P vector, the new checksum no longer matches
the original checksum. The RSim executable detects this
incompatibility in parameter vectors and exits to avoid
returning incorrect simulation results. If the model
structure changes, you must regenerate the code for the
model.

parameters A structure that contains the model’s global parameters.

The parameter structure contains:

Field Description

dataTypeName The name of the parameter’s data type, for example,
double

dataTypeID An internal data type identifier used by the Real-Time
Workshop software

complex The value 0 if real and 1 if complex

If the inline parameters option is enabled on the model, then tunable
parameter information is also available in the parameters field.

The Real-Time Workshop software reports a tunable fixed-point parameter
according to its stored value. For example, an sfix(16) parameter value of
1.4 with a scaling of 2^-8 has a value of 358 as an int16.

In the following example, rsimgetrtp returns the parameter structure for
the demo model rtwdemo_rsimtf to param_struct.

param_struct = rsimgetrtp('rtwdemo_rsimtf')

param_struct =

12-14

Setting Up Rapid Simulation Input Data

modelChecksum: [1.7165e+009 3.0726e+009 2.6061e+009 2.3064e+009]

parameters: [1x1 struct]

Saving the Parameter Structure to a MAT-File
After you issue a call to rsimgetrtp, save the return value of the function
call to a MAT-file. Using a command-line option, you can then specify that
MAT-file as input for rapid simulations.

The following example saves the parameter structure returned for
rtwdemo_rsimtf to the MAT-file myrsimdemo.mat.

save myrsimdemo.mat param_struct;

For information on using command-line options to specify required files, see
“Running Rapid Simulations” on page 12-24.

Converting the Parameter Structure for Running Simulations
on Varying Data Sets
If you might have a need to use rapid simulations to test changes to specific
parameters, you can do so if you convert the model’s parameter structure to a
cell array. You can then access a specific parameter by using the @ operator to
specify the index for a specific parameter in the file.

To convert the structure to a cell array,

1 Save the parameters vector of the structure returned by rsimgetrtp to a
temporary variable. The following example saves the parameter vector to
temporary variable p.

param_struct = rsimgetrtp('rtwdemo_rsimtf');
p = param_struct.parameters;

2 Convert the structure to a cell array.

param_struct.parameters = [];

3 Assign the saved contents of the temporary variable to the original
structure name as an element of the cell array.

param_struct.parameters{1} = p;

12-15

12 Running Rapid Simulations

param_struct.parameters{1}

ans =

dataTypeName: 'double'
dataTypeId: 0

complex: 0
dtTransIdx: 0

values: [-140 -4900 0 4900]

4 Make a copy of the cell array to preserve the original parameter values.

param_struct.parameters{2} = param_struct.parameters{1};
param_struct.parameters{2}

ans =

dataTypeName: 'double'
dataTypeId: 0

complex: 0
dtTransIdx: 0

values: [-140 -4900 0 4900]

For a subsequent data set, increment the array index.

5 Modify any combination of the parameter values.

param_struct.parameters{2}.values=[-150 -5000 0 4950];

6 Repeat steps 4 and 5 for each parameter data set you want to use as input
to a rapid simulation of the model.

7 Save the cell array representing the parameter structure to a MAT-file.

save rtwdemo_rsimtf.mat param_struct;

“Changing Block Parameters for an RSim Simulation” on page 12-34 explains
how to specify each data set when you run the simulations.

12-16

Setting Up Rapid Simulation Input Data

Creating a MAT-File for a From File Block
You can use a MAT-file as the input data source for a From File block. The
format of the data in the MAT-file must match the matrix format expected
by that block.

To create such a MAT-file,

1 Create a matrix in the workspace that consists of two or more rows. The
first row must contain monotonically increasing time points. Other rows
contain data points that correspond to the time point in that column. The
time and data points must be data of type double.

For example:

t=[0:0.1:2*pi]';
Ina1=[2*sin(t) 2*cos(t)];
Ina2=sin(2*t);
Ina3=[0.5*sin(3*t) 0.5*cos(3*t)];
var_matrix=[t Ina1 Ina2 Ina3]';

For more information on setting up the input data, see the description of
the From File block in the Simulink documentation.

2 Save the matrix to a MAT-file.

The following example saves the matrix var_matrix to the MAT-file
myrsimdemo.mat.

save myrsimdemo.mat var_matrix;

Using a command-line option, you can then specify that MAT-file as input
for rapid simulations.

Creating a MAT-File for an Inport Block
You can use a MAT-file as the input data source for an Inport block.

The format of the data in the MAT-file must adhere to one of the three
column-based formats listed in the following table. The table lists the formats
in order from least flexible to most flexible.

12-17

12 Running Rapid Simulations

Format Description

Single time/data
matrix

• Least flexible.

• One variable.

• Two or more columns. Number of columns must equal the sum of the
dimensions of all root Inport blocks plus 1. First column must contain
monotonically increasing time points. Other columns contain data
points that correspond to the time point in a given row.

• Data of type double.

For an example, see Single time/data matrix in step 4 below. For more
information, see “Importing Data Arrays” in the Simulink documentation.

Format Description

Signal-and-time
structure

• More flexible than the single time/data matrix format.

• One variable.

• Must contain two top-level fields: time and signals. The time field
contains a column vector of the simulation times. The signals field
contains an array of substructures, each of which corresponds to an
Inport block. The substructure index corresponds to the Inport block
number. Each signals substructure must contain a field named
values. The values field must contain an array of inputs for the
corresponding Inport block, where each input corresponds to a time
point specified by the time field.

• If the time field is set to an empty value, clear the check box for the
Inport block Interpolate data parameter.

• No data type limitations, but must match Inport block settings.

For an example, see Signal-and-time structure in step 4 below. For
more information on this format, see “Importing Data Structures” in the
Simulink documentation.

12-18

Setting Up Rapid Simulation Input Data

Format Description

Per-port structure • Most flexible

• Multiple variables. Number of variables must equal the number of
Inport blocks.

• Consists of a separate structure-with-time or structure-without-time
for each Inport block. Each Inport block’s data structure has only one
signals field. To use this format, enter the names of the structures
in the Input text field as a comma-separated list, in1, in2,..., inN,
where in1 is the data for your model’s first port, in2 for the second
port, and so on.

• Each variable can have a different time vector.

• If the time field is set to an empty value, clear the check box for the
Inport block Interpolate data parameter.

• No data type limitations, but must match Inport block settings.

• To save multiple variables to the same data file, you must save them in
the order expected by the model, using the -append option.

For an example, see Per-port structure in step 4 below. For more
information, see “Importing Data Structures” in the Simulink
documentation.

The supported formats and the following procedure are illustrated in
rtwdemo_rsim_i.

To create a MAT-file for an Inport block,

1 Choose one of the preceding data file formats.

2 If necessary, update Inport block parameter settings and specifications to
match specifications of the data you expect to be supplied by the MAT-file.

By default, the Inport block inherits parameter settings from downstream
blocks. In most cases, to import data from an external MAT-file, you need
to explicitly set the following parameters to match the source data in the
MAT-file.

• Main > Interpolate data

12-19

12 Running Rapid Simulations

• Signal Attributes > Port dimensions

• Signal Attributes > Data type

• Signal Attributes > Signal type

If you choose to use a structure format for workspace variables and the
time field is empty, you must clear Interpolate data or modify the field
such that it is set to a nonempty value. Interpolation requires time data.

For descriptions of the preceding block parameters, see the description of
the Inport block in the Simulink documentation.

3 Build an RSim executable for the model. The Real-Time Workshop build
process creates and calculates a structural checksum for the model and
embeds it in the generated executable. The RSim target uses the checksum
to verify that data being passed into the model is consistent with what
model’s executable expects.

4 Create the MAT-file that is to provide the source data for the rapid
simulations. Generally, you can create the MAT-file from a workspace
variable. Using the specifications in the format comparison table above,
create the workspace variables for your simulations.

An example of each format follows:

Single time/data matrix

t=[0:0.1:2*pi]';
Ina1=[2*sin(t) 2*cos(t)];
Ina2=sin(2*t);
Ina3=[0.5*sin(3*t) 0.5*cos(3*t)];
var_matrix=[t Ina1 Ina2 Ina3];

Signal-and-time structure

t=[0:0.1:2*pi]';
var_single_struct.time=t;
var_single_struct.signals(1).values(:,1)=2*sin(t);
var_single_struct.signals(1).values(:,2)=2*cos(t);
var_single_struct.signals(2).values=sin(2*t);
var_single_struct.signals(3).values(:,1)=0.5*sin(3*t);
var_single_struct.signals(3).values(:,2)=0.5*cos(3*t);

12-20

Setting Up Rapid Simulation Input Data

v=[var_single_struct.signals(1).values...
var_single_struct.signals(2).values...
var_single_struct.signals(3).values];

Per-port structure

t=[0:0.1:2*pi]';
Inb1.time=t;
Inb1.signals.values(:,1)=2*sin(t);
Inb1.signals.values(:,2)=2*cos(t);
t=[0:0.2:2*pi]';
Inb2.time=t;
Inb2.signals.values(:,1)=sin(2*t);
t=[0:0.1:2*pi]';
Inb3.time=t;
Inb3.signals.values(:,1)=0.5*sin(3*t);
Inb3.signals.values(:,2)=0.5*cos(3*t);

5 Save the workspace variables to a MAT-file.

Single time/data matrix

The following example saves the workspace variable var_matrix to the
MAT-file rsim_i_matrix.mat.

save rsim_i_matrix.mat var_matrix;

Signal-and-time structure

The following example saves the workspace structure variable
var_single_struct to the MAT-file rsim_i_single_struct.mat.

save rsim_i_single_struct.mat var_single_struct;

Per-port structure

To ensure correct ordering of data when saving per-port structure variables
to a single MAT-file, use the save command’s -append option. Be sure to
append the data in the order that the model expects it.

The following example saves the workspace variables Inb1, Inb2, and Inb3
to MAT-file rsim_i_multi_struct.mat.

12-21

12 Running Rapid Simulations

save rsim_i_multi_struct.mat Inb1;
save rsim_i_multi_struct.mat Inb2 -append;
save rsim_i_multi_struct.mat Inb3 -append;

The save command does not preserve the order in which you specify your
workspace variables in the command line when saving data to a MAT-file.
For example, if you specify the variables v1, v2, and v3, in that order, the
order of the variables in the MAT-file could be v2 v1 v3.

Using a command-line option, you can then specify the MAT-files as input
for rapid simulations.

12-22

Programming Scripts for Batch and Monte Carlo Simulations

Programming Scripts for Batch and Monte Carlo
Simulations

The RSim target is intended for batch simulations in which parameters and
input signals vary for multiple simulations. New output filenames allow you
to run new simulations without overwriting prior simulation results. You
can set up a series of simulations to run by creating a .bat file for use on a
Microsoft Windows platform.

Create a file for the Windows platform with any text editor and execute it by
typing the filename, for example, mybatch, where the name of the text file
is mybatch.bat.

rtwdemo_rsimtf -f rtwdemo_rsimtf.mat=run1.mat -o results1.mat -s 10.0

rtwdemo_rsimtf -f rtwdemo_rsimtf.mat=run2.mat -o results2.mat -s 10.0

rtwdemo_rsimtf -f rtwdemo_rsimtf.mat=run3.mat -o results3.mat -s 10.0

rtwdemo_rsimtf -f rtwdemo_rsimtf.mat=run4.mat -o results4.mat -s 10.0

In this case, batch simulations run using four sets of input data in files
run1.mat, run2.mat, and so on. The RSim executable saves the data to the
files specified with the -o option.

The variable names containing simulation results in each of the files are
identical. Therefore, loading consecutive sets of data without renaming the
data once it is in the MATLAB workspace results in overwriting the prior
workspace variable with new data. If you want to avoid overwriting, you can
copy the result to a new MATLAB variable before loading the next set of data.

You can also write M-file scripts to create new signals and new parameter
structures, as well as to save data and perform batch runs using the bang
command (!).

For details on running simulations and available command-line options, see
“Running Rapid Simulations” on page 12-24. For an example of a rapid
simulation batch script, see the demo rtwdemo_rsim_batch_script.

12-23

12 Running Rapid Simulations

Running Rapid Simulations

In this section...

“Introduction” on page 12-24
“Requirements for Running Rapid Simulations” on page 12-26
“Setting a Clock Time Limit for a Rapid Simulation” on page 12-26
“Overriding a Model’s Simulation Stop Time” on page 12-27
“Reading the Parameter Vector into a Rapid Simulation” on page 12-27
“Specifying New Signal Data File for a From File Block” on page 12-28
“Specifying Signal Data File for an Inport Block” on page 12-31
“Changing Block Parameters for an RSim Simulation” on page 12-34
“Specifying a New Output Filename for a Simulation” on page 12-36
“Specifying New Output Filenames for To File Blocks” on page 12-36

Introduction
An advantage of using the RSim target is the ability to build a model once and
run multiple simulations to study effects of varying parameter settings and
input signals. You can run a simulation directly from your operating system
command line, redirect the command from the MATLAB command line by
using the bang (!) character, or execute commands from a script.

Operating System Command Line

rtwdemo_rsimtf

MATLAB Command Line

!rtwdemo_rsimtf

The following table lists ways you can use RSim target command-line options
to control a simulation.

To... Use...

Display a help message listing options model -h

12-24

Running Rapid Simulations

To... Use...

Time out after n clock time seconds, where n is
a positive integer value

model -L n

Run the simulation until the time value
stoptime is reached

model -tf stoptime or model -s stoptime

Run in verbose mode model -v

Load new solver options (for example, Solver,
RelTol, and AbsTol)

model -S solveroptions.mat

Read input data for a From File block from a
MAT-file other than the MAT-file used for the
previous simulation

model -f oldfilename.mat=newfilename.mat

Read input data for an Inport block from a
MAT-file

model -i filename.mat

Read a parameter vector from file
filename.mat

model -p filename.mat

Write MAT-file logging data to a MAT-file
other than the MAT-file used for the previous
simulation

model -t
oldfilename.mat=newfilename.mat

Write MAT-file logging data to file
filename.mat

model -o filename.mat

Wait for the Simulink engine to start the model
in external mode

model -w

Override the default TCP port (17725) for
external mode

model -port TCPport

The following sections use the rtwdemo_rsimtf demo in examples to illustrate
the use of some of these options. In each case, the example assumes you have
already done the following:

• Created or changed to a working directory.

• Opened the demo.

12-25

12 Running Rapid Simulations

• Copied the data file
matlabroot/toolbox/rtw/rtwdemos/rsimdemos/rtwdemo_rsim_tfdata.mat
to your working directory.

Requirements for Running Rapid Simulations

• On Sun Solaris™ platforms, to run an RSim executable generated for
a model that uses variable-step solvers in a separate shell, define the
LD_LIBRARY_PATH environment variable such that it provides the path
to the MATLAB installation directory, as follows:

% setenv LD_LIBRARY_PATH /apps/matlab/bin/sol64:$LD_LIBRARY_PATH

• On GNU Linux platforms, to run an RSim executable, define the
LD_LIBRARY_PATH environment variable such that it provides the path
to the MATLAB installation directory, as follows:

% setenv LD_LIBRARY_PATH /matlab/sys/os/glnx86:$LD_LIBRARY_PATH

• On the Apple Macintosh OS X platform, to run RSim target executables,
you must define the environment variable DYLD_LIBRARY_PATH such that
it includes the directories bin/mac and sys/os/mac under the MATLAB
installation directory. For example, if your MATLAB installation is under
/MATLAB, add /MATLAB/bin/mac and /MATLAB/sys/os/mac to the definition
for DYLD_LIBRARY_PATH.

• You can run the RSim executable on any computer which is configured to
run MATLAB and for which the MATLAB/Simulink installation directory
is accessible to the RSim.exe.

Setting a Clock Time Limit for a Rapid Simulation
If a model experiences frequent zero crossings and the model’s minor step size
is small, consider setting a time limit for a rapid simulation. To set a time
limit, specify the -L option with a positive integer value. The simulation
aborts after running for the specified amount to clock time. For example,

!rtwdemo_rsimtf -L 20

After the executable runs for 20 seconds, the program terminates and one
of the following messages appears:

12-26

Running Rapid Simulations

On a Microsoft Windows Platform

Exiting program, time limit exceeded
Logging available data ...

On The Open Group UNIX Platform

** Received SIGALRM (Alarm) signal @ Fri Jul 25 15:43:23 2003
** Exiting model 'vdp' @ Fri Jul 25 15:43:23 2003

You do not need to do anything to your model or to its Real-Time Workshop
configuration to use this option.

Overriding a Model’s Simulation Stop Time
By default, a rapid simulation runs until the simulation time reaches the time
specified for the model in the Solver pane of the Configuration Parameters
dialog box. You can override the model’s simulation stop time by using the
-s or -tf option. For example, the following simulation runs until it reaches
6.0 seconds.

!rtwdemo_rsimtf -s 6.0

The RSim target stops and logs output data using MAT-file data logging rules.

If the model includes a From File block, the end of the simulation is regulated
by the stop time setting specified in the Solver pane of the Configuration
Parameters dialog box or with the RSim target option -s or -tf. The values in
the block’s time vector are ignored. However, if the simulation time exceeds
the endpoints of the time and signal matrix (that is, if the final time is greater
than the final time value of the data matrix), the signal data is extrapolated
to the final time value.

Reading the Parameter Vector into a Rapid
Simulation
To read the model’s parameter vector into a rapid simulation, you must
first create a MAT-file that includes the parameter structure as explained
in “Creating a MAT-File That Includes a Model’s Parameter Structure” on

12-27

12 Running Rapid Simulations

page 12-13. You can then specify the MAT-file in the command line with
the -p option.

For example:

1 Build an RSim executable for the demo rtwdemo_rsimtf.

2 Modify parameters in your model and save the parameter structure.

param_struct = rsimgetrtp('rtwdemo_rsimtf');
save myrsimdata.mat param_struct

3 Run the executable with the new parameter set.

!rtwdemo_rsimtf -p myrsimdata.mat

** Starting model 'rtwdemo_rsimtf' @ Tue Dec 27 12:30:16 2005
** created rtwdemo_rsimtf.mat **

4 Load workspace variables and plot the simulation results by entering the
following commands.

load myrsimdata.mat
plot(rt_yout)

Specifying New Signal Data File for a From File Block
If your model’s input data source is a From File block, you can feed the block
with input data during simulation from a single MAT-file or you can change
the MAT-file from one simulation to the next. Each MAT-file must adhere
to the format explained in “Creating a MAT-File for a From File Block” on
page 12-17.

To change the MAT-file after an initial simulation, you specify the executable
with the -f option and an oldfile.mat=newfile.mat parameter, as shown in
the following example.

1 Set some parameters in the MATLAB workspace. For example:

w = 100;
theta = 0.5;

12-28

Running Rapid Simulations

2 Build an RSim executable for the demo rtwdemo_rsimtf.

3 Run the executable.

!rtwdemo_rsimtf

The RSim executable runs a set of simulations and creates output
MAT-files containing the specific simulation result.

4 Load the workspace variables and plot the simulation results by entering
the following commands:

load rtwdemo_rsimtf.mat
plot(rt_yout)

The resulting plot shows simulation results based on default input data.

5 Create a new data file, newfrom.mat, that includes the following data:

t=[0:.001:1];
u=sin(100*t.*t);

12-29

12 Running Rapid Simulations

tu=[t;u];
save newfrom.mat tu;

6 Run a rapid simulation with the new data by using the -f option to replace
the original file, rsim_tfdata.mat, with newfrom.mat.

!rtwdemo_rsimtf -f rsim_tfdata.mat=newfrom.mat

7 Load the data and plot the new results by entering the following commands:

load rtwdemo_rsimtf.mat
plot(rt_yout)

The next figure shows the resulting plot.

From File blocks require input data of type double. If you need to import
signal data of a data type other than double, use an Inport block (see
“Creating a MAT-File for an Inport Block” on page 12-17) or a From
Workspace block with the data specified as a structure.

12-30

Running Rapid Simulations

Workspace data must be in the format

variable.time
variable.signals.values

If you have more than one signal, use the following format.

variable.time
variable.signals(1).values
variable.signals(2).values

Specifying Signal Data File for an Inport Block
If your model’s input data source is an Inport block, you can feed the block
with input data during simulation from a single MAT-file or you can change
the MAT-file from one simulation to the next. Each MAT-file must adhere
to one of the three formats explained in “Creating a MAT-File for an Inport
Block” on page 12-17.

To specify the MAT-file after a simulation, you specify the executable with
the -i option and the name of the MAT-file that contains the input data.
For example:

1 Open the model rtwdemo_rsim_i.

2 Check the Inport block parameter settings. The following Inport block
parameter settings and specifications of the data you specify for the
workspace variables must match settings in the MAT-file, as indicated
in “Configuring Inport Blocks to Provide Rapid Simulation Source Data”
on page 12-8:

• Main > Interpolate data

• Signal Attributes > Port dimensions

• Signal Attributes > Data type

• Signal Attributes > Signal type

3 Build the model.

4 Set up the input signals. For example:

t=[0:0.01:2*pi]';

12-31

12 Running Rapid Simulations

s1=[2*sin(t) 2*cos(t)];
s2=sin(2*t);
s3=[0.5*sin(3*t) 0.5*cos(3*t)];
plot(t, [s1 s2 s3])

The following plot appears.

5 Prepare the MAT-file by using one of the three available file formats
discussed in “Creating a MAT-File for an Inport Block” on page 12-17. The
following example defines a signal-and-time structure in the workspace
and names it var_single_struct.

t=[0:0.1:2*pi]';
var_single_struct.time=t;
var_single_struct.signals(1).values(:,1)=2*sin(t);
var_single_struct.signals(1).values(:,2)=2*cos(t);
var_single_struct.signals(2).values=sin(2*t);
var_single_struct.signals(3).values(:,1)=0.5*sin(3*t);
var_single_struct.signals(3).values(:,2)=0.5*cos(3*t);
v=[var_single_struct.signals(1).values...
var_single_struct.signals(2).values...

12-32

Running Rapid Simulations

var_single_struct.signals(3).values];

6 Save the workspace variable var_single_struct to MAT-file
rsim_i_single_struct.

save rsim_i_single_struct.mat var_single_struct;

7 Run a rapid simulation with the input data by using the -i option. Load
and plot the results.

!rtwdemo_rsim_i -i rsim_i_single_struct.mat

** Starting model 'rtwdemo_rsim_i' @ Tue Dec 27 14:01:20 2005

*** rsim_i_single_struct.mat is successfully loaded! ***

** created rtwdemo_rsim_i.mat **

** Execution time = 0.2683734753333333sload rsim_i_single_struct.mat;

8 Load and plot the results.

load rtwdemo_rsim_i.mat
plot(rt_tout, rt_yout);

The following plot appears.

12-33

12 Running Rapid Simulations

Changing Block Parameters for an RSim Simulation
As explained in “Creating a MAT-File That Includes a Model’s Parameter
Structure” on page 12-13, after you alter one or more parameters in a
Simulink block diagram, you can extract the parameter vector, model_P, for
the entire model. You can then save the parameter vector, along with a model
checksum, to a MAT-file. This MAT-file can be read directly by the standalone
RSim executable, allowing you to replace the entire parameter vector or
individual parameter values, for running studies of variations of parameter
values representing coefficients, new data for input signals, and so on.

The RSim target allows you to alter any model parameter, including
parameters that include side-effects functions. An example of a side-effects
function is a simple Gain block that includes the following parameter entry
in a dialog box:

gain value: 2 * a

In general, the Real-Time Workshop code generator evaluates side-effects
functions before generating code. The generated code for this example retains
only one memory location entry, and the dependence on parameter a is no

12-34

Running Rapid Simulations

longer visible in the generated code. The RSim target overcomes the problem
of handling side-effects functions by replacing the entire parameter structure,
model_P. You must create this new structure by using the rsimgetrtp
function and then saving it in a MAT-file, as explained in “Creating a
MAT-File That Includes a Model’s Parameter Structure” on page 12-13.

RSim can read the MAT-file and replace the entire model_P structure
whenever you need to change one or more parameters, without recompiling
the entire model.

For example, assume that you changed one or more parameters in your model,
generated the new model_P vector, and saved model_P to a new MAT-file
called mymatfile.mat. To run the same rtwdemo_rsimtf model and use these
new parameter values, use the -p option as shown in the following example:

!rtwdemo_rsimtf -p mymatfile.mat
load rtwdemo_rsimtf
plot(rt_yout)

If you have converted the parameter structure to a cell array for running
simulations on varying data sets, as discussed in “Converting the Parameter
Structure for Running Simulations on Varying Data Sets” on page 12-15, you
must add an @n suffix to the MAT-file specification, where n is the element
of the cell array that contains the specific input you want to use for the
simulation.

The following example converts param_struct to a cell array, changes
parameter values, saves the changes to MAT-file mymatfile.mat, and then
runs the executable using the parameter values in the second element of
the cell array as input.

param_struct = rsimgetrtp('rtwdemo_rsimtf');
p = param_struct.parameters;
param_struct.parameters = [];
param_struct.parameters{1} = p;
param_struct.parameters{1}

ans =

dataTypeName: 'double'

12-35

12 Running Rapid Simulations

dataTypeId: 0
complex: 0

dtTransIdx: 0
values: [-140 -4900 0 4900]

param_struct.parameters{2} = param_struct.parameters{1};
param_struct.parameters{2}.values=[-150 -5000 0 4950];
save mymatfile.mat param_struct;
!rtwdemo_rsimtf -p mymatfile.mat@2 -o rsim2.mat

Specifying a New Output Filename for a Simulation
If you have specified any of the Save to Workspace options — Time,
States, Outputs, or Final States — on the Data Import/Export pane of
the Configuration Parameters dialog box, the default is to save simulation
logging results to the file model.mat. For example, the demo rtwdemo_rsimtf
normally saves data to rtwdemo_rsimtf.mat, as follows:

!rtwdemo_rsimtf
created rtwdemo_rsimtf.mat

You can specify a new output filename for data logging by using the -o option
when you run an executable.

!rtwdemo_rsimtf -o rsim1.mat

In this case, the set of parameters provided at the time of code generation,
including any From File block data, is run.

Specifying New Output Filenames for To File Blocks
In much the same way as you can specify a new system output filename, you
can also provide new output filenames for data saved from one or more To File
blocks. To do this, specify the original filename at the time of code generation
with a new name as shown in the following example:

!rtwdemo_rsimtf -t rtwdemo_rsimtf_data.mat=mynewrsimdata.mat

In this case, assume that the original model wrote data to the output file
rtwdemo_rsimtf_data.mat. Specifying a new filename forces RSim to
write to the file mynewrsimdata.mat. This technique allows you to avoid
overwriting an existing simulation run.

12-36

Rapid Simulation Target Limitations

Rapid Simulation Target Limitations
The RSim target is subject to the following limitations:

• The RSim target does not support algebraic loops.

• The RSim target does not support MATLAB Fcn blocks.

• The RSim target does not support noninlined M-file, Fortran, or Ada
S-functions.

• If an RSim build includes referenced models (by using Model blocks), these
models must be set up to use fixed-step solvers for code to be generated for
them. The top model, however, can use a variable-step solver as long as
all blocks in the referenced models are discrete.

• In certain cases, changing block parameters can result in structural
changes to your model that change the model checksum. An example
of such a change would be changing the number of delays in a DSP
simulation. In such cases, you must regenerate the code for the model.

• Variable-step solver support for RSim is not available on Microsoft
Windows platforms when you use the Watcom C/C++ compiler.

12-37

12 Running Rapid Simulations

12-38

13

Targeting the Wind
River Systems Tornado
Environment for Real-Time
Applications

• “Resources for Wind River Systems Tornado Applications” on page 13-2

• “Wind River Systems Tornado Application Architecture” on page 13-4

• “Installing the Wind River Systems Tornado Software” on page 13-10

• “Implementing a Wind River Systems Tornado Application” on page 13-12

• “Building the Application” on page 13-22

• “Automatic Download and Execution” on page 13-22

• “Manual Download and Execution” on page 13-24

13 Targeting the Wind River® Systems Tornado® Environment for Real-Time Applications

Resources for Wind River Systems Tornado Applications

In this section...

“Introduction” on page 13-2
“The Tornado Environment” on page 13-2
“The Tornado Target” on page 13-3
“Block Library for Wind River Systems VxWorks” on page 13-3

Introduction
This section describes resources provided by The MathWorks and Wind
River Systems, Inc., for converting a Simulink model to a real-time VxWorks
application.

The Tornado Environment
The Tornado environment is an integrated development and real-time
execution environment that is available from Wind River Systems, Inc. You
can use the Tornado environment to develop an application on a host system,
download the application to a real-time processor, and run the application,
optionally monitoring its activities and changing its parameters. The Tornado
environment has many features similar to The Open Group UNIX platforms
and runs on a variety of host systems and real-time processors. The Tornado
environment includes

• Application building tools: Compiler, Linker, Make utility, Archive
utility

• Interactive development tools: Editor, Debugger, Browser,
Configuration tool, Command shell

• Wind River Systems VxWorks: A high-performance real-time operating
system

• StethoScope: An optional data acquisition and graphical monitoring tool

The Tornado User’s Guide, and other Tornado documentation give complete
information about the Tornado environment. This chapter does not repeat
information that is available in the Tornado documentation.

13-2

http://www.windriver.com/
http://www.windriver.com/
http://www.windriver.com/

Resources for Wind River® Systems Tornado® Applications

The Tornado Target
To support the Tornado environment, the Real-Time Workshop product
provides the Tornado target, which you can use to convert a Simulink model
to code that works with Tornado tools, runs under the VxWorks real-time
operation system (RTOS), and can be monitored by Tornado StethoScope, or
monitored and tuned with Simulink external mode. See Chapter 6, “External
Mode” for information about Simulink external mode.

Block Library for Wind River Systems VxWorks
The VxWorks block library (vxlib1) is part of the Real-Time Workshop
library. You can access the VxWorks block library by opening the Simulink
Library Browser, expanding the Real-Time Workshop entry, and clicking
VxWorks. Alternatively, type vxlib1 at the MATLAB prompt.

The blocks in the VxWorks block library allow you to model and generate code
for asynchronous event handling, including servicing hardware-generated
interrupts, maintenance of timers, asynchronous read and write operations,
and spawning asynchronous tasks under the VxWorks RTOS. See Chapter
16, “Asynchronous Support” for a detailed description of the blocks in the
VxWorks block library.

Note The older Interrupt Templates library (vxlib) is obsolete. It is provided
only to allow models created prior to Real-Time Workshop version 6.0 to
continue to operate. If you have models that use vxlib blocks, you should
change them to use vxlib1 blocks.

13-3

13 Targeting the Wind River® Systems Tornado® Environment for Real-Time Applications

Wind River Systems Tornado Application Architecture

In this section...

“Hardware Architecture” on page 13-4
“Software Architecture” on page 13-5
“Module Architecture” on page 13-6
“Host Processes” on page 13-6
“Wind River Systems VxWorks Tasks” on page 13-7

Hardware Architecture
In a typical real-time system based on the VxWorks RTOS, the hardware
consists of a PC or The Open Group UNIX host running the Simulink and
Real-Time Workshop products, connected by Ethernet to a VxWorks CPU.
The chassis containing the VxWorks CPU may also contain I/O boards with
A/D and D/A converters to communicate with external hardware. The next
figure shows the arrangement.

��������
,���������3����B�"

;��	 H$3��������
�	

�����
�����"����

��������

���
�	
�+<

#	B����	

#	B����	
+��	

7��K�7�
 ���
�

In this figure and the following sections, the VxWorks CPU and associated I/O
boards are called the VxWorks target. Be careful not to confuse the VxWorks
target with the Tornado target. The former is hardware; the latter is a
software specification that the Real-Time Workshop product uses to convert a
Simulink model to a VxWorks application.

13-4

Wind River® Systems Tornado® Application Architecture

Software Architecture
The real-time code is compiled on the UNIX or PC host using the
cross-compiler supplied with the VxWorks package. The object file (model.lo)
output from the Real-Time Workshop program builder is downloaded to the
VxWorks target over the Ethernet connection using the Tornado WindSh
command.

The real-time program executes on the VxWorks target, and interfaces with
external hardware using the I/O devices installed on the target. If you have
configured the program appropriately, you can monitor it using StethoScope,
or monitor it and change its parameters using Simulink external mode.
StethoScope and the Simulink environment execute on the host workstation,
and use tasks on the VxWorks target to handle communication.

This figure shows the structure of a VxWorks application. The figure shows
both StethoScope and the Simulink environment, but only one of them can be
used with a given compiled image. To switch to the other interface, you must
rebuild with appropriate options, then redownload and restart the program.
See “Setting Target-Specific Options” on page 13-15 for more information.

+��������<��#(��	�

<&�I����+��;��	

�����������
�$	��������
�

�	�	B����"�

�+����

#	B����	

H$3��������
�	

	 ���,�	�

	,�	��

	,�	�=

	,�	��

	#$	��� 	���"�

The real-time program creates VxWorks tasks to run on the real-time system,
and to communicate with the Simulink engine if the program uses Simulink
external mode. StethoScope creates its own tasks to collect data.

13-5

13 Targeting the Wind River® Systems Tornado® Environment for Real-Time Applications

Module Architecture
This figure shows the code modules used to build a VxWorks real-time
program for the f14 example model. Dashed boxes indicate optional modules,
such as those that implement external mode.

!����"��
���
���

�!��

������	�
���
�

!�
��
�$���	���

��	�
��	���
��
���

��������

�	���	���	���

#$	��������
�

!�������
%89�
�

���"��	�
��������

���!
����
%

#$���	���������
%89���

%89��
%89��
�
��

%89��
%89����	
����
%89��������
��
������
��7�������

�����
��

������

��
�������������

�+���	���
�+���	���
�+��
�4��

�+���	�������
���
!�������
�+��7�����
����7!��

Host Processes
Various processes can run on the host side to implement Tornado tools and
Simulink capabilities, and optionally to communicate with the real-time

13-6

Wind River® Systems Tornado® Application Architecture

program over the Internet. The host processes that communicate with the
real-time program depend on whether you use StethoScope or Simulink
external mode.

• If you use StethoScope, the StethoScope user interface module runs on the
host. This module communicates with the real-time program running on
the VxWorks target to retrieve model data and plot time histories.

• If you use Simulink external mode, and change a parameter in the block
diagram, the Simulink engine calls the external link MEX-file to download
any new parameter values to the real-time program.

Wind River Systems VxWorks Tasks
Various tasks run on the VxWorks target. Some execute the real-time
program, while others are optional and provide communication with the host.

Execution Tasks
You can run the real-time program in either single-tasking or multitasking
mode. The code for both modes is located in

matlabroot/rtw/c/tornado/rt_main.c

The Real-Time Workshop product compiles and links rt_main.c with the
model code during the build process. When the real-time program begins
execution, rt_main.c starts tasks for single-tasking or multitasking if they
are not already running.

Single-Tasking. By default, the model is run as one task, tSingleRate.
This might actually provide the best performance (highest base sample rate)
depending on the model.

The tSingleRate task runs at the base rate of the model and executes all
necessary code for the slower sample rates. Execution of the tSingleRate
task is normally blocked by a call to the VxWorks semTake routine. When a
clock interrupt occurs, the interrupt service routine calls the semGive routine,
which causes the semTake call to return. Once enabled, the tSingleRate
task executes the model code for one time step. The loop then waits at the
top by again calling semTake.

13-7

13 Targeting the Wind River® Systems Tornado® Environment for Real-Time Applications

For more information about the semTake and semGive routines, refer to the
VxWorks Reference Manual. By default, it runs at a relatively high priority
(30), which allows it to execute without interruption from background system
activity.

Multitasking. Optionally, the model can run as multiple tasks, one for each
sample rate in the model.

• tBaseRate — This task executes the components of the model code run
at the base (highest) sample rate. By default, it runs at a relatively
high priority (30), which allows it to execute without interruption from
background system activity.

• tRaten — The program also spawns a separate task for each additional
sample rate in the system. These additional tasks are named tRate1,
tRate2, ..., tRaten, where n is the slowest sample rate in the system. The
priority of each additional task is one lower than its predecessor (tRate1
has a lower priority than tBaseRate).

Communication Tasks
You can optionally monitor and change the parameters of the executing
real-time program using either StethoScope or Simulink external mode, but
not both with the same compiled image.

StethoScope Tasks. To enable real-time data collection and display,
StethoScope runs one or more VxWorks tasks, such as tScopeDaemon and
tScopeLink. In single-tasking mode, tSingleRate collects signals; in
multitasking mode, tBaseRate collects them. Both perform the collection on
every base time step. When idle time exists because the model is waiting for
the next time step, a StethoScope task sends the data to the host for display.
For more about StethoScope tasks, see the VxWorks documentation.

13-8

Wind River® Systems Tornado® Application Architecture

External Mode Tasks. To enable changing model parameters and collecting
data for display, Simulink external mode runs the VxWorks task tExtern.
The source code for tExtern is located in matlabroot/rtw/c/src/ext_svr.c.
The tExtern task implements the server side of a socket stream connection
that accepts data transferred between the Simulink engine and the real-time
program. The task runs at a lower priority than the lowest priority model
task. To tune parameters, tExtern waits for a message to arrive from the
Simulink engine. When a message arrives, tExtern retrieves it and modifies
the specified parameters accordingly.

13-9

13 Targeting the Wind River® Systems Tornado® Environment for Real-Time Applications

Installing the Wind River Systems Tornado Software

In this section...

“Introduction” on page 13-10
“Installing and Configuring the Tornado Environment” on page 13-10
“Connecting to the Wind River Systems VxWorks Target” on page 13-10
“Verifying the Tornado Installation” on page 13-11

Introduction
Before you can use the Tornado environment with the Simulink and
Real-Time Workshop products to create VxWorks applications, you must
perform some installation, configuration, and verification steps. See the
Tornado documentation for instructions on all aspects of Tornado installation
and configuration. This section provides additional information specific to the
Simulink and Real-Time Workshop products.

Installing and Configuring the Tornado Environment
The first step is to install and configure the Tornado environment on your
host and target hardware. If you want to use Simulink external mode
with your VxWorks program, you must configure your VxWorks kernel to
support sockets by including the INCLUDE_NET_INIT, INCLUDE_NET_SHOW, and
INCLUDE_NETWORK options in your VxWorks image.

Connecting to the Wind River Systems VxWorks
Target
After completing the installation process, you are ready to connect the host
workstation to the VxWorks target. The first step is ensuring that the
Tornado registry (wtxregd) is running. Typically, it is configured to start
running by the host operating system automatically at reboot. However,
it can also be started interactively.

Next, start the target server. This server provides communication between
the Tornado tools on the host and the agent on the VxWorks target. You can

13-10

Installing the Wind River® Systems Tornado® Software

do this from within the Tornado development environment. On Microsoft
Windows, you can use a command shell to enter:

tgtsvr target_network_name -A -V

Additional options might be required, such as -c for the VxWorks core image
location.

You may need to enter a routing table entry into the VxWorks system if your
host is not on the same local network (subnet) as the VxWorks system. See
routeAdd in the VxWorks Reference Guide for more information.

To check that the VxWorks system can properly respond to your host over
the network, use the host command:

ping <target_name>

Verifying the Tornado Installation
To verify the installation, run one of the VxWorks demonstration programs
to ensure you can boot your VxWorks target and download object files to it.
Consult the Tornado documentation as needed to configure and debug your
Tornado installation. Be sure that it is fully functional before you try to use it
with the Simulink and Real-Time Workshop products.

13-11

13 Targeting the Wind River® Systems Tornado® Environment for Real-Time Applications

Implementing a Wind River Systems Tornado Application

In this section...

“Designing the Simulink Model” on page 13-12
“Adding Device Driver Blocks” on page 13-12
“Specifying Code Generation Options” on page 13-13
“Configuring the Template Makefile” on page 13-19

Designing the Simulink Model
A Simulink model to be converted into a Wind River Systems VxWorks
real-time program can implement any Simulink capability supported by the
Real-Time Workshop product, and has no constraints beyond those that
apply to any model intended for Real-Time Workshop code generation. See
the “Simulink” documentation and “Real-Time Workshop” documentation
for information.

Adding Device Driver Blocks
The real-time program communicates with the I/O devices installed in the
VxWorks target chassis by using a set of device drivers. These device drivers
contain the necessary code that runs on the target processor for interfacing
to specific I/O devices.

To make device drivers easy to use, they are implemented as Simulink
S-functions using C/C++ MEX-files. This means you can connect them to your
model like any other block and the code generator automatically includes a
call to the block’s C/C++ code in the generated code. You can have multiple
instances of device driver blocks in your model.

You can inline S-functions by using the Target Language Compiler. Inlining
allows you to restrict function calls to only those that are necessary for the
S-function. This can greatly increase the efficiency of the S-function. For more
information about inlining S-functions, see Chapter 11, “S-Function Target”
and the Real-Time Workshop Target Language Compiler documentation.

13-12

Implementing a Wind River® Systems Tornado® Application

For additional information on creating device drivers, see the Real-Time
Workshop Embedded Coder documentation and Chapter 11, “S-Function
Target”.

Specifying Code Generation Options
To specify the code generation options necessary for a Tornado application,
open the Model Explorer or the Configuration Parameters dialog box, then
select configuration panes and set options as described in this section. The
options that you specify set the appropriate macros in the template makefile,
causing any necessary additional steps to be performed during the build
process.

Depending on your application, you may also want to specify other code
generation options, such as those that control parameter inlining and
tunability. For more information, see “Configuring Real-Time Workshop
Code Generation Parameters” on page 2-58. You must also specify some
information by editing the template makefile, as described in “Configuring the
Template Makefile” on page 13-19.

Selecting the Tornado Target
To specify the Tornado (VxWorks) target for code generation,

1 Select the Real-Time Workshop > General pane.

2 Click Browse.

The System Target File Browser opens.

3 Select tornado.tlc (the Tornado target) in the left column, then click OK.

13-13

13 Targeting the Wind River® Systems Tornado® Environment for Real-Time Applications

Specifying the Tornado target adds a Real-Time Workshop > Tornado
Target pane and sets Real-Time Workshop > General options as follows:

• System target file: tornado.tlc

• TLC Options: -p0 -aWarnNonSaturatedBlocks=0

• Make command: make_rtw

• Template makefile: tornado.tmf

If you will use a template makefile with a nondefault name, as described in
“Configuring the Template Makefile” on page 13-19, you must replace the
default Template makefile name tornado.tmf with the name you want to
use instead.

Specifying the Solver
Because generated code cannot use variable-step solvers as a Simulink model
can, you must specify a fixed-step solver and set other options:

1 Select the Solver pane.

2 Set Type to Fixed-step.

3 Select a Solver integration algorithm as appropriate to your model:

• For a model with any continuous states, choose a fixed-step algorithm.

13-14

Implementing a Wind River® Systems Tornado® Application

• For a discrete model, choose Discrete (no continuous states).

4 Set Fixed-step size to the desired integration step size.

Setting Target-Specific Options
Once you have selected the Tornado target, as described above, you can set
target-specific code generation options. First select the Tornado Target
pane. The next figure shows the default Tornado configuration.

You can change options on the Tornado Target pane to enable and configure
the capabilities described in this section.

MAT-File Logging. Select MAT-file logging to enable data logging during
program execution. The program creates a file named model.mat at the end
of program execution. This file contains the variables that you specified in
the Configuration Parameters > Data Import/Export pane. See “Data
Import/Export Pane” and “MAT-file logging”.

13-15

13 Targeting the Wind River® Systems Tornado® Environment for Real-Time Applications

The Real-Time Workshop code generator adds a prefix or suffix to the names
of the Data Import/Export pane variables that you select for logging. The
MAT-file variable name modifier menu lets you select this prefix or suffix.
See “Data Import/Export Pane” and “MAT-file variable name modifier”.

By default, the MAT-file is created in the root directory of the VxWorks
current default device. This is typically the host file system from which the
VxWorks system was booted. Other remote file systems can be used as a
destination for the MAT-file using rsh or ftp network devices or NFS. See the
VxWorks Programmer’s Guide for more information.

If a device or filename other than the default is desired, use the OPTS flag to
add "-DSAVEFILE=filename" (with quotes) to theMake command shown on
the Real-Time Workshop > General pane. For example:

make_rtw OPTS="-DSAVEFILE=MyFileName"

Generated Code Format. Use Code format to specify the RealTime or
RealTimeMalloc code generation format.

StethoScope Monitoring. Select StethoScope to enable the use of
StethoScope with the generated executable. You cannot select both
StethoScope and External mode at the same time.

With StethoScope, you can access the output of any block in the model (as
executed by the real-time program) and display this data on the host. You can
install signals in StethoScope in one of two ways:

• From the real-time program using the rtBlockIOSignals data structure.
See “C API for Interfacing with Signals and Parameters” on page 17-2 for
details.

• With the Tornado WindSh command while the real-time program is
running. See the StethoScope User’s Manual for details.

When you start the downloaded program, you must specify two command-line
arguments that control the block names used by StethoScope. See
“Starting the Program” on page 13-25 for information about these and other
command-line arguments.

13-16

Implementing a Wind River® Systems Tornado® Application

Automatic Download. Select Download to VxWorks target to enable
automatic downloading of the generated program.

Base Task Priority. Specify the priority with which the base rate task
for the model is to be spawned. The default value is 30. For a multirate,
multitasking model, the Real-Time Workshop product increments the priority
of each subrate task by one. For example, if a model includes two subrate
tasks and the priority of the base rate task is 30, the priorities for the subrate
tasks are 31 and 32.

Note, the value you specify for this option will be overridden by a base priority
specified in a call to the rt_main() function spawned as a task.

Task Stack Size. Specify the stack size to be used in calls to the VxWorks
function taskSpawn(), which spawn tasks for the base rate and subrates of
the model. The default size is 16384 bytes.

The VxWorks system target file uses the value you specify for this option
to set the TLC variables MaxStackSize and MaxStackVariableSize. The
variables are set as follows:

MaxStackSize One-half the size of the Task stack size
setting (8192 bytes by default)

MaxStackVariableSize One-half the size of the MaxStackSize (4096
bytes by default)

These variable settings help ensure the generated code does not exceed the
stack size allocated for each task. Thus, you should tune this option to the
match the requirements of your generated code.

Simulink External Mode. Simulink external mode provides a mechanism
to monitor signals in your model and download new parameter values to the
executing real-time program. See Chapter 6, “External Mode” for information
about external mode. This section does not repeat the information available
there.

Communication between the Simulink engine and a real-time VxWorks
program uses the sockets network API and requires an Ethernet connection
that supports TCP/IP. The Tornado environment must be configured to

13-17

13 Targeting the Wind River® Systems Tornado® Environment for Real-Time Applications

provide these capabilities. See “Installing the Wind River Systems Tornado
Software” on page 13-10 for more information.

To configure your application to use external mode, select External mode
in the Real-Time Workshop > Tornado Target pane. You cannot select
both External mode and StethoScope at the same time. Two Host/Target
interface options appear below the External mode check box: Transport
layer and MEX-file arguments.

The value of Transport layer is preset to tcpip and cannot be changed;
the Tornado environment supports only the TCP/IP protocol. To the right of
the Transport layer field, the string MEX-file name: ext_comm names
the MEX file that the Simulink external mode transport layer uses with the
Tornado target. This name cannot be changed. The full path of the MEX-file
is:

matlabroot/toolbox/rtw/rtw/ext_comm.*

where * is a host-dependent MEX-file extension.

The value of MEX-file arguments must be a string of arguments to be
passed to the transport layer MEX-file. The format is:

'target_network_name' [verbosity] [TCP port number]

You must provide the first argument, which specifies the name of the
VxWorks target system. You can also specify a verbosity and a TCP port
number. Verbosity can be 0 (the default) or 1 if extra information is desired.
The TCP port number can range from 256 to 65535; the default is 17725. If a
conflict exists with other software using port 17725, you can change the port
with the third argument. The arguments are positional, so you must specify a
verbosity if you specify a port number.

For example, to specify a target system called halebopp, the default verbosity
of 0, and the nondefault TCP port 18000, giveMEX-file arguments the value:

'halebopp' 0 18000

You can also enable verbose mode by using the OPTS flag to add -DVERBOSE
to the Make command shown on the Real-Time Workshop > General
pane. For example:

13-18

Implementing a Wind River® Systems Tornado® Application

make_rtw OPTS="-DVERBOSE"

Configuring the Template Makefile
In addition to setting code generation options, you must enter some
information into the VxWorks makefile, which by default is named
tornado.tmf. You can rename the makefile if you like, provided that you also
specify the name as a code generation parameter, as described in “Selecting
the Tornado Target” on page 13-13.

The makefile information you must enter describes the environment in
which you are using the VxWorks system. This section lists the lines in the
file that you must edit. For additional information, see “Rapid Prototyping
System-Independent Components” on page 7-27.

Specifying the VxWorks Target Type and CPU
To provide information used by the VxWorks system, you must specify the
type of target and the specific CPU on the target. The target type is then used
to locate the correct cross-compiler and linker for your system.

The CPU type is used to define the CPU macro that is in turn used by many
of the VxWorks header files. See the VxWorks Programmer’s Guide for
information on the appropriate values to use.

This information is in the section labeled

#-------------- VxWorks Configuration --------------

Edit the following lines to reflect your setup.

VX_TARGET_TYPE = 68k
CPU_TYPE = MC68040

Specifying the Tornado Tool Locations
To locate the Tornado tools used in the build process, the following three
macros must either be defined in the environment or specified in the template
makefile. Modify these macros to reflect your setup.

#-------------- Tool Locations --------------

13-19

13 Targeting the Wind River® Systems Tornado® Environment for Real-Time Applications

WIND_BASE = c:/Tornado
WIND_REGISTRY = $(COMPUTERNAME)
WIND_HOST_TYPE = x86-win32

Resolving Header File Paths
Tornado version 2.2.1 installs some standard header files in an include
directory under the target compiler target directory. For example, if you are
targeting the Freescale 68xxx processor for the VxWorks system with the
GCC 2.96 compiler, the Tornado environment installs the header files at
the following location:

WIND_BASE/host/WIND_HOST_TYPE/lib/gcc-lib/m68k-wrs-vxworks/gcc-2.96/include

To use Tornado version 2.2.1 or higher with the Tornado (VxWorks) Real-Time
Target, tornado.tlc, you must enable a macro in template makefile
tornado.tmf. To enable the macro,

1 Open matlabroot/rtw/c/tornado/tornado.tmf.

2 Search for TORNADO_TARGET_COMPILER_INCLUDES.

3 Uncomment the macro TORNADO_TARGET_COMPILER_INCLUDES and set it to
the include directory that contains the Tornado standard header files.

Given the path shown above, you would set the macro as follows:

TORNADO_TARGET_COMPILER_INCLUDES =

$(WIND_BASE)/host/$(WIND_HOST_TYPE)/lib/gcc-lib/m68k-wrs-vxworks/gcc-2.96/include

If you are using a Tornado version before 2.2.1, leave the macro commented
out.

Configuring for Automatic Downloading
To perform automatic downloading during the build process, you must specify
the target name and host name that the Tornado target server are to run on.
Modify these macros to reflect your setup.

#-------------- Macros for Downloading to Target--------------
TARGET = targetname
TGTSVR_HOST = hostname

13-20

Implementing a Wind River® Systems Tornado® Application

13-21

13 Targeting the Wind River® Systems Tornado® Environment for Real-Time Applications

Building the Application
Once you have completed the operations previously described in “Installing
the Wind River Systems Tornado Software” on page 13-10 and “Implementing
a Wind River Systems Tornado Application” on page 13-12, you are ready to
build the real-time application:

1 If you specified automatic downloading, reset the Wind River Systems
VxWorks system by pressing control-x on the host console or
power-cycling the VxWorks chassis. This ensures that no dangling
processes or stale data exist in the system.

Note Be sure to reset the VxWorks system again before every
subsequent build and automatic download.

2 Click the Build button in the Real-Time Workshop pane of the Model
Explorer or the Configuration Parameters dialog box.

The resulting object file is named with the .lo extension, which stands
for loadable object. This file is compiled for the target processor using the
cross-compiler specified in the makefile.

Automatic Download and Execution
If you specified automatic downloading, the following actions occur
automatically as soon as the build is complete:

1 The target server is started.

2 The object file is downloaded.

3 If StethoScope was selected, the StethoScope object files (libxdr.so,
libutilstssip.so, and libscope.so) are downloaded.

4 The downloaded program is started on the target.

13-22

Automatic Download and Execution

If StethoScope was selected, you can now start StethoScope on the host. See
the StethoScope User’s Manual for more information.

13-23

13 Targeting the Wind River® Systems Tornado® Environment for Real-Time Applications

Manual Download and Execution

In this section...

“Introduction” on page 13-24
“Resetting Wind River Systems VxWorks System” on page 13-24
“Downloading Files” on page 13-24
“Starting the Program” on page 13-25

Introduction
If you did not specify automatic downloading, you must use Wind River
Systems Tornado tools to download and start the program.

Resetting Wind River Systems VxWorks System
Reset the VxWorks system by pressing control-x on the host console or
power-cycling the VxWorks chassis. This ensures that no dangling processes
or stale data exist in the system.

Note Be sure to reset the VxWorks system again before every
subsequent manual download.

Downloading Files
To download the real-time program, use the VxWorks ld routine from within
the Wind River Systems WindSh™ (wind shell). The WindSh shell can also
be run from the command line or from within the Tornado development
environment.

For example, if you want to download the file vx_equal.lo, which is in the
/home/my_working_dir directory, use the following commands at the WindSh
prompt.

cd "/home/my_working_dir"
ld <vx_equal.lo

13-24

Manual Download and Execution

You will also need to load the StethoScope libraries if the StethoScope
option was selected during the build. The Tornado User’s Guide describes
the ld library routine.

Starting the Program
The real-time program defines a function, rt_main(), which spawns the tasks
to execute the model code, and communicate with the Simulink engine if
you selected external mode during the build procedure. It also initializes
StethoScope if you selected this option during the build procedure.

The rt_main function is defined in the rt_main.c application module. This
module is located in the matlabroot/rtw/c/tornado directory.

The rt_main function takes six arguments, and is defined by the following
ANSI22 C function prototype:

RT_MODEL * (*model_name)(void),
char_T *optStr,
char_T *scopeInstallString,
int_T scopeFullNames,
int_T priority,
int_T port

The following table lists the arguments to this function.

Arguments to the rt_main RT_MODEL

Argument Description

model_name Pointer to the entry point function in the
generated code. This function has the same
name as the Simulink model. It registers the
local functions that implement the model code
by adding function pointers to the model’s rtM.
See Chapter 7, “Program Architecture” for more
information.

22. ANSI® is a registered trademark of the American National Standards Institute, Inc.

13-25

13 Targeting the Wind River® Systems Tornado® Environment for Real-Time Applications

Arguments to the rt_main RT_MODEL (Continued)

Argument Description

optStr Options string used to specify a stop time (-tf)
and whether to wait (-w) in external mode for a
message from the Simulink engine before starting
the simulation. An example options string is

"-tf 20 -w"

The -tf option overrides the stop time that was
set during code generation. If the value of the -tf
option is inf, the program runs indefinitely.

scopeInstallString Character string that determines which signals
are installed to StethoScope. Possible values are

• NULL — Install no signals. This is the default
value.

• "*" — Install all signals.

• "[A-Z]*" — Install signals from blocks whose
names start with an uppercase letter.

Specifying any other string installs signals from
blocks whose names start with that string.

scopeFullNames Determines whether StethoScope uses full
hierarchical block names for the signals it
accesses or just the individual block name.
Possible values are

• 1 Use full block names.

• 0 Use individual block names. This is the
default value.

It is important to use full block names if your
program has multiple instances of a model or
S-function.

13-26

Manual Download and Execution

Arguments to the rt_main RT_MODEL (Continued)

Argument Description

priority Priority of the program’s highest priority task
(tBaseRate). Not specifying any value (or
specifying a value of 0) assigns tBaseRate to the
default priority, 30.

port Port number that the external mode sockets
connection should use. The valid range is 256 to
65535. The port number defaults to 17725.

Passing optStr by Using the Template Makefile
You can also pass the -w and -tf options (see optStr in the preceding table)
to rt_main by using the PROGRAM_OPTS macro in tornado.tmf. PROGRAM_OPTS
passes a string of the form

-opt1 val1 -opt2 val2

In the following examples, the PROGRAM_OPTS directive sets an infinite stop
time and instructs the program to wait for a message from the Simulink
engine before starting the simulation. The argument string must be delimited
by single quotes nested within double quotes:

PROGRAM_OPTS = "'-tf inf -w'"

Including the single quotes ensures that the argument string is passed to
the target program correctly under both Microsoft Windows and The Open
Group UNIX platforms.

Calling rt_main
To begin program execution, call rt_main from the WindSh prompt. For
example,

sp(rt_main, vx_equal, "-tf 20 -w", "*", 0, 30, 17725)

• Begins execution of the vx_equal model

• Specifies a stop time of 20 seconds

13-27

13 Targeting the Wind River® Systems Tornado® Environment for Real-Time Applications

• Provides access to all signals (block outputs) in the model by StethoScope

• Uses only individual block names for signal access (instead of the
hierarchical name)

• Uses the default priority (30) for the tBaseRate task

• Uses TCP port 17725, the default

13-28

14

Inserting Custom Code Into
Generated Code

The following sections explain how to use blocks in the Custom Code block
library to insert custom code into the code generated for a model. This chapter
includes the following topics:

• “Custom Code Library” on page 14-2

• “Example: Using a Custom Code Block” on page 14-6

• “Custom Code in Subsystems” on page 14-9

• “Preventing User Source Code from Being Deleted from Build Directories”
on page 14-10

14 Inserting Custom Code Into Generated Code

Custom Code Library
The Custom Code library contains blocks that enable you to insert your
own C or C++ code into specific functions within code generated by the
Real-Time Workshop product for root models and subsystems. These blocks
are a superset of code customization capabilities built into the Custom Code
Configuration Parameters dialog box, and provide greater flexibility in terms
of code placement than the controls on the dialog box.

The Custom Code library is part of the Real-Time Workshop library. You
can access the Real-Time Workshop library by using the Simulink Library
Browser. You can access Custom Code blocks by using the Real-Time
Workshop library or by entering the MATLAB command rtwlib and then
double-clicking the Custom Code Library block within it. Alternatively, you
can enter the command custcode.

This chapter discusses use of the Custom Code library only.

14-2

Custom Code Library

Note If you need to integrate custom C++ code with generated C code or vice
versa, see “Integrating C and C++ Code” on page 10-90 for information on
language compatibility requirements.

All Custom Code blocks except for Model Header and Model Source can be
dragged into either root models or atomic subsystems. Model Header and
Model Source blocks can only be placed in root models.

Note You can use models containing Custom Code blocks as submodels
(models referenced by Model blocks). However, when simulation targets for
submodels are generated, all Custom Code blocks within them are ignored.
On the other hand, when submodel code is generated to create Real-Time
Workshop targets, custom code is included and is compiled in the generated
code.

The Custom Code library contains ten blocks that insert custom code into the
generated model files and functions. You can view the blocks either by

• Expanding the Custom Code node (under Real-Time Workshop library)
in the Simulink Library Browser

• Right-clicking the Custom Code sublibrary icon in the right pane of the
Simulink Library Browser

The latter method opens the window shown in the previous section.

The two blocks on the top row contain text fields for inserting custom code at
the top and bottom of

• model.h — Model Header File block

• model.c or model.cpp — Model Source File block

Each block contains two fields, in which you type or paste code and comments:

• Top of Model Source/Header

14-3

14 Inserting Custom Code Into Generated Code

• Bottom of Model Source/Header

The next figure shows the Model Source block dialog box.

The eight function blocks in the second and third rows contain text fields to
insert custom code sections at the top and bottom of these designated model
functions:

• SystemStart — System Start function block

• SystemInitialize — System Initialize function block

• SystemTerminate — System Terminate function block

• SystemEnable — System Enable function block

• SystemDisable — System Disable function block

• SystemOutputs — System Outputs function block

• SystemUpdate — System Update function block

14-4

Custom Code Library

• SystemDerivatives — System Derivatives function block

Each of these blocks provides a System Outputs Function Custom Code dialog
box that contains three fields:

• Declaration code

• Execution code

• Exit code

14-5

14 Inserting Custom Code Into Generated Code

Example: Using a Custom Code Block
The following example uses a System Start Function block to introduce code
into the MdlStart function. The next figure shows a simple model with the
System Start Function block inserted.

Double-clicking the System Start Function block opens the System Start
Function Custom Code dialog box.

14-6

Example: Using a Custom Code Block

�B����
��
�����	��������	��	B����
�
��	���
�B������	��	B��!
��	��	�����	���*

You can insert custom code into any or all of the available text fields.

14-7

14 Inserting Custom Code Into Generated Code

The code below is the MdlStart function for this example (mymodel).

void MdlStart(void)
{

{
{

/* user code (Start function Header) */
/* System '<Root>' */
unsigned int *ptr = 0xFFEE;

/* user code (Start function Body) */
/* System '<Root>' */
/* Initialize hardware */
*ptr = 0;

}
}

MdlInitialize();
}

The custom code entered in the System Start Function Custom Code dialog
box is embedded directly in the generated code. Each block of custom code is
tagged with a comment such as

/* user code (Start function Header) */

14-8

Custom Code in Subsystems

Custom Code in Subsystems
The location of a Custom Code block in your model determines the location of
the code it contains. You can use System Custom Code blocks either at root
level or within atomic subsystems; the code is local to the subsystem in which
you place the blocks. For example, the System Outputs block places code in
mdlOutputs when the code block resides in the root model. If the System
Outputs block resides in a triggered or enabled subsystem, however, the code
is placed in the subsystem’s Outputs function.

The ordering for a triggered or enabled system is

1 Output entry

2 Output exit

3 Update entry

4 Update exit

Note If a root model or atomic subsystem does not need to generate a
function for which a Custom Code block has been supplied, either the code
in the block is not used or an error is generated. There is no diagnostic
setting to control this. To eliminate the error, remove the Custom Code
block.

14-9

14 Inserting Custom Code Into Generated Code

Preventing User Source Code from Being Deleted from
Build Directories

Prior to Release 13 (Version 5.0), the Real-Time Workshop product did not
delete any .c or .h files that the user had placed in the build directory when
rebuilding targets. From Release 13 onward, all foreign source files are by
default deleted during builds, but can be preserved by following the guidelines
given below.

If you put a .c/.cpp or .h source file in a build directory, and you want to
prevent the Real-Time Workshop product from deleting it during the TLC
code generation process, insert the string target specific file in the first
line of the .c/.cpp or .h file. For example,

/* COMPANY-NAME target specific file
*
* This file is created for use with the
* COMPANY-NAME target.
* It is used for ...
*/

...

Make sure you spell the string “target specific file” as shown in the preceding
example, and that the string is in the first line of the source file. Other text
can appear before or after this string.

In addition to preserving them, flagging user files in this manner prevents
postprocessing them to indent them along with generated source files.
Auto-indenting occurred in previous releases to build directory files with
names having the pattern model_*.c/.cpp (where * could be any string). The
indenting is harmless, but can cause differences to be detected by source
control software that might trigger unnecessary updates.

14-10

15

Timing Services

• “Absolute and Elapsed Time Computation” on page 15-2

• “APIs for Accessing Timers” on page 15-5

• “Elapsed Timer Code Generation Example” on page 15-10

15 Timing Services

Absolute and Elapsed Time Computation

In this section...

“Introduction” on page 15-2
“Timers for Periodic and Asynchronous Tasks” on page 15-3
“Allocation of Timers” on page 15-3
“Integer Timers in Generated Code” on page 15-3
“Elapsed Time Counters in Triggered Subsystems” on page 15-4

Introduction
Certain blocks require the value of either absolute time (that is, the time
from the start of program execution to the present time) or elapsed time (for
example, the time elapsed between two trigger events). All targets that
support the real-time model (rtModel) data structure provide efficient time
computation services to blocks that request absolute or elapsed time. Absolute
and elapsed timer features include

• Timers are implemented as unsigned integers in generated code.

• In multirate models, at most one timer is allocated per rate, on an
as-needed basis. If no blocks executing at a given rate require a timer, no
timer is allocated to that rate. This minimizes memory allocated for timers
and significantly reduces overhead involved in maintaining timers.

• Allocation of elapsed time counters for use of blocks within triggered
subsystems is minimized, further reducing memory usage and overhead.

• The Real-Time Workshop product provides S-function and TLC APIs that
let your S-functions access timers, in both simulation and code generation.

• For ERT and ERT-derived targets, the word size of the timers is determined
by a user-specified maximum counter value. Correct specification of this
value ensures that timers will not overflow. See the description of the
parameter “Controlling Memory Allocation for Time Counters” on page
9-53. See also the Real-Time Workshop Embedded Coder documentation
for information on restrictions on its use.

15-2

Absolute and Elapsed Time Computation

See Appendix A, “Limitations on the Use of Absolute Time” and “Blocks that
Depend on Absolute Time” on page A-5 for more information about absolute
time and the restrictions that it imposes.

Timers for Periodic and Asynchronous Tasks
This chapter discusses timing services provided for blocks executing within
periodic tasks (that is, tasks running at the model’s base rate or subrates).

The Real-Time Workshop product also provides timer support for blocks
whose execution is asynchronous with respect to the periodic timing source of
the model. See the following sections of the Asynchronous Support chapter:

• “Using Timers in Asynchronous Tasks” on page 16-28

• “Creating a Customized Asynchronous Library” on page 16-31

Allocation of Timers
If you create or maintain an S-Function block that requires absolute or
elapsed time data, it must register the requirement (see “APIs for Accessing
Timers” on page 15-5). In multirate models, timers are allocated on a per-rate
basis. For example, consider a model structured as follows:

• There are three rates, A, B, and C, in the model.

• No blocks running at rate B require absolute or elapsed time.

• Two blocks running at rate C register a requirement for absolute time.

• One block running at rate A registers a requirement for absolute time.

In this case, two timers are generated, running at rates A and C respectively.
The timing engine updates the timers as the tasks associated with rates A
and C execute. Blocks executing at rates A and C obtain time data from the
timers associated with rates A and C.

Integer Timers in Generated Code
In the generated code, timers for absolute and elapsed time are implemented
as unsigned integers. The default size is 64 bits. This is the amount of
memory allocated for a timer if you specify a value of inf for the Application

15-3

15 Timing Services

lifespan (days) parameter. For an application with a sample rate of 1000
MHz, a 64-bit counter will not overflow for more than 500 years. See “Using
Timers in Asynchronous Tasks” on page 16-28 and “Controlling Memory
Allocation for Time Counters” on page 9-53 for more information.

Elapsed Time Counters in Triggered Subsystems
Some blocks, such as the Discrete-Time Integrator block, perform
computations requiring the elapsed time (delta T) since the previous block
execution. Blocks requiring elapsed time data must register the requirement
(see “APIs for Accessing Timers” on page 15-5). A triggered subsystem then
allocates and maintains a single elapsed time counter if required. This timer
functions at the subsystem level, not at the individual block level. The timer
is generated if the triggered subsystem (or any unconditionally executed
subsystem within the triggered subsystem) contains one or more blocks
requiring elapsed time data.

Note If you are using simplified initialization mode, elapsed time is always
reset on first execution after becoming enabled, whether or not the subsystem
is configured to reset on enable. For more information, see “Underspecified
initialization detection” in the Simulink documentation.

15-4

APIs for Accessing Timers

APIs for Accessing Timers

In this section...

“Introduction” on page 15-5
“C API for S-Functions” on page 15-5
“TLC API for Code Generation” on page 15-8

Introduction
This section describes APIs that let your S-functions take advantage of the
efficiencies offered by the absolute and elapsed timers. SimStruct macros are
provided for use in simulation, and TLC functions are provided for inlined
code generation. Note that

• To generate and use the new timers as described above, your
S-functions must register the need to use an absolute or elapsed
timer by calling ssSetNeedAbsoluteTime or ssSetNeedElapseTime in
mdlInitializeSampleTime.

• Existing S-functions that read absolute time but do not register by using
these macros will continue to operate correctly, but will generate old-style,
less efficient code.

C API for S-Functions
The SimStruct macros described in this section provide access to absolute and
elapsed timers for S-functions during simulation.

In the functions below, the SimStruct *S argument is a pointer to the
simstruct of the calling S-function.

• void ssSetNeedAbsoluteTime(SimStruct *S, boolean b): if b is TRUE,
registers that the calling S-function requires absolute time data, and
allocates an absolute time counter for the rate at which the S-function
executes (if such a counter has not already been allocated).

• int ssGetNeedAbsoluteTime(SimStruct *S): returns 1 if the S-function
has registered that it requires absolute time.

15-5

15 Timing Services

• double ssGetTaskTime(SimStruct *S, tid): read absolute time
for a given task with task identifier tid. ssGetTaskTime operates
transparently, regardless of whether or not you use the new timer features.
ssGetTaskTime is documented in the SimStruct Functions chapter of the
Simulink Writing S-Functions documentation.

• void ssSetNeedElapseTime(SimStruct *S, boolean b): if b is TRUE,
registers that the calling S-function requires elapsed time data, and
allocates an elapsed time counter for the triggered subsystem in which the
S-function executes (if such a counter has not already been allocated). See
also “Elapsed Time Counters in Triggered Subsystems” on page 15-4.

• int ssGetNeedElapseTime(SimStruct *S): returns 1 if the S-function
has registered that it requires elapsed time.

• void ssGetElapseTime(SimStruct *S, (double *)elapseTime):
returns, to the location pointed to by elapseTime, the value (as a double)
of the elapsed time counter associated with the S-function.

• void ssGetElapseTimeCounterDtype(SimStruct *S, (int *)dtype):
returns the data type of the elapsed time counter associated with the
S-function to the location pointed to by dtype. This function is intended for
use with the ssGetElapseTimeCounter function (see below).

• void ssGetElapseResolution(SimStruct *S, (double *)resolution):
returns the resolution (that is, the sample time) of the elapsed time counter
associated with the S-function to the location pointed to by resolution.
This function is intended for use with the ssGetElapseTimeCounter
function (see below).

• void ssGetElapseTimeCounter(SimStruct *S, (void *)elapseTime):
This function is provided for the use of blocks that require the elapsed time
values for fixed-point computations. ssGetElapseTimeCounter returns, to
the location pointed to by elapseTime, the integer value of the elapsed
time counter associated with the S-function. If the counter size is 64 bits,
the value is returned as an array of two 32-bit words, with the low-order
word stored at the lower address.

To determine how to access the returned counter value, obtain the data
type of the counter by calling ssGetElapseTimeCounterDtype, as in the
following code:

int *y_dtype;
ssGetElapseTimeCounterDtype(S, y_dtype);

15-6

APIs for Accessing Timers

switch(*y_dtype) {
case SS_DOUBLE_UINT32:

{
uint32_T dataPtr[2];
ssGetElapseTimeCounter(S, dataPtr);

}
break;

case SS_UINT32:
{

uint32_T dataPtr[1];
ssGetElapseTimeCounter(S, dataPtr);

}
break;

case SS_UINT16:
{

uint16_T dataPtr[1];
ssGetElapseTimeCounter(S, dataPtr);

}
break;

case SS_UINT8:
{

uint8_T dataPtr[1];
ssGetElapseTimeCounter(S, dataPtr);

}
break;

case SS_DOUBLE:
{

real_T dataPtr[1];
ssGetElapseTimeCounter(S, dataPtr);

}
break;

default:
ssSetErrorStatus(S, "Invalid data type for elaspe time

counter");
break;

}

15-7

15 Timing Services

If you want to use the actual elapsed time, issue a call to the
ssGetElapseTime function to access the elapsed time directly. You do not
need to get the counter value and then calculate the elapsed time.

double *y_elapseTime;
.
.
.
ssGetElapseTime(S, elapseTime)

TLC API for Code Generation
The following TLC functions support elapsed time counters in generated code
when you inline S-functions by writing TLC scripts for them.

• LibGetTaskTimeFromTID(block): Generates code to read the absolute
time for the task in which block executes.

LibGetTaskTimeFromTID is documented with other sample time functions
in the TLC Function Library Reference pages of the Target Language
Compiler documentation.

Note Do not use LibGetT for this purpose. LibGetT always reads the base
rate (tid 0) timer. If LibGetT is called for a block executing at a subrate,
the wrong timer is read, causing serious errors.

• LibGetElapseTime(system): Generates code to read the elapsed time
counter for system. (system is the parent system of the calling block.) See
“Elapsed Timer Code Generation Example” on page 15-10 for an example
of code generated by this function.

• LibGetElapseTimeCounter(system): Generates code to read the integer
value of the elapsed time counter for system. (system is the parent system
of the calling block.) This function should be used in conjunction with
LibGetElapseTimeCounterDtypeId and LibGetElapseTimeResolution.
(See the discussion of ssGetElapseTimeCounter above.)

• LibGetElapseTimeCounterDtypeId(system): Generates code that returns
the data type of the elapsed time counter for system. (system is the parent
system of the calling block.)

15-8

APIs for Accessing Timers

• LibGetElapseTimeResolution(system): Generates code that returns the
resolution of the elapsed time counter for system. (system is the parent
system of the calling block.)

15-9

15 Timing Services

Elapsed Timer Code Generation Example
This section shows a simple model illustrating how an elapsed time counter is
generated and used by a Discrete-Time Integrator block within a triggered
subsystem. The following block diagrams show the model elapseTime_exp,
which contains subsystem Amplifier, which includes a Discrete-Time
Integrator block.

elapseTime_exp Model

Amplifier Subsystem

A 32-bit timer for the base rate (the only rate in this model) is defined within
the rtModel structure, as follows, in model.h.

/*
* Timing:
* The following substructure contains information regarding
* the timing information for the model.
*/

15-10

Elapsed Timer Code Generation Example

struct {
time_T stepSize;
uint32_T clockTick0;
uint32_T clockTickH0;
time_T stepSize0;
time_T tStart;
time_T tFinal;
time_T timeOfLastOutput;
void *timingData;
real_T *varNextHitTimesList;
SimTimeStep simTimeStep;
boolean_T stopRequestedFlag;
time_T *sampleTimes;
time_T *offsetTimes;
int_T *sampleTimeTaskIDPtr;
int_T *sampleHits;
int_T *perTaskSampleHits;
time_T *t;
time_T sampleTimesArray[1];
time_T offsetTimesArray[1];
int_T sampleTimeTaskIDArray[1];
int_T sampleHitArray[1];
int_T perTaskSampleHitsArray[1];
time_T tArray[1];

} Timing;

Had the target been ERT instead of GRT, the Timing structure would have
been pruned to contain only the data required by the model, as follows:

/* Real-time Model Data Structure */ (for ERT!)
struct _RT_MODEL_elapseTime_exp_Tag {

/*
* Timing:
* The following substructure contains information regarding
* the timing information for the model.
*/

struct {
uint32_T clockTick0;

15-11

15 Timing Services

} Timing;
};

Storage for the previous-time value of the Amplifier subsystem
(Amplifier_PREV_T) is allocated in the D_Work(states) structure in model.h.

typedef struct D_Work_elapseTime_exp_tag {
real_T DiscreteTimeIntegrator_DSTATE; /* '<S1>/Discrete-Time

Integrator' */
int32_T clockTickCounter; /* '<Root>/Pulse Generator' */
uint32_T Amplifier_PREV_T; /* '<Root>/Amplifier' */

} D_Work_elapseTime_exp;

These structures are declared in model.c:

/* Block states (auto storage) */
D_Work_elapseTime_exp elapseTime_exp_DWork;
.
.
.
/* Real-time model */
rtModel_elapseTime_exp elapseTime_exp_M_;
rtModel_elapseTime_exp *elapseTime_exp_M = &elapseTime_exp_M_;

The elapsed time computation is performed as follows within the model_step
function:

/* Output and update for trigger system: '<Root>/Amplifier' */
uint32_T rt_currentTime =

((uint32_T)elapseTime_exp_M->Timing.clockTick0);
uint32_T rt_elapseTime = rt_currentTime -

elapseTime_exp_DWork.Amplifier_PREV_T;
elapseTime_exp_DWork.Amplifier_PREV_T = rt_currentTime;

As shown above, the elapsed time is maintained as a state of the triggered
subsystem. The Discrete-Time Integrator block finally performs its output
and update computations using the elapsed time.

/* DiscreteIntegrator: '<S1>/Discrete-Time Integrator' */

OUTPUT = elapseTime_exp_DWork.DiscreteTimeIntegrator_DSTATE;

15-12

Elapsed Timer Code Generation Example

/* Update for DiscreteIntegrator: '<S1>/Discrete-Time Integrator'*/

elapseTime_exp_DWork.DiscreteTimeIntegrator_DSTATE += 0.3 *

(real_T)rt_elapseTime * 1.5 ;

Because the triggered subsystem maintains the elapsed time, the TLC
implementation of the Discrete-Time Integrator block needs only a single call
to LibGetElapseTime to access the elapsed time value.

15-13

15 Timing Services

15-14

16

Asynchronous Support

• “Introduction” on page 16-2

• “Handling Interrupts” on page 16-6

• “Rate Transitions and Asynchronous Blocks” on page 16-22

• “Using Timers in Asynchronous Tasks” on page 16-28

• “Creating a Customized Asynchronous Library” on page 16-31

• “Asynchronous Support Limitations” on page 16-40

16 Asynchronous Support

Introduction

In this section...

“About Asynchronous Support” on page 16-2
“Overview of Block Library for Wind River Systems VxWorks Real-Time
Operating System” on page 16-2
“Accessing the VxWorks Block Library” on page 16-4
“Generating Code with the VxWorks Library Blocks” on page 16-4
“Demos and Additional Information” on page 16-4

About Asynchronous Support
Real-Time Workshop models are normally timed from a periodic interrupt
source (for example, a hardware timer). Blocks in a periodically clocked
single-rate model run at a timer interrupt rate (the base rate of the model).
Blocks in a periodically clocked multirate model run at the base rate or at
submultiples of that rate.

Many systems must also support execution of blocks in response to events that
are asynchronous with respect to the periodic timing source of the system. For
example, a peripheral device might signal completion of an input operation
by generating an interrupt. The system must service such interrupts
appropriately, for example, by acquiring data from the interrupting device.

This chapter explains how to use blocks to model and generate code for
asynchronous event handling, including servicing of hardware-generated
interrupts, maintenance of timers, asynchronous read and write operations,
and spawning of asynchronous tasks under a real-time operating system
(RTOS). Although the blocks target the Wind River Systems VxWorks
Tornado RTOS, this chapter provides source code analysis and other
information you can use to develop blocks that support asynchronous event
handling for an alternative target RTOS.

Overview of Block Library for Wind River Systems
VxWorks Real-Time Operating System
The next figure shows the blocks in the VxWorks block library (vxlib1).

16-2

Introduction

The key blocks in the library are the Async Interrupt and Task Sync blocks.
These blocks are targeted for the VxWorks Tornado operating system. You
can use them, without modification, to support VxWorks applications.

If you want to implement asynchronous support for an RTOS other than
VxWorks RTOS, guidelines and example code are provided that will help
you to adapt the VxWorks library blocks to target your RTOS. This topic is
discussed in “Creating a Customized Asynchronous Library” on page 16-31.

The VxWorks library includes blocks you can use to

• Generate interrupt-level code — Async Interrupt block

• Spawn a VxWorks task that calls a function call subsystem — Task Sync
block

• Ensure data integrity when transferring data between blocks running as
different tasks — Protected RT block

• Use an unprotected/nondeterministic mode when transferring data
between blocks running as different tasks — Unprotected RT block

For detailed descriptions of the blocks in the VxWorks library, see the
Real-Time Workshop Reference. The use of the Protected and Unprotected
Rate Transition blocks in asynchronous contexts is discussed in “Rate
Transitions and Asynchronous Blocks” on page 16-22. For general information
on rate transitions, see Chapter 8, “Models with Multiple Sample Rates”.

16-3

16 Asynchronous Support

Accessing the VxWorks Block Library
The VxWorks library (vxlib1) is part of the Real-Time Workshop library.
You can access the VxWorks library by opening the Simulink Library
Browser, clicking the Real-Time Workshop entry, and clicking VxWorks.
Alternatively, enter the MATLAB command vxlib1.

Generating Code with the VxWorks Library Blocks
To generate a VxWorks compatible application from a model containing
VxWorks library blocks, select one of the following targets from the System
Target File Browser associated with the model:

• ert.tlc Real-Time Embedded Coder. This target is provided with the
Real-Time Workshop Embedded Coder product.

When using the ERT target with VxWorks library blocks, you must
select the Generate an example main program option, and select
VxWorksExample from the Target operating system menu.

• tornado.tlc Tornado (VxWorks) Real-Time Target. This target
is included with the Real-Time Workshop product (see Chapter 13,
“Targeting the Wind River Systems Tornado Environment for Real-Time
Applications”).

Demos and Additional Information
Additional information relevant to the topics in this chapter can be found in

• The rtwdemo_async model. To open this demo, type rtwdemo_async at the
MATLAB command prompt.

• Chapter 8, “Models with Multiple Sample Rates”, discusses general
multitasking and rate transition issues for periodic models.

• Chapter 13, “Targeting the Wind River Systems Tornado Environment for
Real-Time Applications”, discusses the Tornado (VxWorks RTOS) target
example.

• The Real-Time Workshop Embedded Coder documentation discusses
the Embedded Real-Time (ERT) target, including task execution and
scheduling.

16-4

Introduction

• See your VxWorks system documentation for detailed information about
the VxWorks system calls mentioned in this chapter.

16-5

16 Asynchronous Support

Handling Interrupts

In this section...

“Generating Interrupt Service Routines” on page 16-6
“Spawning a Wind River Systems VxWorks Task” on page 16-14

Generating Interrupt Service Routines
To generate an interrupt service routine (ISR) associated with a specific Wind
River Systems VxWorks VME interrupt level, use the Async Interrupt block.
The Async Interrupt block enables the specified interrupt level and installs an
ISR that calls a connected function call subsystem.

You can also use the Async Interrupt block in a simulation. It provides an
input port that can be enabled and connected to a simulated interrupt source.

Connecting the Async Interrupt Block
To generate an ISR, connect an output of the Async Interrupt block to the
control input of

• A function call subsystem

• The input of a Task Sync block

• The input to a Stateflow chart configured for a function call input event

The next figure shows an Async Interrupt block configured to service two
interrupt sources. The outputs (signal width 2) are connected to two function
call subsystems.

16-6

Handling Interrupts

Requirements and Restrictions
Note the following requirements and restrictions:

• The Async Interrupt block supports VME interrupts 1 through 7.

• The Async Interrupt block requires a VxWorks Board Support Package
(BSP) that supports the following VxWorks system calls:

- sysIntEnable

- sysIntDisable

- intConnect

- intLock

- intUnlock

- tickGet

Performance Considerations
Execution of large subsystems at interrupt level can have a significant impact
on interrupt response time for interrupts of equal and lower priority in the
system. As a general rule, it is best to keep ISRs as short as possible. Connect
only function call subsystems that contain a small number of blocks to an
Async Interrupt block.

16-7

16 Asynchronous Support

A better solution for large subsystems is to use the Task Sync block to
synchronize the execution of the function call subsystem to a VxWorks
task. The Task Sync block is placed between the Async Interrupt block and
the function call subsystem. The Async Interrupt block then installs the
Task Sync block as the ISR. The ISR releases a synchronization semaphore
(performs a semGive) to the task, and returns immediately from interrupt
level. The task is then scheduled and run by the VxWorks RTOS. See
“Spawning a Wind River Systems VxWorks Task” on page 16-14 for more
information.

Using the Async Interrupt Block in Simulation and Code
Generation
This section describes a dual-model approach to the development and
implementation of real-time systems that include ISRs. In this approach, you
develop one model that includes a plant and a controller for simulation, and
another model that only includes the controller for code generation. Using a
Simulink library, you can implement changes to both models simultaneously.
The next figure shows how changes made to the plant or controller, both of
which are in a library, are propagated to the models.

:������0��B��
�����
��B���
�����	���	B���
���*

,���������3����B�"��������

+���	 ���	������

��	����"	
 ����

+���	
!�
��
8����������	���9

��	����"	
 ����

8������	���
��"�	�������
9 ���	������

��	����"	
 ����

!�
��
8������
��
�����	���9

���	������

Dual-Model Use of Async Interrupt Block for Simulation and Code Generation

A single-model approach is also possible. In this approach, the Plant
component of the model is active only in simulation. During code generation,
the Plant components are effectively switched out of the system and code is

16-8

Handling Interrupts

generated only for the interrupt block and controller parts of the model. For
an example of this approach, see the rtwdemo_async model.

Dual-Model Approach: Simulation
The following block diagram shows a simple model that illustrates the
dual-model approach to modeling. During simulation, the Pulse Generator
blocks provide simulated interrupt signals.

The simulated interrupt signals are routed through the Async Interrupt
block’s input port. Upon receiving a simulated interrupt, the block calls the
connected subsystem.

During simulation, subsystems connected to Async Interrupt block outputs
are executed in order of their VxWorks priority. In the event that two or more
interrupt signals occur simultaneously, the Async Interrupt block executes
the downstream systems in the order specified by their interrupt levels (level
7 gets the highest priority). The first input element maps to the first output
element.

You can also use the Async Interrupt block in a simulation without enabling
the simulation input. In such a case, the Async Interrupt block inherits the
base rate of the model and calls the connected subsystems in order of their
VxWorks priorities. (In effect, in this case the Async Interrupt block behaves
as if all inputs received a 1 simultaneously.)

16-9

16 Asynchronous Support

Dual-Model Approach: Code Generation
In the generated code for the sample model,

• Ground blocks provide input signals to the Environment Controller block

• The Async Interrupt block does not use its simulation input

The Ground blocks drive control input of the Environment Controller block
to ensure that no code is generated for that signal path. The Real-Time
Workshop code generator does not generate code for blocks that drive the
simulation control input to the Environment Controller block because that
path is not selected during code generation. However, the sample times of
driving blocks for the simulation input to the Environment Controller block
contribute to the sample times supported in the generated code. To avoid
including unnecessary sample times in the generated code, ensure that the
sample times of the blocks driving the simulation input are used in the model
where generated code is intended.

Standalone functions are installed as ISRs and the interrupt vector table
is as follows:

Offset

192 &isr_num1_vec192()

193 &isr_num2_vec193()

16-10

Handling Interrupts

Consider the code generated from this model, assuming that the Async
Interrupt block parameters are configured as shown in the next figure.

Initialization Code. In the generated code, the Async Interrupt block
installs the code in the Subsystem blocks as interrupt service routines. The
interrupt vectors for IRQ1 and IRQ2 are stored at locations 192 and 193
relative to the base of the interrupt vector table, as specified by the VME
interrupt vector offset(s) parameter.

Installing an ISR requires two VxWorks calls, int_connect and
sysInt_Enable. The Async Interrupt block inserts these calls in the
model_initialize function, as shown in the following code excerpt.

/* VxWorks Interrupt Block: '<Root>/Async Interrupt' */

/* Connect and enable ISR function: isr_num1_vec192 */

if(intConnect(INUM_TO_IVEC(192), isr_num1_vec192, 0) != OK) {

printf("intConnect failed for ISR 1.\n");

}

sysIntEnable(1);

16-11

16 Asynchronous Support

/* VxWorks Interrupt Block: '<Root>/Async Interrupt' */

/* Connect and enable ISR function: isr_num2_vec193 */

if(intConnect(INUM_TO_IVEC(193), isr_num2_vec193, 0) != OK)

{

printf("intConnect failed for ISR 2.\n");

}

sysIntEnable(2);

The hardware that generates the interrupt is not configured by the Async
Interrupt block. Typically, the interrupt source is a VME I/O board, which
generates interrupts for specific events (for example, end of A/D conversion).
The VME interrupt level and vector are set up in registers or by using jumpers
on the board. You can use the mdlStart routine of a user-written device
driver (S-function) to set up the registers and enable interrupt generation on
the board. You must match the interrupt level and vector specified in the
Async Interrupt block dialog to the level and vector set up on the I/O board.

Generated ISR Code. The actual ISR generated for IRQ1 is listed below.

/* VxWorks Interrupt Block: '<Root>/Async Interrupt' */

void isr_num1_vec192(void)
{

int_T lock;
FP_CONTEXT context;

/* Use tickGet() as a portable tick counter example.
A much higher resolution can be achieved with a
hardware counter */

Async_Code_M->Timing.clockTick2 = tickGet();

/* disable interrupts (system is configured as non-ive) */
lock = intLock();

/* save floating point context */
fppSave(&context);

/* Call the system: <Root>/Subsystem A */
Count(0, 0);

16-12

Handling Interrupts

/* restore floating point context */
fppRestore(&context);

/* re-enable interrupts */
intUnlock(lock);

}

There are several features of the ISR that should be noted:

• Because of the setting of the Preemption Flag(s) parameter, this ISR is
locked; that is, it cannot be preempted by a higher priority interrupt. The
ISR is locked and unlocked by the VxWorks int_lock and int_unlock
functions.

• The connected subsystem, Count, is called from within the ISR.

• The Count function executes algorithmic (model) code. Therefore, the
floating-point context is saved and restored across the call to Count.

• The ISR maintains its own absolute time counter, which is distinct from
other periodic base rate or subrate counters in the system. Timing data is
maintained for the use of any blocks executed within the ISR that require
absolute or elapsed time.

See “Using Timers in Asynchronous Tasks” on page 16-28 for details.

Model Termination Code. The model’s termination function disables the
interrupts:

/* Model terminate function */
void Async_Code_terminate(void)
{

/* VxWorks Interrupt Block: '<Root>/Async Interrupt' */
/* Disable interrupt for ISR system: isr_num1_vec192 */
sysIntDisable(1);

/* VxWorks Interrupt Block: '<Root>/Async Interrupt' */
/* Disable interrupt for ISR system: isr_num2_vec193 */
sysIntDisable(2);

}

16-13

16 Asynchronous Support

Spawning a Wind River Systems VxWorks Task
To spawn an independent VxWorks task, use the Task Sync block. The Task
Sync block is a function call subsystem that spawns an independent VxWorks
task. The task calls the function call subsystem connected to the output of
the Task Sync block.

Typically, the Task Sync block is placed between an Async Interrupt block
and a function call subsystem block or a Stateflow chart. Another example
would be to place the Task Sync block at the output of a Stateflow chart that
has an event, Output to Simulink, configured as a function call.

The Task Sync block performs the following functions:

• An independent task is spawned, using the VxWorks system call
taskSpawn. When the task is activated, it calls the downstream function
call subsystem code. The task is deleted using taskDelete during model
termination.

• A semaphore is created to synchronize the connected subsystem to the
execution of the Task Sync block.

• The spawned task is wrapped in an infinite for loop. In the loop, the
spawned task listens for the semaphore, using semTake. When semTake is
first called, NO_WAIT is specified. This allows the task to determine whether
a second semGive has occurred prior to the completion of the function call
subsystem. This would indicate that the interrupt rate is too fast or the
task priority is too low.

• The Task Sync block generates synchronization code (for example,
semGive()). This code allows the spawned task to run; the task in turn
calls the connected function call subsystem code. The synchronization
code can run at interrupt level. This is accomplished by connecting the
Task Sync block to the output of an Async Interrupt block, which triggers
execution of the Task Sync block within an ISR.

• If blocks in the downstream algorithmic code require absolute time, it can
be supplied either by the timer maintained by the Async Interrupt block,
or by an independent timer maintained by the task associated with the
Task Sync block.

For an example of how to use the Task Sync block, see the rtwdemo_async
demo. The block diagram for the model appears in the next figure. Before

16-14

Handling Interrupts

reading the following discussion, open the demo model and double-click the
Generate Code button. You can then examine the generated code in the
HTML code generation report produced by the demo.

In this model, the Async Interrupt block is configured for VME interrupts 1
and 2, using interrupt vector offsets 192 and 193. Interrupt 2 is connected to
the Task Sync block, which in turn drives the Algorithm subsystem. Consider
the code generated from this model, assuming that the Task Sync block
parameters are configured as shown in the next figure.

16-15

16 Asynchronous Support

Initialization Code
The Task Sync block generates initialization code for initialization by
MdlStart, which itself creates and initializes the synchronization semaphore.
It also spawns an independent task (task0).

/* VxWorks Task Block: <S5>/S-Function (vxtask1) */

/* Spawn task: Task0 with priority 50 */

if ((*(SEM_ID *)rtwdemo_async_DWork.SFunction_PWORK.SemID =

semBCreate(SEM_Q_PRIORITY, SEM_EMPTY)) == NULL) {

printf("semBCreate call failed for block Task0.\n");

}

if ((rtwdemo_async_DWork.SFunction_IWORK.TaskID = taskSpawn("Task0",

50.0, VX_FP_TASK, 8192.0, (FUNCPTR)Task0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0)) == ERROR) {

printf("taskSpawn call failed for block Task0.\n");

}

After spawning Task0, MdlStart connects and enables the ISR
(isr_num2_vec193) for interrupt 2:

/* VxWorks Interrupt Block: '<Root>/Async Interrupt' */

/* Connect and enable ISR function: isr_num1_vec192 */

if(intConnect(INUM_TO_IVEC(192), isr_num1_vec192, 0) != OK) {

16-16

Handling Interrupts

printf("intConnect failed for ISR 1.\n");

}

sysIntEnable(1);

The ordering of these operations is significant. The task must be spawned
before the interrupt that activates it can be enabled.

Task and Task Synchronization Code
The function Task0, generated by the Task Sync block, runs as a VxWorks
task. The task waits for a synchronization semaphore in an infinite for loop.
If it obtains the semaphore, it updates its task timer and calls the Algorithm
subsystem.

For this demo, the Synchronize the data transfer of this task with the
caller task option of the Task Sync block is selected. Therefore, the timer
associated with the Task Sync block (rtM->Timing.clockTick3) is updated
with the value of the timer that is maintained by the Async Interrupt block
(rtM->Timing.clockTick4). Therefore, blocks within the Algorithm subsystem
use timer values based on the time of the most recent interrupt (not the most
recent activation of Task0).

/* VxWorks Task Block: <S5>/S-Function (vxtask1) */

/* Spawned with priority: 50 */

void Task0(void)

{

/* Wait for semaphore to be released by system:

rtwdemo_async/Task Sync */

for(;;) {

if (semTake(*(SEM_ID

*)rtwdemo_async_DWork.SFunction_PWORK.SemID,NO_WAIT) !=

ERROR) {

logMsg("Rate for Task Task0() too fast.\n",0,0,0,0,0,0);

#if STOPONOVERRUN

logMsg("Aborting real-time simulation.\n",0,0,0,0,0,0);

semGive(stopSem);

return(ERROR);

#endif

} else {

semTake(*(SEM_ID

16-17

16 Asynchronous Support

*)rtwdemo_async_DWork.SFunction_PWORK.SemID,

WAIT_FOREVER);

}

/* Use the upstream clock tick counter for this Task. */

rtwdemo_async_M->Timing.clockTick2 =

rtwdemo_async_M->Timing.clockTick3;

/* Call the system: <Root>/Algorithm */

{

/* Output and update for function-call system: '<Root>/Algorithm' */

{

uint32_T rt_currentTime = ((uint32_T)rtwdemo_async_M->Timing.clockTick2);

uint32_T rt_elapseTime = rt_currentTime -

rtwdemo_async_DWork.Algorithm_PREV_T;

rtwdemo_async_DWork.Algorithm_PREV_T = rt_currentTime;

{

int32_T i;

/* DiscreteIntegrator: '<S1>/Integrator' */

rtwdemo_async_B.Integrator = rtwdemo_async_DWork.Integrator_DSTATE;

for(i = 0; i < 60; i++) {

/* Sum: '<S1>/Sum' */

rtwdemo_async_B.Sum[i] = rtwdemo_async_B.ProtectedRT1[i] + 1.25;

}

}

/* Sum: '<S1>/Sum1' */

rtwdemo_async_B.Sum1 = rtwdemo_async_B.Sum[0];

{

int_T i1;

const real_T *u0 = &rtwdemo_async_B.Sum;[1];

for (i1=0; i1 < 59; i1++) {

rtwdemo_async_B.Sum1 += u0[i1];

16-18

Handling Interrupts

}

}

{

int32_T i;

if(rtwdemo_async_DWork.ProtectedRT2_ActiveBufIdx) {

for(i = 0; i < 60; i++) {

rtwdemo_async_DWork.ProtectedRT2_Buffer0[i] =

rtwdemo_async_B.Sum[i];

}

rtwdemo_async_DWork.ProtectedRT2_ActiveBufIdx = (boolean_T)0U;

} else {

for(i = 0; i < 60; i++) {

rtwdemo_async_DWork.ProtectedRT2_Buffer1[i] =

rtwdemo_async_B.Sum[i];

}

rtwdemo_async_DWork.ProtectedRT2_ActiveBufIdx = (boolean_T)1U;

}

}

/* Update for DiscreteIntegrator: '<S1>/Integrator' */

rtwdemo_async_DWork.Integrator_DSTATE = (real_T)rt_elapseTime *

1.6666666666666666E-002 * rtwdemo_async_B.Sum1 +

rtwdemo_async_DWork.Integrator_DSTATE;

}

The semaphore is granted by the function isr_num2_vec193, which is called
from interrupt level:

/* VxWorks Interrupt Block: '<Root>/Async Interrupt' */

void isr_num2_vec193(void)

{

/* Use tickGet() as a portable tick counter example. A much

higher resolution can be achieved with a hardware counter */

rtwdemo_async_M->Timing.clockTick3 = tickGet();

/* Call the system: <S4>/Subsystem */

/* Output and update for function-call system:

16-19

16 Asynchronous Support

'<S4>/Subsystem' */

{

{

int32_T i;

for(i = 0; i < 60; i++) {

if(rtwdemo_async_DWork.ProtectedRT1_ActiveBufIdx) {

rtwdemo_async_B.ProtectedRT1[i] =

rtwdemo_async_DWork.ProtectedRT1_Buffer1[i];

} else {

rtwdemo_async_B.ProtectedRT1[i] =

rtwdemo_async_DWork.ProtectedRT1_Buffer0[i];

}

}

}

/* VxWorks Task Block: <S5>/S-Function (vxtask1) */

/* Release semaphore for system task: Task0 */

semGive(*(SEM_ID *)rtwdemo_async_DWork.SFunction_PWORK.SemID);

}

}

The ISR maintains a timer that stores the tick count at the time of interrupt.
This timer is updated before releasing the semaphore that activates Task0.

As this example shows, the Task Sync block generates only a small amount of
interrupt-level code.

Task Termination Code
The Task Sync block also generates the following termination code.

/* Model terminate function */

void rtwdemo_async_terminate(void)

{

/* VxWorks Interrupt Block: '<Root>/Async Interrupt' */

/* Disable interrupt for ISR system: isr_num1_vec192 */

sysIntDisable(1);

16-20

Handling Interrupts

/* VxWorks Interrupt Block: '<Root>/Async Interrupt' */

/* Disable interrupt for ISR system: isr_num2_vec193 */

sysIntDisable(2);

/* Terminate for function-call system: '<S4>/Subsystem' */

/* VxWorks Task Block: <S5>/S-Function (vxtask1) */

/* Destroy task: Task0 */

taskDelete(rtwdemo_async_DWork.SFunction_IWORK.TaskID);

}

16-21

16 Asynchronous Support

Rate Transitions and Asynchronous Blocks

In this section...

“Introduction” on page 16-22
“Handling Rate Transitions for Asynchronous Tasks” on page 16-24
“Handling Multiple Asynchronous Interrupts” on page 16-25

Introduction
Because an asynchronous function call subsystem can preempt or be
preempted by other model code, an inconsistency arises when more than
one signal element is connected to an asynchronous block. The issue is that
signals passed to and from the function call subsystem can be in the process of
being written to or read from when the preemption occurs. Thus, some old
and some new data is used. This situation can also occur with scalar signals
in some cases. For example, if a signal is a double (8 bytes), the read or write
operation might require two machine instructions.

The Simulink Rate Transition block is designed to deal with preemption
problems that occur in data transfer between blocks running at different
rates. These issues are discussed in Chapter 8, “Models with Multiple Sample
Rates”.

You can handle rate transition issues automatically by selecting the
Automatically handle data transfers between tasks option on the Solver
pane of the Configuration Parameters dialog box. This saves you from having
to manually insert Rate Transition blocks to avoid invalid rate transitions,
including invalid asynchronous-to-periodic and asynchronous-to-asynchronous
rate transitions, in multirate models. For asynchronous tasks, the Simulink
engine configures the inserted blocks to ensure data integrity but not
determinism during data transfers.

For asynchronous rate transitions, the Rate Transition block guarantees
data integrity, but cannot guarantee determinism. Therefore, when you
insert Rate Transition blocks explicitly, you must clear the Ensure data
determinism check box in the Block Parameters dialog box.

16-22

Rate Transitions and Asynchronous Blocks

When you insert a Rate Transition block between two blocks to ensure data
integrity and priorities are assigned to the tasks associated with the blocks,
the Real-Time Workshop software assumes that the higher priority task can
preempt the lower priority task and the lower priority task cannot preempt
the higher priority task. If the priority associated with task for either block
is not assigned or the priorities of the tasks for both blocks are the same,
the Real-Time Workshop software assumes that either task can preempt
the other task.

Priorities of periodic tasks are assigned by the Simulink engine, in accordance
with the options specified in the Solver options section of the Solver pane
of the Configuration Parameters dialog box. When the Periodic sample
time constraint option field of Solver options is set to Unconstrained, the
model base rate priority is set to 40. Priorities for subrates then increment or
decrement by 1 from the base rate priority, depending on the setting of the
Higher priority value indicates higher task priority option.

You can assign priorities manually by using the Periodic sample time
properties field. The Simulink engine does not assign a priority to
asynchronous blocks. For example, the priority of a function call subsystem
that connects back to an Async Interrupt block is assigned by the Async
Interrupt block.

The Simulink task priority field of the Async Interrupt block specifies a
priority level (required) for every interrupt number entered in the VME
interrupt number(s) field. The priority array sets the priorities of the
subsystems connected to each interrupt.

For the Task Sync block, if the Wind River Systems VxWorks RTOS is the
target, the Higher priority value indicates higher task priority option
should be deselected. The Simulink task priority field specifies the block
priority relative to connected blocks (in addition to assigning a VxWorks
priority to the generated task code).

The VxWorks library provides two types of rate transition blocks as a
convenience. These are simply preconfigured instances of the built-in
Simulink Rate Transition block:

16-23

16 Asynchronous Support

• Protected Rate Transition block: Rate Transition block that is configured
with the Ensure data integrity during data transfers on and Ensure
deterministic data transfer off.

• Unprotected Rate Transition block: Rate Transition block that is configured
with the Ensure data integrity during data transfers option off.

Handling Rate Transitions for Asynchronous Tasks
For rate transitions that involve asynchronous tasks, you can ensure data
integrity. However, you cannot ensure determinism. You have the option of
using the Rate Transition block or target-specific rate transition blocks.

Consider the following model, which includes a Rate Transition block.

You can use the Rate Transition block in either of the following modes:

• Ensure data integrity, no determinism

• Unprotected

Alternatively, you can use target-specific rate transition blocks. The following
blocks are available for the VxWorks RTOS:

• Protected Rate Transition block (reader)

• Protected Rate Transition block (writer)

• Unprotected Rate Transition block

16-24

Rate Transitions and Asynchronous Blocks

Handling Multiple Asynchronous Interrupts
Consider the following model, in which two functions trigger the same
subsystem.

The two tasks must have equal priorities. When priorities are the same, the
outcome depends on whether they are firing periodically or asynchronously,
and also on a diagnostic setting. The following table and notes describe
these outcomes:

Supported Sample Time and Priority for Function Call Subsystem with Multiple Triggers

Async
Priority = 1

Async
Priority = 2

Async
Priority
Unspecified

Periodic
Priority = 1

Periodic
Priority = 2

Async
Priority = 1

Supported (1)

Async
Priority = 2

Supported (1)

Async
Priority
Unspecified

Supported (2)

Periodic
Priority = 1

Supported

Periodic
Priority = 2

Supported

16-25

16 Asynchronous Support

1 Control these outcomes using the Tasks with equal priority option in
the Diagnostics pane of the Configuration Parameters dialog box; set this
diagnostic to none if tasks of equal priority cannot preempt each other
in the target system.

2 For this case, the following warning message is issued unconditionally:

The function call subsystem <name> has multiple asynchronous
triggers that do not specify priority. Data integrity will
not be maintained if these triggers can preempt one another.

Empty cells in the above table represent multiple triggers with differing
priorities, which are unsupported.

The Real-Time Workshop product provides absolute time management for a
function call subsystem connected to multiple interrupts in the case where
timer settings for TriggerA and TriggerB (time source, resolution) are the
same.

Assume that all the following conditions are true for the model shown above:

• A function call subsystem is triggered by two asynchronous triggers
(TriggerA and TriggerB) having identical priority settings.

• Each trigger sets the source of time and timer attributes by calling the
functions ssSetTimeSource and ssSetAsyncTimerAttributes.

• The triggered subsystem contains a block that needs elapsed or absolute
time (for example, a Discrete Time Integrator).

The asynchronous function call subsystem has one global variable,
clockTick# (where # is the task ID associated with the subsystem). This
variable stores absolute time for the asynchronous task. There are two ways
timing can be handled:

• If the time source is set to SS_TIMESOURCE_BASERATE, the Real-Time
Workshop code generator generates timer code in the function call
subsystem, updating the clock tick variable from the base rate clock tick.
Data integrity is ensured if the same priority is assigned to TriggerA and
TriggerB.

16-26

Rate Transitions and Asynchronous Blocks

• If the time source is SS_TIMESOURCE_SELF, generated code for both TriggerA
and TriggerB updates the same clock tick variable from the hardware clock.

The word size of the clock tick variable can be set directly or be established
according to the Application lifespan (days) setting and the timer
resolution set by the TriggerA and TriggerB S-functions (which must be
the same). See “Using Timers in Asynchronous Tasks” on page 16-28 and
“Controlling Memory Allocation for Time Counters” on page 9-53 for more
information.

16-27

16 Asynchronous Support

Using Timers in Asynchronous Tasks
An ISR can set a source for absolute time. This is done with the function
ssSetTimeSource, which has the following three options:

• SS_TIMESOURCE_SELF: Each generated ISR maintains its own absolute time
counter, which is distinct from any periodic base rate or subrate counters
in the system. The counter value and the timer resolution value (specified
in the Timer resolution (seconds) parameter of the Async Interrupt
block) are used by downstream blocks to determine absolute time values
required by block computations.

• SS_TIMESOURCE_CALLER: The ISR reads time from a counter maintained by
its caller. Time resolution is thus the same as its caller’s resolution.

• SS_TIMESOURCE_BASERATE: The ISR can read absolute time from the
model’s periodic base rate. Time resolution is thus the same as its base
rate resolution.

By default, the counter is implemented as a 32-bit unsigned integer member
of the Timing substructure of the real-time model structure. For any target
that supports the rtModel data structure, when the time data type is not set
by using ssSetAsyncTimeDataType, the counter word size is determined by
the Application lifespan (days) model parameter. As an example (from
ERT target code),

/* Real-time Model Data Structure */
struct _RT_MODEL_elapseTime_exp_Tag {

const char *errorStatus;

/*
* Timing:
* The following substructure contains information regarding
* the timing information for the model.
*/

struct {
uint32_T clockTick1;
uint32_T clockTick2;

} Timing;
};

16-28

Using Timers in Asynchronous Tasks

The example omits unused fields in the Timing data structure (a feature of
ERT target code not found in GRT). For any target that supports the rtModel
data structure, the counter word size is determined by the Application
lifespan (days) model parameter.

By default, the library blocks for the Wind River Systems VxWorks RTOS
set the timer source to SS_TIMESOURCE_SELF and update their counters by
using the system call tickGet. tickGet returns a timer value maintained by
the VxWorks kernel. The maximum word size for the timer is UINT32. The
following VxWorks example for the shows a generated call to tickGet.

/* VxWorks Interrupt Block: '<Root>/Async Interrupt' */
void isr_num2_vec193(void)
{

/* Use tickGet() as a portable tick counter example. A much
higher resolution can be achieved with a hardware counter */

rtM->Timing.clockTick2 = tickGet();
. . .

The tickGet call is supplied only as an example. It can (and in many
instances should) be replaced by a timing source that has better resolution. If
you are targeting the VxWorks RTOS, you can obtain better timer resolution
by replacing the tickGet call and accessing a hardware timer by using your
BSP instead.

If you are implementing a custom asynchronous block for an RTOS other
than the VxWorks RTOS, you should either generate an equivalent call to
the target RTOS, or generate code to read the appropriate timer register on
the target hardware.

The default Timer resolution (seconds) parameter of your Async Interrupt
block implementation should be changed to match the resolution of your
target’s timing source.

The counter is updated at interrupt level. Its value represents the tick value
of the timing source at the most recent execution of the ISR. The rate of this
timing source is unrelated to sample rates in the model. In fact, typically it
is faster than the model’s base rate. Select the timer source and set its rate

16-29

16 Asynchronous Support

and resolution based on the expected rate of interrupts to be serviced by the
Async Interrupt block.

For an example of timer code generation, see “Async Interrupt Block
Implementation” on page 16-32.

16-30

Creating a Customized Asynchronous Library

Creating a Customized Asynchronous Library

In this section...

“Introduction” on page 16-31
“Async Interrupt Block Implementation” on page 16-32
“Task Sync Block Implementation” on page 16-36
“asynclib.tlc Support Library” on page 16-37

Introduction
This section describes how to implement asynchronous blocks for use with
your target RTOS, using the Async Interrupt and Task Sync blocks as a
starting point. (Rate Transition blocks are target-independent, so you do not
need to develop customized rate transition blocks.)

You can customize the asynchronous library blocks by modifying the block
implementation. These files are

• The block’s underlying S-function MEX-file

• The TLC files that control code generation of the block

In addition, you need to modify the block masks to remove references specific
to the Wind River Systems VxWorks RTOS and to incorporate parameters
required by your target RTOS.

Custom block implementation is an advanced topic, requiring familiarity with
the Simulink MEX S-function format and API, and with the Target Language
Compiler (TLC). These topics are covered in the following documents:

• The “Overview of S-Functions” in the Simulink Writing S-Functions
documentation describes MEX S-functions and the S-function API in
general.

• The Target Language Compiler documentation and Chapter 10, “Writing
S-Functions for Real-Time Workshop Code Generation” describe how to
create a TLC block implementation for use in code generation.

16-31

16 Asynchronous Support

The following sections discuss the C/C++ and TLC implementations of the
asynchronous library blocks, including required SimStruct macros and
functions in the TLC asynchronous support library (asynclib.tlc).

Async Interrupt Block Implementation
The source files for the Async Interrupt block are located in
matlabroot/rtw/c/tornado/devices:

• vxinterrupt1.c: C MEX-file source code, for use in configuration and
simulation

• vxinterrupt1.tlc: TLC implementation, for use in code generation

• asynclib.tlc: library of TLC support functions, called by the TLC
implementation of the block. The library calls are summarized in
“asynclib.tlc Support Library” on page 16-37.

C MEX Block Implementation
Most of the code in vxinterrupt1.c performs ordinary functions that are
not related to asynchronous support (for example, obtaining and validating
parameters from the block mask, marking parameters nontunable, and
passing parameter data to the model.rtw file).

The mdlInitializeSizes function uses special SimStruct macros and
SS_OPTIONS settings that are required for asynchronous blocks, as described
below.

ssSetAsyncTimerAttributes. ssSetAsyncTimerAttributes declares that
the block requires a timer, and sets the resolution of the timer as specified
in the Timer resolution (seconds) parameter.

The function prototype is

ssSetAsyncTimerAttributes(SimStruct *S, double res)

where

• S is a Simstruct pointer.

• res is the Timer resolution (seconds) parameter value.

16-32

Creating a Customized Asynchronous Library

The following code excerpt shows the call to ssSetAsyncTimerAttributes.

/* Setup Async Timer attributes */
ssSetAsyncTimerAttributes(S,mxGetPr(TICK_RES)[0]);

ssSetAsyncTaskPriorities. ssSetAsyncTaskPriorities sets the Simulink
task priority for blocks executing at each interrupt level, as specified in the
block’s Simulink task priority field.

The function prototype is

ssSetAsyncTaskPriorities(SimStruct *S, int numISRs,
int *priorityArray)

where

• S is a SimStruct pointer.

• numISRs is the number of interrupts specified in the VME interrupt
number(s) parameter.

• priorityarray is an integer array containing the interrupt numbers
specified in the VME interrupt number(s) parameter.

The following code excerpt shows the call to ssSetAsyncTaskPriorities:

/* Setup Async Task Priorities */
priorityArray = malloc(numISRs*sizeof(int_T));
for (i=0; i<numISRs; i++) {

priorityArray[i] = (int_T)(mxGetPr(ISR_PRIORITIES)[i]);
}
ssSetAsyncTaskPriorities(S, numISRs, priorityArray);
free(priorityArray);
priorityArray = NULL;

}

SS_OPTION Settings. The code excerpt below shows the SS_OPTION
settings for vxinterrupt1.c. SS_OPTION_ASYNCHRONOUS_INTERRUPT
should be used when a function call subsystem is attached to an
interrupt. For more information, see the documentation for SS_OPTION and
SS_OPTION_ASYNCHRONOUS in matlabroot/simulink/include/simstruc.h

16-33

16 Asynchronous Support

ssSetOptions(S, (SS_OPTION_EXCEPTION_FREE_CODE |
SS_OPTION_DISALLOW_CONSTANT_SAMPLE_TIME |
SS_OPTION_ASYNCHRONOUS_INTERRUPT |

TLC Implementation
This section discusses each function of vxinterrupt1.tlc, with an emphasis
on target-specific features that you will need to change to generate code for
your target RTOS.

Generating #include Directives. vxinterrupt1.tlc begins with the
statement

%include "vxlib.tlc"

vxlib.tlc is a target-specific file that generates directives to include
VxWorks header files. You should replace this with a file that generates
includes for your target RTOS.

BlockInstanceSetup Function. For each connected output of the Async
Interrupt block, BlockInstanceSetup defines a function name for the
corresponding ISR in the generated code. The functions names are of the form

isr_num_vec_offset

where num is the ISR number defined in the VME interrupt number(s)
block parameter, and offset is an interrupt table offset defined in the VME
interrupt vector offset(s) block parameter.

In a custom implementation, there is no requirement to use this naming
convention.

The function names are cached for use by the Outputs function, which
generates the actual ISR code.

Outputs Function. Outputs iterates over all connected outputs of the Async
Interrupt block. An ISR is generated for each such output.

16-34

Creating a Customized Asynchronous Library

The ISR code is cached in the "Functions" section of the generated code.
Before generating the ISR, Outputs does the following:

• Generates a call to the downstream block (cached in a temporary buffer).

• Determines whether the ISR should be locked or not (as specified in the
Preemption Flag(s) block parameter).

• Determines whether the block connected to the Async Interrupt block is a
Task Sync block. (This information is obtained by using the asynclib calls
LibGetFcnCallBlock and LibGetBlockAttrribute.) If so,

- The preemption flag for the ISR must be set to 1. An error results
otherwise.

- VxWorks calls to save and restore floating-point context are generated,
unless the user has configured the model for integer-only code generation.

When generating the ISR code, Outputs calls the asynclib function
LibNeedAsyncCounter to determine whether a timer is required by
the connected subsystem. If so, and if the time source is set to be
SS_TIMESOURCE_SELF by ssSetTimeSource, LibSetAsyncCounter is called
to generate a VxWorks tickGet function call and update the appropriate
counter. In your implementation, you should generate either an equivalent
call to the target RTOS, or generate code to read the appropriate timer
register on the target hardware.

If you are targeting the VxWorks RTOS, you can obtain better timer resolution
by replacing the tickGet call and accessing a hardware timer by using your
BSP instead. tickGet supports only a 1/60 second resolution.

Start Function. The Start function generates the required VxWorks calls
(int_connect and sysInt_Enable) to connect and enable each ISR. You
should replace this with appropriate calls to your target RTOS.

Terminate Function. The Terminate function generates the call
sysIntDisable to disable each ISR. You should replace this with appropriate
calls to your target RTOS.

16-35

16 Asynchronous Support

Task Sync Block Implementation
The source files for the Task Sync block are located in
matlabroot/rtw/c/tornado/devices. They are

• vxtask1.c: MEX-file source code, for use in configuration and simulation.

• vxtask1.tlc: TLC implementation, for use in code generation.

• asynclib.tlc: library of TLC support functions, called by the TLC
implementation of the block. The library calls are summarized in
“asynclib.tlc Support Library” on page 16-37.

C MEX Block Implementation
Like the Async Interrupt block, the Task Sync block sets up a timer, in this
case with a fixed resolution. The priority of the task associated with the block
is obtained from the Simulink task priority parameter. The SS_OPTION
settings are the same as those used for the Async Interrupt block.

ssSetAsyncTimerAttributes(S, 0.01);

priority = (int_T) (*(mxGetPr(PRIORITY)));
ssSetAsyncTaskPriorities(S,1,&priority);

ssSetOptions(S, (SS_OPTION_EXCEPTION_FREE_CODE |
SS_OPTION_ASYNCHRONOUS |
SS_OPTION_DISALLOW_CONSTANT_SAMPLE_TIME |

}

TLC Implementation

Generating #include Directives. vxtask1.tlc begins with the statement

%include "vxlib.tlc"

vxlib.tlc is a target-specific file that generates directives to include
VxWorks header files. You should replace this with a file that generates
includes for your target RTOS.

16-36

Creating a Customized Asynchronous Library

BlockInstanceSetup Function. The BlockInstanceSetup function derives
the task name, block name, and other identifier strings used later in code
generation. It also checks for and warns about unconnected block conditions,
and generates a storage declaration for a semaphore (stopSem) that is used in
case of interrupt overflow conditions.

BlockInstanceData. The BlockInstanceData function generates storage
for the semaphore that is used in management of the task spawned by the
Task Sync block. Depending on the code format of the target, either a static
storage declaration or a dynamic memory allocation call is generated. The
ERT target and derived targets use a static memory declaration; the VxWorks
target uses malloc.

Start Function. The Start function generates the required VxWorks calls to
create a semaphore (semBCreate) and spawn a VxWorks task (taskSpawn).
You should replace these with appropriate calls to your target RTOS.

Outputs Function. The Outputs function generates a VxWorks task that
waits for a semaphore. When it obtains the semaphore, it updates the
block’s tick timer and calls the downstream subsystem code, as described in
“Spawning a Wind River Systems VxWorks Task” on page 16-14. Outputs
also generates code (called from interrupt level) that grants the semaphore.

Terminate Function. The Terminate function generates the VxWorks call
taskDelete to end execution of the task spawned by the block. You should
replace this with appropriate calls to your target RTOS.

Note also that if the target RTOS has dynamically allocated any memory
associated with the task (see “BlockInstanceData” on page 16-37), the
Terminate function should deallocate the memory.

asynclib.tlc Support Library
asynclib.tlc is a library of TLC functions that support the implementation
of asynchronous blocks. Some functions are specifically designed for use in
asynchronous blocks. For example, LibSetAsyncCounter generates a call to
update a timer for an asynchronous block. Other functions are utilities that
return information required by asynchronous blocks (for example, information
about connected function call subsystems).

16-37

16 Asynchronous Support

The following table summarizes the public calls in the library. For details,
see the library source code and the vxinterrupt1.tlc and vxtask1.tlc
files, which call the library functions.

Summary of asynclib.tlc Library Functions

Function Description

LibGetBlockAttrribute Returns a field value from a block record.
LibGetFcnCallBlock Given an S-Function block and call

index, returns the block record for the
downstream function call subsystem
block.

LibBlockExecuteFcnCall For use by inlined S-functions with
function call outputs. Generates code
to execute a function call subsystem.
LibBlockExecuteFcnCall calls the
lower-level function LibExecuteFcnCall,
but has a simplified argument list.
See the Target Language Compiler
documentation for more information on
LibExecuteFcnCall.

LibGetCallerClockTickCounter Provides access to an upstream
asynchronous task’s time counter.

LibGetCallerClockTickCounterHighWord Provides access to the high word of
an upstream asynchronous task’s time
counter.

LibManageAsyncCounter Determines whether an asynchronous
task needs a counter and manages its
own timer.

LibNeedAsyncCounter If the calling block requires an
asynchronous counter, returns TLC_TRUE,
otherwise returns TLC_FALSE.

16-38

Creating a Customized Asynchronous Library

Summary of asynclib.tlc Library Functions (Continued)

Function Description

LibSetAsyncClockTicks Returns code that sets clockTick
counters that are to be maintained by the
asynchronous task.

LibSetAsyncCounter Generates code to set the tick value of
the block’s asynchronous counter.

LibSetAsyncCounterHighWord Generates code to set the tick value of the
high word of the block’s asynchronous
counter

16-39

16 Asynchronous Support

Asynchronous Support Limitations
The Simulink product does not simulate asynchronous task behavior.
Although you can specify a task priority for an asynchronous task represented
in a model with the Task Sync block, the priority setting is for code generation
purposes only and is not honored during simulation.

16-40

17

Data Exchange APIs

This chapter provides information on Real-Time Workshop application
programming interfaces (APIs) that support data exchange interfaces between
model code and other software components.

• “C API for Interfacing with Signals and Parameters” on page 17-2

• “Creating an External Mode Communication Channel” on page 17-32

• “Combining Multiple Models” on page 17-49

17 Data Exchange APIs

C API for Interfacing with Signals and Parameters

In this section...

“Introduction” on page 17-2
“Generating C API Files” on page 17-3
“Description of C API Files” on page 17-5
“Using the C API in an Application” on page 17-18
“C API Limitations” on page 17-29
“Generating C API and ASAP2 Files” on page 17-30
“Target Language Compiler API for Signals and Parameters” on page 17-30

Introduction
Some Real-Time Workshop applications need to interact with signals or
parameters in a model’s generated code. For example, calibration applications
monitor and modify parameters. Signal monitoring or data logging
applications interface with signal data. Using the Real-Time Workshop C
API, you can build target applications that log signals, monitor signals, and
tune parameters, while the generated code executes.

The C API uses a small memory footprint, which is achieved by sharing
information common to signals and parameters in smaller structures. An
index into the structure map is provided in the signal or parameter structure,
allowing multiple signals or parameters to share data.

When you configure a model to use the C API, the Real-Time Workshop
code generator generates two additional files, model_capi.c (or .cpp) and
model_capi.h, where model is the name of the model. The code generator
places the two C API files in the build directory, based on settings on the
Configuration Parameters dialog box. The C API source code file contains
information about global block output signals and global parameters defined
in the generated code model source code. The C API header file is an interface
header file between the model source code and the generated C API. You can
use the information in these C API files to create your application. Among the
files generated are those shown in the next figure.

17-2

C API for Interfacing with Signals and Parameters

������
��

������	����
�

������� �������

�������
���� �������
����

Generated Files with C API Selected

Generating C API Files
To generate C API files for your model,

1 Select the C API interface for your model. There are two ways to select the
C API interface for your model, as described in the following sections.

• “Selecting C API with the Configuration Parameters Dialog Box” on
page 17-3

• “Selecting C API from the MATLAB Command Line” on page 17-4

2 Generate code for your model.

After generating code, you can examine the files model_capi.c (or .cpp) and
model_capi.h in the model build directory.

Selecting C API with the Configuration Parameters Dialog Box

1 Open your model, and launch either the Configuration Parameters dialog
box or Model Explorer.

2 Go to the Interface pane and, in the Data exchange subpane, select C
API as the value for the Interface parameter. The Signals in C API and
Parameters in C API check boxes appear, as shown in the next figure.

17-3

17 Data Exchange APIs

3 If you want to generate C API code for global block output signals, select
the Signals in C API check box. If you want to generate C API code for
global block and model parameters, select the Parameters in C API
check box. If you select both check boxes, the default, both signals and
parameters will appear in the C API generated code.

Selecting C API from the MATLAB Command Line
From the MATLAB command line, you can use the set_param function to
select or clear the two C API check boxes on the Interface pane of the
Configuration Parameters dialog box. Enter one or more of the following
MATLAB commands, where modelname is the name of your model:

To select Signals in C API, type

set_param('modelname','RTWCAPISignals','on')

To clear Signals in C API, type

set_param('modelname','RTWCAPISignals','off')

To select Parameters in C API, type

17-4

C API for Interfacing with Signals and Parameters

set_param('modelname','RTWCAPIParams','on')

To clear Parameters in C API, type

set_param('modelname','RTWCAPIParams','off')

Description of C API Files

• “Overview” on page 17-5

• “Structure Arrays Generated in C API Files” on page 17-8

• “Generating Example C API Files” on page 17-9

• “C API Signals” on page 17-11

• “C API Parameters” on page 17-14

• “Mapping C API Data Structures to the Real-Time Model Data Structure”
on page 17-17

Overview
The model_capi.c (or .cpp) file provides external applications with a
consistent interface to the model’s data. Depending on your configuration
settings, the data could be a signal or parameter. In this discussion, the term
“data item” refers to either a signal or a parameter. The C API uses structures
that provide an interface to the data item properties. The interface packages
the properties of each data item in a data structure. If there are multiple data
items in the model, the interface generates an array of data structures. The
members of a data structure map to data properties.

Typically, to interface with data items, an application requires the following
properties for each:

• Name

• Block path

• Port number (for signals only)

• Address

• Data type information: native data type, data size, complexity, and other
attributes

17-5

17 Data Exchange APIs

• Dimensions information: number of rows, number of columns, and data
orientation (scalar, vector, matrix, or n-dimensional)

• Fixed-point information: slope, bias, scale type, word length, exponent,
and other attributes

• Sample-time information (for signals only): sample time, task identifier,
frames

As illustrated in the next figure, the properties of data item A, for example,
are located in data structure DS_A. The properties of data item B are located
in data structure DS_B.

��)7

+��"��	���
+��"��	��=
�����+���	��
+��"��	��>

<��E���(���������	�
�B���
�B���
�(���������	�
������)�
+���	���(���������	�
�B���
<��E���(���������	�
�B���

��)

+��"��	���
+��"��	��=
�����+���	��
+��"��	��>

<��E���(���������	�
�B���
�B���
�(���������	�
������)�
+���	���(���������	�
�B���
<��E���(���������	�
�B���

��)�

�B���
�(��������+��"��	��=
�B���
�(����������	B���"��"��	����***

Some property values can be unique to each data item, and there are some
that several data items can share in common. Name, for example, has a
unique value for each data item. The interface places the unique property
values directly in the data item’s structure. So the name value of data item A
is in DS_A, and the name value of data item B is in DS_B.

But data type could be a property whose value several data items have in
common. The fact that some data items can share a property allows the C API
to have a reuse feature. In this case, the interface places only an index value
in DS_A and index value in DS_B. These indices point to a different data
structure, DS_C, that contains the actual data type value. The next figure
shows this scheme with more detail.

17-6

C API for Interfacing with Signals and Parameters

��76
���1�4!
�����:����1�4!
��#$

7����������
�����	���	����

�B������
�������
��"���	�	��	B������	
������	����	B�
�	��	���"�!�"
�����*

(

(

���

;�����
�� ���<;��8

��4!
�&

� ��4!
�8

����&�
;��

�
�
-���2!��+

���

)=

(

���

;�����
�� ���<;��>

��4!
�&

� ��4!
�>

����&�
;�� 8

�
�
-���2!��+

���

)=

(

���

;�����
�� ���<;��?

��4!
�&

� ��4!
�?

����&�
;��

�
�
-���2!��+ 8

���

)

)�

�B����
�$������"���	�
	��	B�������
�������	
���	B����.
�
-���,
�
�����*

��76@�2�.
�
-���,
����.
�
-���,
�#$

7����������	����"���	���	����

(

(

�&

� A���;��A

7&

� A��
��-A

!�
B��
�!��

���
,
�2!��+

�
�
1�3� ��3��%���
��-�

��.
�
2� 11�.0/:CB

��6�
���+

�����!���

)�

(

�&

� A�!�A

7&

� A�!�?>�-A

!�
B��
�!��

���
,
�2!��+

�
�
1�3�����������3��%��!�?>�-�

��.
�
2� 11�2&-?>

���

)

)�

The figure shows three signals. Notice that signal1 and signal2 share the
same data type, double. Instead of specifying this data type value in each
signal data structure, the interface provides only an index value, 0, in the
structure. "double" is described by entry 0 in the rtDataTypeMap array,
which is referenced by both signals. Additionally, property values can be

17-7

17 Data Exchange APIs

shared between parameters and signals, so parameters also might reference
the double entry in the rtDataTypeMap array. This reuse of information
reduces the memory size of the generated interface.

Structure Arrays Generated in C API Files
As with data type, the interface maps other common properties
(such as address, dimension, fixed-point scaling, and sample time)
into separate structures and provides an index in the data item’s
structure. For a complete list of structure definitions, refer to the file
matlabroot/rtw/c/src/rtw_capi.h. This file also describes each member in
a structure. The structure arrays generated in the model_capi.c (or .cpp)
file are of structure types defined in the rtw_capi.h file. Here is a brief
description of the structure arrays generated in model_capi.c (or .cpp):

• rtBlockSignals is an array of structures that contains information about
global block output signals in the model. Each element in the array is of
type struct rtwCAPI_Signals. The members of this structure provide the
signal’s name, block path, block port number, address, and indices to the
data type, dimension, fixed-point, and sample-time structure arrays.

• rtBlockParameters is an array of structures that contains information
about the tunable block parameters in the model by block name
and parameter name. Each element in the array is of type struct
rtwCAPI_BlockParameters. The members of this structure provide the
parameter’s name, block path, address, and indices to data type, dimension,
and fixed-point structure arrays.

• rtModelParameters is an array of structures that contains information
about all workplace variables that one or more blocks or Stateflow charts
in the model reference as block parameters. Each element in the array is
of data type rtwCAPI_ModelParameters. The members of this structure
provide the variable’s name, address, and indices to data type, dimension,
and fixed-point structure arrays.

• rtDataAddrMap is an array of base addresses of signals and parameters
that appear in the rtBlockSignals, rtBlockParameters, and
rtModelParameters structures. Each element of the rtDataAddrMap array
is a pointer to void (void*).

• rtDataTypeMap is an array of structures that contains information about
the various data types in the model. Each element of this array is of type

17-8

C API for Interfacing with Signals and Parameters

struct rtwCAPI_DataTypeMap. The members of this structure provide the
data type name, size of the data type, and information on whether or not
the data is complex.

• rtDimensionMap is an array of structures that contains information
about the various data dimensions in the model. Each element of this
array is of type struct rtwCAPI_DimensionMap. The members of this
structure provide information on the number of dimensions in the data,
the orientation of the data (whether it is scalar, vector, or a matrix), and
the actual dimensions of the data.

• rtFixPtMap is an array of structures that contains fixed-point information
about the signals and parameters. Each element of this array is of type
struct rtwCAPI_FixPtMap. The members of this structure provide
information about the data’s scaling, bias, exponent, and whether or not
the fixed-point data is signed. If the model does not have fixed-point data
(signal or parameter), the Real-Time Workshop software assigns NULL or
zero values to the elements of the rtFixPtMap array.

• rtSampleTimeMap is an array of structures that contains sampling
information about the model’s global signals. (This array contains no
information about parameters.) Each element of this array is of type
struct rtwCAPI_SampleTimeMap. The members of this structure provide
information about the sample period, offset, and whether or not the data is
frame-based or sample-based.

Generating Example C API Files
The next three sections, “C API Signals” on page 17-11, “C API Parameters”
on page 17-14, and “Mapping C API Data Structures to the Real-Time Model
Data Structure” on page 17-17, discuss generated C API structures using the
demo model rtwdemo_capi as an example. To generate code from the demo
model, do the following:

1 Open the model by double-clicking the link above or by typing
rtwdemo_capi on the MATLAB command line. The model appears as
shown in the next figure.

17-9

17 Data Exchange APIs

2 Generate code for the model by clicking the button Generate Code Using
Real-Time Workshop.

Note The C API code examples in the next three sections were generated
with C selected as the target language.

This model has three global block output signals that will appear in C API
generated code:

• sig1_sg, which is defined in the base workspace as a Simulink.Signal
object having storage class SimulinkGlobal

• sig2_eg, which is defined in the base workspace as a Simulink.Signal
object having storage class ExportedGlobal

• An unnamed signal, which is a test point at the output of the Gain1 block

17-10

C API for Interfacing with Signals and Parameters

Additionally, the model has five global model parameters that will appear in
C API generated code:

• Kp (Gain1 and Gain2 blocks share)

• Ki (Gain3 block)

• p1 (lookup table lu1d)

• p2 (lookup table lu2d)

• p3 (lookup table lu3d)

C API Signals
The rtwCAPI_Signals structure captures signal information including
the signal’s name, address, block path, output port number, data type
information, dimensions information, fixed-point information, and
sample-time information.

Here is the section of code in rtwdemo_capi_capi.c that provides information
on C API signals:

15 /* Block output signal information */

16 static const rtwCAPI_Signals rtBlockSignals[] = {

17 /* addrMapIndex, sysNum, blockPath,

18 * signalName, portNumber, dataTypeIndex, dimIndex, fxpIndex, sTimeIndex

19 */

20 { 0, 0, "rtwdemo_capi/Gain1",

21 "", 0, 0, 0, 0, 0 },

22

23 { 1, 0, "rtwdemo_capi/Gain3",

24 "sig1_sg", 0, 0, 0, 0, 0 },

25

26 { 2, 0, "rtwdemo_capi/lu2d",

27 "sig2_eg", 0, 0, 1, 0, 0 },

28

29 {

30 0, 0, NULL, NULL, 0, 0, 0, 0, 0

31 }

32 };

17-11

17 Data Exchange APIs

Note To better understand the code, be sure to read the file’s comments.
Notice the comment that begins on line 17 above, for example. This comment
lists the members of the rtwCAPI_Signals structure, in order. This tells you
the order in which the assigned values for each member appear for a signal.
In this example, the comment tells you that signalName is the fourth member
of the structure. Lines 26 and 27 describe the third signal. Thus, from line 27,
you infer that this signal name is sig2_eg.

Each array element, except the last, describes one output port for a block
signal. The final array element is a sentinel, with all elements set to null
values. Take the second signal, described by the code in lines 23 and 24,
for example:

23 { 1, 0, "rtwdemo_capi/Gain3",
24 "sig1_sg", 0, 0, 0, 0, 0 }

This signal, named sig1_sg, is the output signal of the first port of the block
rtwdemo_capi/Gain3. (It is the first port because the zero-based index for
portNumber on line 24 is assigned the value 0.)

The address of this signal is given by addrMapIndex, which, in this example,
is 1 on line 23. This provides an index into the rtDataAddrMap array, found
later in rtwdemo_capi_capi.c.

/* Declare Data Addresses statically */
static void* rtDataAddrMap[] = {

&rtwdemo_capi_B.Gain1;, /* 0: Signal */
&rtwdemo_capi_B.sig1_sg;, /* 1: Signal */
&sig2_eg;[0], /* 2: Signal */
&rtwdemo_capi_P.Ki;, /* 3: Model Parameter */
&rtwdemo_capi_P.Kp;, /* 4: Model Parameter */
&rtwdemo_capi_P.p1;[0], /* 5: Model Parameter */
&rtwdemo_capi_P.p2;[0], /* 6: Model Parameter */
&rtwdemo_capi_P.p3;[0] /* 7: Model Parameter */

};

The index of 1 points to the second element in the rtDataAddrMap array. So,
from the rtDataAddrMap array, you can infer that the address of this signal is
&rtwdemo_capi_B.sig1_sg.

17-12

C API for Interfacing with Signals and Parameters

This level of indirection is provided to support multiple code instances of
the same model. For multiple instances, the signal information remains
constant, except for the address. In this case, the model is a single instance.
Therefore, the rtDataAddrMap is declared statically. If you choose to generate
reusable code, an initialize function is generated that initializes the addresses
dynamically per instance. (For details on generating reusable code, see
“Configuring Model Interfaces” and “Model Entry Points” in the Real-Time
Workshop Embedded Coder documentation.)

The dataTypeIndex provides an index into the rtDataTypeMap array, found
later in rtwdemo_capi_capi.c, indicating the data type of the signal:

/* Data Type Map - use dataTypeMapIndex to access this structure */

static const rtwCAPI_DataTypeMap rtDataTypeMap[] = {

/* cName, mwName, numElements, elemMapIndex, dataSize, slDataId, *

* isComplex, isPointer */

{ "double", "real_T", 0, 0, sizeof(real_T), SS_DOUBLE, 0, 0 }

};

Because the index is 0 for sig1_sg, it points to the first structure element
in the array. So you can infer that the signal’s data type is double. The
value of isComplex is 0, indicating that the signal is not complex. Rather
than providing the data type information directly in the rwtCAPI_Signals
structure, a level of indirection is introduced. The indirection allows multiple
signals that share the same data type to point to one map structure. This
saves memory for each signal.

The dimIndex (dimensions index) provides an index into the rtDimensionMap
array, found later in rtwdemo_capi_capi.c, indicating the dimensions of the
signal. Because this index is 0 for sig1_sg, it points to the first element in
the rtDimensionMap array:

/* Dimension Map - use dimensionMapIndex to access elements of ths structure*/

static const rtwCAPI_DimensionMap rtDimensionMap[] = {

/* dataOrientation, dimArrayIndex, numDims, vardimsIndex */

{ rtwCAPI_SCALAR, 0, 2, 0 },

...

};

From this structure, you can infer that this is a scalar signal having a
dimension of 2.

17-13

17 Data Exchange APIs

The fxpIndex (fixed-point index) provides an index into the rtFixPtMap array,
found later in rtwdemo_capi_capi.c, indicating any fixed-point information
about the signal. Your code can use the scaling information provided to
compute the real-world value of the signal, using the equation V=SQ+B, where
V is “real-world” (that is, base-10) value, S is user-specified slope, Q is
“quantized fixed-point value” or “stored integer,” and B is user-specified bias.
(For details, see “Scaling” in the Fixed-Point Toolbox documentation.)

Because this index is 0 for sig1_sg, the signal has no fixed-point information.
A fixed-point map index of zero always means that the signal has no
fixed-point information.

The STimeIndex (sample-time index) provides the index to the
rtSampleTimeMap array, found later in rtwdemo_capi_capi.c, indicating
task information about the signal. The sampling information can be useful if
you log multirate signals or conditionally executed signals.

Note model_capi.c (or .cpp) includes rtw_capi.h. Any source file that
references the rtBlockSignals array also should include rtw_capi.h.

C API Parameters
The rtCAPI_BlockParameters and rtCAPI_ModelParameters structures
capture parameter information including the parameter’s name,
block path (for block parameters), address, data type information,
dimensions information, and fixed-point information. Each element in an
rtBlockParameters or rtModelParameters array (except the last element)
corresponds to a tunable parameter in the model.

The setting of the Inline parameters option on the Optimization pane
of the Configuration Parameters dialog box determines how information is
generated into the rtBlockParameters and rtModelParameters arrays in
model_capi.c (or .cpp), as follows:

• If Inline parameters is cleared,

- The rtBlockParameters array contains an entry for every modifiable
parameter of every block in the model.

17-14

C API for Interfacing with Signals and Parameters

- The rtModelParameters array contains only Stateflow data of machine
scope. The Real-Time Workshop software assigns its elements only NULL
or zero values in the absence of such data.

• If Inline parameters is selected,

- The rtBlockParameters array is empty. The Real-Time Workshop
software assigns its elements only NULL or zero values.

- The rtModelParameters array contains entries for all workspace
variables that are referenced as tunable Simulink block parameters or
Stateflow data of machine scope.

Here is the rtBlockParameters array that is generated by default in
rtwdemo_capi_capi.c:

34 /* Individual block tuning is not valid when inline parameters is *

35 * selected. An empty map is produced to provide a consistent *

36 * interface independent of inlining parameters. *

37 */

38 static const rtwCAPI_BlockParameters rtBlockParameters[] = {

39 /* addrMapIndex, blockPath,

40 * paramName, dataTypeIndex, dimIndex, fixPtIdx

41 */

42 {

43 0, NULL, NULL, 0, 0, 0

44 }

45 };

In this example, only the final, sentinel array element is generated, with all
members of the structure rtwCAPI_BlockParameters set to NULL and zero
values. This is because the Inline parameters option is selected by default
for the rtwdemo_capi demo model. If you clear this check box, the block
parameters are generated in the rtwCAPI_BlockParameters structure.

Here is the rtModelParameters array that is generated by default in
rtwdemo_capi_capi.c:

47 /* Tunable variable parameters */

48 static const rtwCAPI_ModelParameters rtModelParameters[] = {

49 /* addrMapIndex, varName, dataTypeIndex, dimIndex, fixPtIndex */

50 { 3, "Ki", 0, 0, 0 },

17-15

17 Data Exchange APIs

51

52 { 4, "Kp", 0, 0, 0 },

53

54 { 5, "p1", 0, 2, 0 },

55

56 { 6, "p2", 0, 3, 0 },

57

58 { 7, "p3", 0, 4, 0 },

59

60 { 0, NULL, 0, 0, 0 }

61 };

In this example, the rtModelParameters array contains entries for each
variable that is referenced as a tunable Simulink block parameter.

For example, the varName (variable name) of the line 56 parameter is p2. The
other fields correspond to the like-named signal equivalents described in “C
API Signals” on page 17-11. as follows:

• The address of the line 56 parameter is given by addrMapIndex, which,
in this example, is 6. This is an index into the rtDataAddrMap array,
found later in rtwdemo_capi_capi.c. Because the index is zero based,
6 corresponds to the seventh element in rtDataAddrMap, which is
&rtwdemo_capi_P.p2;[0].

• The dataTypeIndex provides an index into the rtDataTypeMap array, found
later in rtwdemo_capi_capi.c, indicating the data type of the parameter.
The value 0 corresponds to a double, noncomplex parameter.

• The dimIndex (dimensions index) provides an index into the
rtDimensionMap array, found later in rtwdemo_capi_capi.c. The value 3
corresponds to the fourth entry, which is { rtwCAPI_MATRIX_COL_MAJOR,
6, 2, 0 }.

• The fixPtIndex (fixed-point index) provides an index into the rtFixPtMap
array, found later in rtwdemo_capi_capi.c, indicating any fixed-point
information about the parameter. As with the corresponding signal
attribute, a fixed-point map index of zero always means that the parameter
has no fixed-point information.

17-16

C API for Interfacing with Signals and Parameters

Mapping C API Data Structures to the Real-Time Model Data
Structure
The real-time model data structure encapsulates model data and associated
information necessary to describe the model fully. For details, see “The
Real-Time Model Data Structure” on page 7-31. When you select the C API
feature and generate code, the Real-Time Workshop code generator adds
another member to the real-time model data structure generated in model.h:

/*
* DataMapInfo:
* The following substructure contains information regarding
* structures generated in the model's C API.
*/

struct {
rtwCAPI_ModelMappingInfo mmi;

} DataMapInfo;

This member defines mmi (for model mapping information) of type
struct rtwCAPI_ModelMappingInfo. The structure is provided in
matlabroot/rtw/c/src/rtw_modelmap.h. The mmi substructure defines
the interface between the model and the C API files. More specifically,
members of mmi map the real-time model data structure to the structures
in model_capi.c (or .cpp).

Initializing values of mmi members to the arrays accomplishes the mapping.
See the next figure. Each member points to one of the arrays of structures in
the generated C API file. For example, the address of the rtBlockSignals
array of structures is allocated to the first member of the mmi substructure in
model.c (or .cpp), using the following code in the rtwmodelmap.h file:

/* signals */
struct {

rtwCAPI_Signals const *signals; /* Signals Array */
uint_T numSignals; /* Num Signals */

} Signals;

The model initialize function in model.c (or .cpp) performs the initializing
by calling the C API initialize function. For example, the following code is
generated in the model initialize function for demo model rtwdemo_capi:

17-17

17 Data Exchange APIs

/* Initialize DataMapInfo substructure containing ModelMap for C API */

rtwdemo_capi_InitializeDataMapInfo(rtwdemo_capi_M);

�

��76@�2�1�4!
�����!������4!
���

�

��76@�2�:�����
�

��������!����;�����
�

������

�

��76@�2�,�����
�

��������!����
�����
�

������

�

��76@�2�.
�
-���,
����!�����
�
-���,
��

�

��76@�2�.�
�!���!,
����!������
�!���!,
��

�

��76@�2�D�+��,
����!����%�+��,
��

�

��76@�2�1

���-�
�,
����!�����

���-�
�,
��

�

	�������
�
@���,
��

�

�	
�	����
R�	CR�R���R�	C)��
����"*B

�����*B

�����)��"�*�

���������,�����
�����-
4�(

�

�

�

��������(

���76@�2�,����,
���!42!%��

�

�)�.
�
,
�2!%�E

�

�

�

)

�

��:����1�4!
��

�

��:�����
�

�����

�

��,�����
�

�����

�

��.
�
-���,
�

�

��.�
�!���!,
�

�

��D�+��,
�

�

��1

���-�
�,
�

�

��.
�
@���,
�

�

Mapping Between Model and C API Arrays of Structures

Using the C API in an Application
The C API provides you with the flexibility of writing your own application
code to interact with model parameters and signals. Your target-based
application code is compiled with the Real-Time Workshop generated code
into an executable. The target-based application code accesses the C API
structure arrays in model_capi.c (or .cpp). You might have host-based code
that interacts with your target-based application code. Or you might have
other target-based code that interacts with your target-based application

17-18

C API for Interfacing with Signals and Parameters

code. The rtw_modelmap.h file provides macros for accessing the structures
in these arrays and their members.

This section provides the following examples to help you get started writing
application code to interact with model parameters and signals:

• “Example: Using the C API to Access Model Parameters” on page 17-19

• “Example: Using the C API to Access Model Signals” on page 17-23

Example: Using the C API to Access Model Parameters
An example application is provided below that prints the parameter values
of all tunable parameters in a model to the standard output. This code is
intended as a starting point for accessing parameter addresses. You can
extend the code to perform parameter tuning. The application

• Uses the rtmGetDataMapInfo macro to access the mapping information in
the mmi substructure of the real-time model structure

rtwCAPI_ModelMappingInfo* mmi = &(rtmGetDataMapInfo(rtM).mmi);

where rtM is the pointer to the real-time model structure in model.c (or
.cpp).

• Uses rtwCAPI_GetNumModelParameters to get the number of model
parameters in mapped C API:

uint_T nModelParams = rtwCAPI_GetNumModelParameters(mmi);

• Uses rtwCAPI_GetModelParameters to access the array of all model
parameter structures mapped in C API:

rtwCAPI_ModelParameters* capiModelParams = \
rtwCAPI_GetModelParameters(mmi);

• Loops over the capiModelParams array to access individual parameter
structures. A call to the function capi_PrintModelParameter displays
the value of the parameter.

The example application code is provided below:

{
/* Get CAPI Mapping structure from Real-Time Model structure */

17-19

17 Data Exchange APIs

rtwCAPI_ModelMappingInfo* capiMap = \
&(rtmGetDataMapInfo(rtwdemo_capi_M).mmi);

/* Get number of Model Parameters from capiMap */
uint_T nModelParams = rtwCAPI_GetNumModelParameters(capiMap);
printf("Number of Model Parameters: %d\n", nModelParams);

/* If the model has Model Parameters, print them using the
application capi_PrintModelParameter */
if (nModelParams == 0) {

printf("No Tunable Model Parameters in the model \n");
}
else {

unsigned int idx;

for (idx=0; idx < nModelParams; idx++) {
/* call print utility function */
capi_PrintModelParameter(capiMap, idx);

}
}
}

The print utility function is provided in
matlabroot/rtw/c/src/rtw_capi_examples.c. This file contains utility
functions for accessing the C API structures.

To become familiar with the example code, try building a model that displays
all the tunable block parameters and MATLAB variables. You can use
rtwdemo_capi.mdl, the C API demo model, for this purpose. The steps below
apply to both grt.tlc and ert.tlc targets, unless otherwise indicated:

1 Open the model rtwdemo_capi.mdl by typing rtwdemo_capi at the
MATLAB command line.

2 Open the Configuration Parameters dialog box and go to the Optimization
pane.

3 Verify that the Inline parameters option is selected.

17-20

C API for Interfacing with Signals and Parameters

4 If you want to use the ert.tlc target instead of the default grt.tlc, select
an ert.tlc target in the System target file field on the Real-Time
Workshop pane and click OK.

5 Use the Custom Code pane to embed your custom application code in the
generated code. Select the Custom Code pane, and then click Initialize
function. The Initialize function input field appears on the right.

6 In the Initialize function input field, type or copy the example
application code provided above. This embeds the application code in the
MdlStart function. (If you are using ert.tlc, the code appears in the
model_initialize function.)

7 Click Include directories, and type matlabroot/rtw/c/src, where
matlabroot is the directory where your MATLAB installation resides on
your system.

8 In the Include list of additional subpane, click Source files, and type
rtw_capi_examples.c, as shown in the figure below. Click the Apply
button.

17-21

17 Data Exchange APIs

9 If you are using the ert.tlc target, select the following options on the
Real-Time Workshop > Interface pane, and then click Apply:

• C API in the Interface list

• MAT-file logging

• Support: complex numbers

10 Go to the Real-Time Workshop pane and clear the Generate code only
check box if it is not already cleared.

11 Click the Build button. The Real-Time Workshop code generator generates
the executable file rtwdemo_capi.exe in your current working directory.

12 Type !rtwdemo_capi at the MATLAB command line to run the executable
file. Parameter information is displayed in the Command Window, as
shown below.

17-22

C API for Interfacing with Signals and Parameters

>> !rtwdemo_capi

** starting the model **
Number of Model Parameters: 5
Ki =
7

Kp =
4

p1 =
0.8147
0.9058
0.127

p2 =
0.9649 0.9706 0.4854
0.1576 0.9572 0.8003

p3 =
ans(:,:,1) =
0.1419 0.9157 0.9595 0.03571
0.4218 0.7922 0.6557 0.8491

ans(:,:,2) =
0.934 0.7577 0.3922 0.1712
0.6787 0.7431 0.6555 0.706

>>

Example: Using the C API to Access Model Signals
An example application is provided below that logs a model’s global signals
to a text file. This code is intended as a starting point for accessing signal
addresses. You can extend the code to perform signal logging and monitoring.

This example uses the following macro and function interfaces:

• rtmGetDataMapInfo macro

Accesses the model mapping information (MMI) substructure of the
real-time model structure. In the following macro call, rtM is the pointer to
the real-time model structure in model.c (or .cpp):

rtwCAPI_ModelMappingInfo* mmi = &(rtmGetDataMapInfo(rtM).mmi);

17-23

17 Data Exchange APIs

• Custom functions capi_StartBlockIOLogging,
capi_UpdateBlockIOLogging, and capi_StopBlockIOLogging, provided
via the files rtwdemo_capi_signallog.h and rtwdemo_capi_signallog.c.
These files are located in matlabroot/toolbox/rtw/rtwdemos, where
matlabroot represents the root of your MATLAB installation directory.

- capi_StartBlockIOLogging initializes signal logging.

- capi_UpdateBlockIOLogging logs a signal value at each time step.

- capi_StopBlockIOLogging terminates signal logging and writes the
logged values to a text file.

A TLC file, rtwdemo_capi_signalloghook.tlc, also located at
matlabroot/toolbox/rtw/rtwdemos, integrates the custom functions with
model code. The TLC file inserts calls to the custom functions into model.c
(or .cpp) as follows:

- capi_StartBlockIOLogging is called in the MdlStart function (or if
an ert.tlc target is selected for the model, in the model_initialize
function).

- capi_UpdateBlockIOLogging is called in the model_output function.

- capi_StopBlockIOLogging is called in the model_terminate function.

The following excerpts of generated code from model.c (rearranged to reflect
their order of execution) show how the function interfaces are used.

void MdlStart(void)

{

/* user code (Start function Trailer) */

/* C API Custom Logging Function: Start Block IO Signal logging via C-API.

* capi_StartBlockIOLogging: Function prototype in capi_BIOSignalLog.h

*/

{

rtwCAPI_ModelMappingInfo *MMI = &(rtwdemo_capi_M->DataMapInfo.mmi);

printf("** Started signal logging via C-API **\n");

capi_StartBlockIOLogging(MMI, MAX_DATA_POINTS);

}

...

}

...

17-24

C API for Interfacing with Signals and Parameters

/* Model output function */

static void rtwdemo_capi_output(int_T tid)

{

...

/* user code (Output function Trailer) */

/* C API Custom Logging Function: Update Block IO Signal logging buffer.

* capi_UpdateBlockIOLogging: Function prototype in capi_BIOSignalLog.h

*/

{

rtwCAPI_ModelMappingInfo *MMI = &(rtwdemo_capi_M->DataMapInfo.mmi);

capi_UpdateBlockIOLogging(MMI, rtmGetTPtr(rtwdemo_capi_M));

}

...

}

...

/* Model terminate function */

void rtwdemo_capi_terminate(void)

{

/* user code (Terminate function Trailer) */

/* C API Custom Logging Function: Dump Block IO Signal buffers into a text file.

* capi_StopBlockIOLogging: Function prototype in capi_BIOSignalLog.h

*/

{

capi_StopBlockIOLogging("rtwdemo_capi_SignalLog.txt");

printf("** Finished signal logging. Created rtwdemo_capi_SignalLog.txt **\n");

}

}

The following procedure illustrates how you can use the C API macro and
function interfaces to log a model’s global signals to a text file.

1 Open the demo model rtwdemo_capi by entering rtwdemo_capi at the
MATLAB command line.

2 Open the Configuration Parameters dialog box and go to the Real-Time
Workshop pane.

3 For the System target file parameter, select grt.tlc. (Alternatively, if
you are licensed for Real-Time Workshop Embedded Coder software, you
can select ert.tlc.)

17-25

17 Data Exchange APIs

4 Examine the TLC options parameter. Edit the field to include the string

-Imatlabroot/toolbox/rtw/rtwdemos

-acapiSigTestFile="rtwdemo_capi_signalloghook.tlc"

where matlabroot is the root of your MATLAB installation directory.
Including the string causes the example’s custom application C code to be
integrated with the code you generate from the model.

5 Go to the Interface pane.

a In the Data exchange subpane, for the Interface parameter, select C
API.

b Additionally, select the option Signals in C API and clear the option
Parameters in C API. For the purposes of this example, you can limit
the C API data exchange to signals only.

17-26

C API for Interfacing with Signals and Parameters

c If you are using the ert.tlc target, verify that the options MAT-file
logging and Support: complex numbers are selected.

d Click the Apply button.

6 Use the Custom Code pane to embed your custom application code in the
generated code. Select the Custom Code pane, and then click Include
directories. The Include directories input field appears on the right.

7 In the Include directories field, type
matlabroot/toolbox/rtw/rtwdemos, where matlabroot is the root of your
MATLAB installation directory.

8 In the Include list of additional subpane, click Source files, and type
rtwdemo_capi_signallog.c, as shown in the figure below. Click the
Apply button.

17-27

17 Data Exchange APIs

9 In the Real-Time Workshop pane, verify that the Build button is visible.
If necessary, clear the option Generate code only and click the Apply
button.

Click the Build button to build the model and generate the executable file
rtwdemo_capi.exe.

10 To run the executable file, enter the command !rtwdemo_capi in
the MATLAB command window. During execution, model block I/O
signals are logged using the C API and then written to the text file
rtwdemo_capi_SignalLog.txt in your working directory.

>> !rtwdemo_capi

** starting the model **

** Started signal logging via C-API **

** Logging 1 signal(s). In this demo, only scalar named signals are logged **

17-28

C API for Interfacing with Signals and Parameters

** Finished signal logging. Created rtwdemo_capi_SignalLog.txt **

11 Examine the text file in the MATLAB editor or any text editor. An excerpt
of the signal logging output is shown below.

******** Signal Log File********

Number of Signals Logged: 1

Number of points (time steps) logged: 51

Time sig1_sg

0 70

0.2 70

0.4 70

0.6 70

0.8 70

1 70

1.2 70

1.4 70

1.6 70

1.8 70

2 70

...

C API Limitations
The C API feature has the following limitations.

• The following code formats are not supported:

- S-function

- Accelerated simulation

• For ERT-based targets, the C API requires that support for floating-point
code be enabled.

• The following signals are not supported:

- External inputs

- External outputs

- Local block outputs

17-29

17 Data Exchange APIs

• Local Stateflow parameters are not supported.

• The following custom storage class objects are not supported:

- Objects without the package csc_registration file are not supported.

- BitPackBoolean objects, grouped custom storage classes, and objects
defined by using macro are not supported.

• Customized data placement is disabled when you are using the C
API. The interface looks for global data declaration in model.h and
model_private.h. Declarations placed in any other file by customized data
placement result in code that does not compile.

Note Custom Storage Class objects take effect in code generation only if you
use the ERT target and clear the Ignore custom storage classes check box
on the Configuration Parameters dialog box.

Generating C API and ASAP2 Files
The C API and ASAP2 interfaces are not mutually exclusive. Although the
Interface option on the Real-Time Workshop > Interface pane of the
Configuration Parameters dialog box allows you to select either the ASAP2
or C API interface, you can instruct the Real-Time Workshop code generator
to generate files for both interfaces. For details, see “Generating ASAP2 and
C API Files” on page B-21.

Target Language Compiler API for Signals and
Parameters
The Real-Time Workshop product provides a TLC function library that lets
you create a global data map record. The global data map record, when
generated, is added to the CompiledModel structure in the model.rtw file.
The global data map record is a database containing all information required
for accessing memory in the generated code, including

• Signals (Block I/O)

• Parameters

• Data type work vectors (DWork)

17-30

C API for Interfacing with Signals and Parameters

• External inputs

• External outputs

Use of the global data map requires knowledge of the Target Language
Compiler and of the structure of the model.rtw file. See the Target Language
Compiler documentation for information on these topics.

The TLC functions that are required to generate and access the global data
map record are contained in matlabroot/rtw/c/tlc/mw/globalmaplib.tlc.
The comments in the source code fully document the global data map
structures and the library functions.

The global data map structures and functions might be modified or enhanced
in future releases.

17-31

17 Data Exchange APIs

Creating an External Mode Communication Channel

In this section...

“Introduction” on page 17-32
“Design of External Mode” on page 17-32
“External Mode Communications Overview” on page 17-35
“External Mode Source Files” on page 17-37
“Implementing a Custom Transport Layer” on page 17-41

Introduction
This section helps you to connect your custom target by using external mode
using your own low-level communications layer. The topics include:

• An overview of the design and operation of external mode

• A description of external mode source files

• Guidelines for modifying the external mode source files and building an
executable to handle the tasks of the default ext_comm MEX-file

This section assumes that you are familiar with the execution of Real-Time
Workshop programs, and with the basic operation of external mode. These
topics are described in Chapter 7, “Program Architecture” and Chapter 6,
“External Mode”.

Design of External Mode
External mode communication between the Simulink engine and a target
system is based on a client/server architecture. The client (the Simulink
engine) transmits messages requesting the server (target) to accept parameter
changes or to upload signal data. The server responds by executing the
request.

A low-level transport layer handles physical transmission of messages. Both
the Simulink engine and the model code are independent of this layer. Both
the transport layer and code directly interfacing to the transport layer are

17-32

Creating an External Mode Communication Channel

isolated in separate modules that format, transmit, and receive messages
and data packets.

This design makes it possible for different targets to use different transport
layers. The GRT, GRT malloc, ERT, and RSim targets support host/target
communication by using TCP/IP and RS-232 (serial) communication.
The RTWin target supports shared memory communication. The Wind
River Systems Tornado target supports TCP/IP only. Serial transport is
implemented only for Microsoft Windows 32-bit architectures.

The Real-Time Workshop product provides full source code for both the client
and server-side external mode modules, as used by the GRT, GRT malloc,
ERT, Rapid Simulation, and Tornado targets, and the Real-Time Windows
Target and xPC Target products. The main client-side module is ext_comm.c.
The main server-side module is ext_svr.c.

These two modules call the specified transport layer through the following
source files.

Built-In Transport Layer Implementations

Protocol
Client or
Server? Source Files

TCP/IP Client
(host)

matlabroot/rtw/ext_mode/common/rtiostream_interface.c
matlabroot/rtw/c/src/rtiostream/rtiostreamtcpip/rtiostream_tcpip.c

Server
(target)

matlabroot/rtw/c/src/ext_mode/common/rtiostream_interface.c
matlabroot/rtw/c/src/rtiostream/rtiostreamtcpip/rtiostream_tcpip.c

Serial Client
(host)

matlabroot/rtw/ext_mode/serial/ext_serial_transport.c

Server
(target)

matlabroot/rtw/c/src/ext_mode/serial/ext_svr_serial_transport.c

For serial communication, the module ext_serial_transport.c implements
the client-side transport functions and ext_svr_serial_transport.c
contains the corresponding server-side functions. For TCP/IP communication,
the modules rtiostream_interface.c and rtiostream_tcpip.c implement
both client-side and server-side functions. You can edit copies of these files
(but do not modify the originals). You can support external mode using

17-33

17 Data Exchange APIs

your own low-level communications layer by creating similar files using the
following templates:

• Client (host) side:
matlabroot/rtw/c/src/rtiostream/rtiostreamtcpip/rtiostream_tcpip.c
(TCP/IP) or matlabroot/rtw/ext_mode/custom/ext_custom_transport.c
(serial)

• Server (target) side:
matlabroot/rtw/c/src/rtiostream/rtiostreamtcpip/rtiostream_tcpip.c
(TCP/IP) or
matlabroot/rtw/c/src/ext_mode/custom/ext_svr_custom_transport.c
(serial)

The file rtiostream_interface.c is an interface between the external mode
protocol and an rtiostream communications channel. For more details on
implementing an rtiostream communications channel, see “Communications
rtiostream API” in the Real-Time Workshop Embedded Coder documentation.
Provided that you implement your rtiostream communications channel
using the documented interface, it should not be necessary to change the file
rtiostream_interface.c or any other external mode related files.

Note Do not modify working source files. Use the templates provided in the
/custom or /rtiostream directory as starting points, guided by the comments
within them.

You need only provide code that implements low-level communications. You
need not be concerned with issues such as data conversions between host
and target, or with the formatting of messages. The Real-Time Workshop
software handles these functions.

On the client (Simulink engine) side, communications are handled by
ext_comm (for TCP/IP) and ext_serial_win32_comm (for serial) MEX-files.

On the server (target) side, external mode modules are linked into the target
executable. This takes place automatically if the External mode code
generation option is selected at code generation time, based on the External
mode transport option selected in the target code generation options dialog

17-34

Creating an External Mode Communication Channel

box. These modules, called from the main program and the model execution
engine, are independent of the generated model code.

The general procedure for implementing your own client-side low-level
transport protocol is as follows:

1 Edit the template rtiostream_tcpip.c to replace low-level communication
calls with your own communication calls.

2 Generate a MEX-file executable for your custom transport.

3 Register your new transport layer with the Simulink software, so that
the transport can be selected for a model using the Interface pane of the
Configuration Parameters dialog box.

For more details, see “Creating a Custom Client (Host) Transport Protocol” on
page 17-42.

The general procedure for implementing your own server-side low-level
transport protocol is as follows:

1 Edit the template rtiostream_tcpip.c to replace low-level communication
calls with your own communication calls. Typically this involves writing or
integrating device drivers for your target hardware.

2 Modify template makefiles to support the new transport for appropriate
targets.

For more details, see “Creating a Custom Server (Target) Transport Protocol
for TCP/IP Communication” on page 17-46 or “Creating a Custom Server
(Target) Transport Protocol for Serial Communication” on page 17-47.

External Mode Communications Overview
This section gives a high-level overview of how a Real-Time Workshop
generated program communicates with Simulink external mode. This
description is based on the TCP/IP version of external mode that ships with
the Real-Time Workshop product.

For communication to take place,

17-35

17 Data Exchange APIs

• The server (target) program must have been built with the conditional
EXT_MODE defined. EXT_MODE is defined in the model.mk file if the External
mode code generation option was selected at code generation time.

• Both the server program and the Simulink software must be executing.
This does not mean that the model code in the server system must be
executing. The server can be waiting for the Simulink engine to issue a
command to start model execution.

The client and server communicate by using bidirectional sockets carrying
packets. Packets consist either ofmessages (commands, parameter downloads,
and responses) or data (signal uploads).

If the target program was invoked with the -w command-line option, the
program enters a wait state until it receives a message from the host.
Otherwise, the program begins execution of the model. While the target
program is in a wait state, the Simulink engine can download parameters to
the target and configure data uploading.

When the user chooses the Connect to target option from the Simulation
menu, the host initiates a handshake by sending an EXT_CONNECT message.
The server responds with information about itself. This information includes

• Checksums. The host uses model checksums to determine that the target
code is an exact representation of the current Simulink model.

• Data format information. The host uses this information when formatting
data to be downloaded, or interpreting data that has been uploaded.

At this point, host and server are connected. The server is either executing
the model or in the wait state. (In the latter case, the user can begin model
execution by selecting Start real-time code from the Simulation menu.)

During model execution, the message server runs as a background task. This
task receives and processes messages such as parameter downloads.

Data uploading comprises both foreground execution and background
servicing of the signal packets. As the target computes model outputs, it also
copies signal values into data upload buffers. This occurs as part of the task
associated with each task identifier (tid). Therefore, data collection occurs
in the foreground. Transmission of the collected data, however, occurs as

17-36

Creating an External Mode Communication Channel

a background task. The background task sends the data in the collection
buffers to the Simulink engine by using data packets.

The host initiates most exchanges as messages. The target usually sends
a response confirming that it has received and processed the message.
Examples of messages and commands are

• Connection message / connection response

• Start target simulation / start response

• Parameter download / parameter download response

• Arm trigger for data uploading / arm trigger response

• Terminate target simulation / target shutdown response

Model execution terminates when the model reaches its final time, when the
host sends a terminate command, or when a Stop Simulation block terminates
execution. On termination, the server informs the host that model execution
has stopped, and shuts down its socket. The host also shuts down its socket,
and exits external mode.

External Mode Source Files

• “Client (Host) MEX-file Interface Source Files” on page 17-37

• “Server (Target) Source Files” on page 17-39

• “Other Files in the Server Directory” on page 17-41

Client (Host) MEX-file Interface Source Files
The source files for the MEX-file interface component are located in the
directory matlabroot/rtw/ext_mode, except as noted:

• common/ext_comm.c

This file is the core of external mode communication. It acts as a relay
station between the target and the Simulink engine. ext_comm.c
communicates to the Simulink engine by using a shared data structure,
ExternalSim. It communicates to the target by using calls to the transport
layer.

17-37

17 Data Exchange APIs

Tasks carried out by ext_comm.c include establishment of a connection
with the target, downloading of parameters, and termination of the
connection with the target.

• common/rtiostream_interface.c

This file is an interface between the external mode protocol and an
rtiostream communications channel. For more details on implementing
an rtiostream communications channel, “Communications rtiostream
API” in the Real-Time Workshop Embedded Coder documentation.
Provided that you implement your rtiostream communications channel
using the documented interface, it should not be necessary to change the
file rtiostream_interface.c or any other external mode related files.

• matlabroot/rtw/c/src/rtiostream/rtiostreamtcpip/rtiostream_tcpip.c

This file implements required TCP/IP transport layer functions. The
version of rtiostream_tcpip.c shipped with the Real-Time Workshop
software uses TCP/IP functions including recv(), send(), and socket().

• serial/ext_serial_transport.c

This file implements required serial transport layer functions.
ext_serial_transport.c includes ext_serial_utils.c, which is located
in matlabroot/rtw/c/src/ext_mode/serial and contains functions
common to client and server sides.

• common/ext_main.c

This file is a MEX-file wrapper for external mode. ext_main.c interfaces
to the Simulink engine by using the standard mexFunction call. (See the
mexFunction reference page and External Interfaces in the MATLAB
online documentation for more information.) ext_main.c contains a
function dispatcher, esGetAction, that sends requests from the Simulink
engine to ext_comm.c.

• common/ext_convert.c and ext_convert.h

This file contains functions used for converting data from host to target
formats (and vice versa). Functions include byte-swapping (big to little-
endian), conversion from non-IEEE floats to IEEE doubles, and other
conversions. These functions are called both by ext_comm.c and directly by
the Simulink engine (by using function pointers).

17-38

Creating an External Mode Communication Channel

Note You do not need to customize ext_convert to implement a custom
transport layer. However, it might be necessary to customize ext_convert
for the intended target. For example, if the target represents the float
data type in Texas Instruments format, ext_convert must be modified to
perform a Texas Instruments to IEEE conversion.

• common/extsim.h

This file defines the ExternalSim data structure and access macros. This
structure is used for communication between the Simulink engine and
ext_comm.c.

• common/extutil.h

This file contains only conditionals for compilation of the assert macro.

• common/ext_transport.h

This file defines functions that must be implemented by the transport layer.

Server (Target) Source Files
These files are part of the run-time interface and are linked into the model.exe
executable. They are located within matlabroot/rtw/c/src/ext_mode/
except as noted.

• common/ext_svr.c

ext_svr.c is analogous to ext_comm.c on the host, but generally is
responsible for more tasks. It acts as a relay station between the host and
the generated code. Like ext_comm.c, ext_svr.c carries out tasks such
as establishing and terminating connection with the host. ext_svr.c also
contains the background task functions that either write downloaded
parameters to the target model, or extract data from the target data buffers
and send it back to the host.

• common/rtiostream_interface.c

This file is an interface between the external mode protocol and an
rtiostream communications channel. For more details on implementing
an rtiostream communications channel, “Communications rtiostream
API” in the Real-Time Workshop Embedded Coder documentation.

17-39

17 Data Exchange APIs

Provided that you implement your rtiostream communications channel
using the documented interface, it should not be necessary to change the
file rtiostream_interface.c or any other external mode related files.

• matlabroot/rtw/c/src/rtiostream/rtiostreamtcpip/rtiostream_tcpip.c

This file implements required TCP/IP transport layer functions. The
version of rtiostream_tcpip.c shipped with the Real-Time Workshop
software uses TCP/IP functions including recv(), send(), and socket().

• serial/ext_svr_serial_transport.c

This file implements required serial transport layer functions.
ext_svr_serial_transport.c includes serial/ext_serial_utils.c,
which contains functions common to client and server sides.

• common/updown.c

updown.c handles the details of interacting with the target model.
During parameter downloads, updown.c does the work of installing the
new parameters into the model’s parameter vector. For data uploading,
updown.c contains the functions that extract data from the model’s blockio
vector and write the data to the upload buffers. updown.c provides services
both to ext_svr.c and to the model code (for example, grt_main.c). It
contains code that is called by using the background tasks of ext_svr.c as
well as code that is called as part of the higher priority model execution.

• ../dt_info.h (included by generated model build file model.h)

These files contain data type transition information that allows access to
multi-data type structures across different computer architectures. This
information is used in data conversions between host and target formats.
The header file dt_info.h is located at matlabroot/rtw/c/src/.

• common/updown_util.h

This file contains only conditionals for compilation of the assert macro.

• common/ext_svr_transport.h

This file defines the Ext* functions that must be implemented by the server
(target) transport layer.

• common/rtiostream.h

This file defines the rtIOStream* functions implemented in
tcpip/rtiostream_tcpip.c.

17-40

Creating an External Mode Communication Channel

• common/rtiostream_interface.c

This file defines the server transport (Ext* functions) interface to the
rtIOStream* functions defined in common/rtiostream.h and implemented
in tcpip/rtiostream_tcpip.c.

Other Files in the Server Directory

• common/ext_share.h

Contains message code definitions and other definitions required by both
the host and target modules.

• serial/ext_serial_utils.c

Contains functions and data structures for communication, MEX link,
and generated code required by both the host and target modules of the
transport layer for serial protocols.

• The serial transport implementation includes the additional files

- serial/ext_serial_pkt.c and ext_serial_pkt.h

- serial/ext_serial_port.h

- serial/ext_serial_win32_port.c

Implementing a Custom Transport Layer

• “Requirements” on page 17-42

• “Creating a Custom Client (Host) Transport Protocol” on page 17-42

• “Registering a Custom Client (Host) Transport Protocol” on page 17-44

• “Creating a Custom Server (Target) Transport Protocol for TCP/IP
Communication” on page 17-46

• “Creating a Custom Server (Target) Transport Protocol for Serial
Communication” on page 17-47

17-41

17 Data Exchange APIs

Requirements

• By default, ext_svr.c and updown.c use malloc to allocate buffers in
target memory for messages, data collection, and other purposes, although
there is also an option to preallocate static memory. If your target uses
another memory allocation scheme, you must modify these modules
appropriately.

• The target is assumed to support both int32_T and uint32_T data types.

Creating a Custom Client (Host) Transport Protocol
To implement the client (host) side of your low-level transport protocol,

1 Edit the template file rtiostream_tcpip.c to replace low-level
communication calls with your own communication calls.

a Copy and rename the file to rtiostream_name.c (replacing name with a
name meaningful to you).

b Replace the functions rtIOStreamOpen, rtIOStreamClose,
rtIOStreamSend, and rtIOStreamRecv with functions that call your
low-level communication primitives. These functions are called from
other external mode modules via rtiostream_interface.c. For more
information, see “Communications rtiostream API” in the Real-Time
Workshop Embedded Coder documentation.

2 Build the customized MEX-file executable using the MATLAB mex
function. See the table MATLAB® Commands to Rebuild ext_comm and
ext_serial_win32 MEX-Files on page 17-43 for examples of mex invocations.

Replace the command-line entry rtiostream_tcpip.c with your custom
component’s filename.

Do not replace the existing ext_comm MEX-file if you want to preserve its
existing function. Instead, use the -output option to name the resulting
executable (for example, mex -output ext_myrtiostream_comm ...
builds ext_myrtiostream_comm.mexext, on Windows platforms).

3 Register your new client transport layer with the Simulink software, so
that the transport can be selected for a model using the Interface pane of

17-42

Creating an External Mode Communication Channel

the Configuration Parameters dialog box. For details, see “Registering a
Custom Client (Host) Transport Protocol” on page 17-44.

The following table lists the commands for building the standard ext_comm
module on PC and UNIX platforms, and for building the standard
ext_serial_win32 model on a PC platform.

MATLAB Commands to Rebuild ext_comm and ext_serial_win32 MEX-Files

Platform Commands

UNIX, TCP/IP >> cd (matlabroot)

>> mex rtw/ext_mode/common/ext_comm.c
rtw/c/src/rtiostream/utils/rtiostream_loadlib.c
rtw/ext_mode/common/rtiostream_interface.c
rtw/ext_mode/common/ext_convert.c
rtw/c/src/rtiostream/rtiostreamtcpip/rtiostream_tcpip.c
-Irtw/c/src
-Irtw/c/src/ext_mode/common
-Irtw/ext_mode/common
-Irtw/c/src/rtiostream/utils -DSL_EXT_SO -ldl
-output toolbox/rtw/rtw/ext_comm

17-43

17 Data Exchange APIs

MATLAB Commands to Rebuild ext_comm and ext_serial_win32 MEX-Files (Continued)

Platform Commands

PC, TCP/IP >> cd (matlabroot)

>> mex rtw\ext_mode\common\ext_comm.c
rtw\c\src\rtiostream\utils\rtiostream_loadlib.c
rtw\ext_mode\common\ext_convert.c
rtw\ext_mode\common\rtiostream_interface.c
rtw\c\src\rtiostream\rtiostreamtcpip\rtiostream_tcpip.c
-Irtw\c\src\ext_mode\common
-Irtw\c\src
-Irtw\ext_mode\common
-Irtw\c\src\rtiostream\utils -DSL_EXT_DLL -DWIN32 wsock32.lib
-output toolbox\rtw\rtw\ext_comm

PC, serial >> cd (matlabroot)

>> mex rtw\ext_mode\common\ext_comm.c
rtw\ext_mode\common\ext_convert.c
rtw\ext_mode\serial\ext_serial_transport.c
rtw\c\src\ext_mode\serial\ext_serial_pkt.c
rtw\c\src\ext_mode\serial\ext_serial_win32_port.c
-Irtw\c\src\ext_mode\common
-Irtw\c\src\ext_mode\serial
-Irtw\ext_mode\common
-output toolbox\rtw\rtw\ext_serial_win32
-DWIN32

Note mex requires a compiler supported by the MATLAB API. See the mex
reference page and External Interfaces in the MATLAB online documentation
for more information about the mex function.

Registering a Custom Client (Host) Transport Protocol
To register a custom client transport protocol with the Simulink software,
you must add an entry of the following form to an sl_customization.m file
on the MATLAB path:

17-44

Creating an External Mode Communication Channel

function sl_customization(cm)

cm.ExtModeTransports.add('stf.tlc', 'transport', 'mexfile', 'Level1');

%end function

where

• stf.tlc is the name of the system target file for which the transport will
be registered (for example, 'grt.tlc')

• transport is the transport name to display in the Transport layer menu
on the Interface pane of the Configuration Parameters dialog box (for
example, 'mytcpip')

• mexfile is the name of the transport’s associated external interface
MEX-file (for example, 'ext_mytcpip_comm')

You can specify multiple targets and/or transports with additional
cm.ExtModeTransports.add lines, for example:

function sl_customization(cm)

cm.ExtModeTransports.add('grt.tlc', 'mytcpip', 'ext_mytcpip_comm', 'Level1');

cm.ExtModeTransports.add('ert.tlc', 'mytcpip', 'ext_mytcpip_comm', 'Level1');

%end function

If you place the sl_customization.m file containing the transport
registration information on the MATLAB path, your custom client transport
protocol will be registered with each subsequent Simulink session. Assuming
an appropriate system target file is selected for your model, the name of the
transport will appear in the Transport layer menu on the Interface pane of
the Configuration Parameters dialog box. When you select the transport for
your model, the name of the associated external interface MEX-file will appear
in the noneditableMEX-file name field, as shown in the following figure.

17-45

17 Data Exchange APIs

Creating a Custom Server (Target) Transport Protocol for
TCP/IP Communication
The rtIOStream* function prototypes in
matlabroot/rtw/c/src/.../rtiostream.h define the calling
interface for both the server (target) and client (host) side
transport layer functions. The TCP/IP implementations are in
matlabroot/rtw/c/src/rtiostream/rtiostreamtcpip/rtiostream_tcpip.c.

Note The Ext* function prototypes in common/ext_svr_transport.h are
implemented in common/rtiostream_interface.c; however, in most cases
you will not need to modify rtiostream_interface.c for your custom TCP/IP
transport layer.

To implement the server (target) side of your low-level TCP/IP transport
protocol,

17-46

Creating an External Mode Communication Channel

1 Edit the template
matlabroot/rtw/c/src/rtiostream/rtiostreamtcpip/rtiostream_tcpip.c
to replace low-level communication calls with your own
communication calls.

a Copy and rename the file to rtiostream_name.c (replacing name with a
name meaningful to you).

b Replace the functions rtIOStreamOpen, rtIOStreamClose,
rtIOStreamSend,and rtIOStreamRecv with functions (of the same name)
that call your low-level communication drivers.

You must implement all the functions defined in rtiostream.h, and
your implementations must conform to the prototypes defined in that
file. Refer to the original rtiostream_tcpip.c for guidance as needed.

2 Modify all appropriate template makefiles to support the new transport. If
you are writing your own template makefile, make sure that the EXT_MODE
code generation option is defined. The generated makefile will then link
rtiostream_name.c, rtiostream_interface.c, and other server code
into your executable.

Creating a Custom Server (Target) Transport Protocol for Serial
Communication
The Ext* function prototypes in
matlabroot/rtw/c/src/ext_mode/common/ext_svr_transport.h
define the calling interface for the server (target) side
transport layer functions. The serial implementations are in
matlabroot/rtw/c/src/ext_mode/serial/ext_svr_serial_transport.c.

To implement the server (target) side of your low-level serial transport
protocol,

1 Edit the template
matlabroot/rtw/c/src/ext_mode/custom/ext_svr_custom_transport.c
to replace low-level communication calls with your own
communication calls.

a Copy and rename the file to ext_svr_name_transport.c (replacing name
with a name meaningful to you).

17-47

17 Data Exchange APIs

b Replace the functions in the VISIBLE FUNCTIONS section with functions
that call your low-level communication primitives. These are the
functions called from other target modules such as the main program.

You must implement all the functions defined in ext_svr_transport.h,
and your implementations must conform to the prototypes defined in
that file. Refer to ext_svr_serial_transport.c for guidance as needed.

c Supply a definition for the ExtUserData structure. This structure is
required. If ExtUserData is not necessary for your external mode
implementation, define an ExtUserData structure with one dummy field.

d Define the EXT_BLOCKING conditional as appropriate for your
implementation:

• Define EXT_BLOCKING as 0 to poll for a connection to the host
(appropriate for single-threaded applications).

• Define EXT_BLOCKING as 1 in multithreaded applications where tasks
are able to block for a connection to the host without blocking the
entire program.

See also the comments on EXT_BLOCKING in
ext_svr_custom_transport.c.

The ext_svr_*_transport source code modules are fully commented. See
those files for more details.

2 If you created an ext_name_utils.c file to define custom transport symbols
and functions (see step 2 of “Creating a Custom Client (Host) Transport
Protocol” on page 17-42), and if the file is needed for your server side
protocol, include it in your custom server transport source file.

3 Modify all appropriate template makefiles to support the new transport. If
you are writing your own template makefile, make sure that the EXT_MODE
code generation option is defined. The generated makefile will then link
ext_svr_name_transport.c and other server code into your executable.

17-48

Combining Multiple Models

Combining Multiple Models
If you want to combine several models (or several instances of the same
model) into a single executable, the Real-Time Workshop product offers
several options.

The most powerful solution is to use Model blocks. Each instance of a
Model block represents another model, called a referenced model. For code
generation, the referenced model effectively replaces the Model block that
references it. For details, see “Referencing a Model” and “Generating Code
for Model Referencing” on page 4-26.

If the models to be combined are completely independent of one another and
not hierarchically related, other approaches might be more appropriate.

When developing embedded systems using the Real-Time Workshop
Embedded Coder product, you can interface the code for several models to
a common harness program by directly calling the entry points to each
model. However, Real-Time Workshop Embedded Coder target has certain
restrictions that might not be appropriate for your application. For more
information, see the Real-Time Workshop Embedded Coder documentation.

The GRT malloc target is a another possible solution. Using it is appropriate
in situations where you want do any or all of the following:

• Selectively control calls to more than one model

• Use dynamic memory allocation

• Include models that employ continuous states

• Log data to multiple files

• Run one of the models in external mode

To summarize by targets, your options are as follows:

Target Support for Combining Independent
Multiple Models?

GRT No (except by using Model blocks)

17-49

17 Data Exchange APIs

Target Support for Combining Independent
Multiple Models?

GRT Malloc Yes
ERT Yes
S-Function No

Using GRT Malloc to Combine Models
This section discusses how to use the GRT malloc target to combine models
into a single program. Before reading this section, you should become familiar
with model execution in Real-Time Workshop programs. (See Chapter 7,
“Program Architecture” and Chapter 8, “Models with Multiple Sample Rates”).
It will be helpful to refer to grt_malloc_main.c while reading these chapters.

Building a multiple-model executable is fairly straightforward:

1 Generate and compile code from each of the models that are to be combined.

2 Combine the makefiles for each of the models into one makefile for creating
the final multimodel executable.

3 Create a combined simulation engine by modifying grt_malloc_main.c to
initialize and call the models correctly.

4 Run the combination makefile to link the object files from the models and
the main program into an executable.

Sharing Data Across Models
It is safest to use unidirectional signal connections between models. This
affects the order in which models are called. For example, if an output signal
from modelA is used as input to modelB, modelA's output computation should
be called first.

17-50

Combining Multiple Models

Timing Issues
You must generate all the models you are combining with the same solver
mode (either all single-tasking or all multitasking.) In addition, if the models
employ continuous states, the same solver should be used for all models.

Because each model has its own model-specific definition of the rtModel
data structure, you must use an alternative mechanism to control model
execution, as follows:

• The file rtw/c/src/rtmcmacros.h provides an rtModel API clue that can
be used to call the rt_OneStep procedure.

• The rtmcmacros.h header file defines the rtModelCommon data structure,
which has the minimum common elements in the rtModel structure
required to step a model forward one time step.

• The rtmcsetCommon macro populates an object of type rtModelCommon by
copying the respective similar elements in the model’s rtModel object. Your
main routine must create one rtModelCommon structure for each model
being called by the main routine.

• The main routine will subsequently invoke rt_OneStep with a pointer to
the rtModelCommon structure instead of a pointer to the rtModel structure.

If the base rates for the models are not the same, the main program (such as
grt_malloc_main) must set up the timer interrupt to occur at the greatest
common divisor rate of the models. The main program is responsible for
calling each of the models at the appropriate time interval.

Data Logging and External Mode Support
A multiple-model program can log data to separate MAT-files for each model
(as in the example program discussed below).

Only one of the models in a multiple-model program can use external mode.

17-51

17 Data Exchange APIs

17-52

18

Working with Embedded
MATLAB Coder

• “About Embedded MATLAB Coder” on page 18-2

• “Workflows for Converting M-Code to C Code” on page 18-5

• “Installing Prerequisite Products for Embedded MATLAB Coder” on page
18-7

• “Setting Up the C Compiler” on page 18-8

• “File Paths and Naming Conventions” on page 18-10

• “Making M-Code Compliant with the Embedded MATLAB Subset” on
page 18-13

• “Configuring Your Environment for Code Generation” on page 18-16

• “Specifying Properties of Primary Function Inputs” on page 18-22

• “Choosing Your Target” on page 18-40

• “Compiling Your M-File” on page 18-44

• “How emlc Generates Code” on page 18-46

• “Working with Compilation Reports” on page 18-53

• “Calling Generated C Functions” on page 18-60

• “Integrating Custom C Code with Generated Code” on page 18-66

18 Working with Embedded MATLAB™ Coder

About Embedded MATLAB Coder

In this section...

“Converts M-code to C Code” on page 18-2
“Running a Demo of Embedded MATLAB Coder” on page 18-3
“How Embedded MATLAB Coder Resolves Function Calls” on page 18-4

Converts M-code to C Code
Embedded MATLAB Coder works with the Real-Time Workshop software
to automatically convert M-code to C code. With the Embedded MATLAB
Coder, you can:

Package generated C code as an executable, library, or MEX function

MEX-files are dynamically linked subroutines that the MATLAB interpreter
can automatically load and execute. For more information, see “Using
MEX-Files to Call C and Fortran Programs” in the MATLAB External
Interfaces documentation.

Verify that your M-code complies with the Embedded MATLAB syntax
and semantics.

For more information, see “Making M-Code Compliant with the Embedded
MATLAB Subset” on page 18-13.

Accelerate MATLAB code that uses Fixed-Point Toolbox functions.

The generated code contains optimizations that automatically accelerate
fixed-point arithmetic operations.

Generate C code from source-protected P-code

For more information, see eml.allowpcode in the Embedded MATLAB User’s
Guide.

18-2

About Embedded MATLAB™ Coder

Note For information about Embedded MATLAB language semantics and
syntax, see “Working with the Embedded MATLAB Subset” in the Embedded
MATLAB documentation.

Running a Demo of Embedded MATLAB Coder
The Real-Time Workshop product ships with a demo of how to generate
embeddable C code from M-code. The demo uses standard MATLAB library
functions to detect edges in an image. As part of the demo, you can compile,
run, and view the generated C code, and display the results.

If you have a Real-Time Workshop license, you can run the demo by following
these steps:

1 At the MATLAB prompt, type this command:

demos

The Help browser appears, listing categories of demos in the left pane.

2 In the left pane, navigate to Simulink > Real-Time
Workshop > Application Samples > Embeddable C-Code
Generation Using Embedded MATLAB Coder.

3 Follow the instructions in the right pane of the Help browser.

18-3

18 Working with Embedded MATLAB™ Coder

How Embedded MATLAB Coder Resolves Function
Calls
Embedded MATLAB Coder resolves function calls by first searching the
Embedded MATLAB path and then the MATLAB path. By default, Embedded
MATLAB Coder tries to compile and generate code for functions it finds on
the path unless you explicitly declare the function to be extrinsic. Embedded
MATLAB Coder does not compile extrinsic functions, but rather dispatches
them to the MATLAB interpreter for execution. For more information,
see “How the Embedded MATLAB Subset Resolves Function Calls” in the
Embedded MATLAB documentation.

To learn about calling MATLAB functions from Embedded MATLAB code, see
“Calling MATLAB Functions” in the Embedded MATLAB documentation.

18-4

Workflows for Converting M-Code to C Code

Workflows for Converting M-Code to C Code

In this section...

“Workflow for Converting M-Code to Embeddable C Code” on page 18-5
“Workflow for Converting M-Code to a C MEX Function” on page 18-6

Workflow for Converting M-Code to Embeddable C
Code
Follow these steps for converting your M-code to an embeddable C executable
or library:

Step Action Details

1 Install prerequisite products. See “Installing Prerequisite Products for
Embedded MATLAB Coder” on page 18-7.

2 Set up your C compiler. See “Setting Up the C Compiler” on page
18-8.

3 Set up your file infrastructure based
on compile search paths and naming
conventions.

See “File Paths and Naming Conventions”
on page 18-10.

4 Make your M-code compliant with the
Embedded MATLAB subset.

See “Making M-Code Compliant with the
Embedded MATLAB Subset” on page 18-13.

5 Configure your environment for code
generation.

See “Configuring Your Environment for
Code Generation” on page 18-16.

6 Specify properties of primary function
inputs.

See “Specifying Properties of Primary
Function Inputs” on page 18-22.

7 Choose your target. See “Choosing Your Target” on page 18-40.

18-5

18 Working with Embedded MATLAB™ Coder

Step Action Details

8 Run Embedded MATLAB Coder with the
appropriate command line options.

At a minimum, you must specify:

• -T rtw:exe to generate a C code
executable or -T rtw:lib to generate a
C code library

• A C file that contains the main function
to use for generating a C executable

See “Compiling Your M-File” on page 18-44.
9 Generate and interpret compilation reports. See “Working with Compilation Reports” on

page 18-53.
10 Modify your code as necessary to meet

special requirements for calling generated
C functions from your application.

See “Calling Generated C Functions” on
page 18-60.

Workflow for Converting M-Code to a C MEX Function
Follow these steps for converting your M-code to a C MEX function:

Step Action Details

1 Install prerequisite products. See “Installing Prerequisite Products for
Embedded MATLAB Coder” on page 18-7.

2 Set up your C compiler. See “Setting Up the C Compiler” on page
18-8.

3 Set up your file infrastructure based
on compile search paths and naming
conventions.

See “File Paths and Naming Conventions”
on page 18-10.

4 Make your M-code compliant with the
Embedded MATLAB subset.

See “Making M-Code Compliant with the
Embedded MATLAB Subset” on page 18-13.

5 Specify properties of primary function
inputs.

See “Specifying Properties of Primary
Function Inputs” on page 18-22.

6 Run Embedded MATLAB Coder with the
appropriate command-line options.

See “Compiling Your M-File” on page 18-44.

18-6

Installing Prerequisite Products for Embedded MATLAB™ Coder

Installing Prerequisite Products for Embedded MATLAB
Coder

Embedded MATLAB Coder ships with the Real-Time Workshop product. To
use Embedded MATLAB Coder, you must install the Real-Time Workshop
product and its prerequisite products:

• MATLAB

• Simulink

• C Compiler

For instructions on installing The MathWorks products, see the MATLAB
installation documentation for your platform. Enter the ver command in
the MATLAB Command Window to check what other MathWorks products
are installed.

For instructions on installing and setting up a C compiler, see “Setting Up
the C Compiler” on page 18-8.

18-7

18 Working with Embedded MATLAB™ Coder

Setting Up the C Compiler

In this section...

“How to Set Up Your C Compiler” on page 18-8
“Supported Compilers for Generating MEX Functions” on page 18-8
“Supported Compilers for Generating C Code” on page 18-8

How to Set Up Your C Compiler
Before using Embedded MATLAB Coder, you must set up your C compiler
by running the mex -setup command, as described in the documentation for
mex in the MATLAB Function Reference. You must run this command even
if you use the default C compiler that comes with the MATLAB product for
Microsoft Windows platforms. You can also use mex to choose and configure a
different C compiler, as described in “Building MEX-Files” in the MATLAB
External Interfaces documentation.

Supported Compilers for Generating MEX Functions
Embedded MATLAB Coder supports the following MEX compilers:

• Lcc-win32 C 2.4.1

• Microsoft Visual C++ 2008 Express

• Microsoft Visual C++ 2005

• Microsoft Visual C++ .NET 2003

• Microsoft Visual C++ 6.0

• Open WATCOM C++ 1.7

Supported Compilers for Generating C Code
For generating C code, Embedded MATLAB Coder supports the same
C compilers as Simulink supports for code generation with Real-Time
Workshop. For a list of these compilers:

1 Navigate to the Supported and Compatible Compilers Web site.

18-8

http://www.mathworks.com/support/compilers/current_release

Setting Up the C Compiler

2 Select your platform.

3 In the table for Simulink and related products, find the compilers checked
in the column titled Real-Time Workshop.

18-9

18 Working with Embedded MATLAB™ Coder

File Paths and Naming Conventions

In this section...

“Compile Path Search Order” on page 18-10
“Can I Add Files to the Embedded MATLAB Path?” on page 18-10
“When to Use the Embedded MATLAB Path” on page 18-10
“Adding Directories to Search Paths” on page 18-11
“Naming Conventions” on page 18-11

Compile Path Search Order
Embedded MATLAB Coder resolves M-functions by searching first on the
Embedded MATLAB path and then on the MATLAB path. See “How the
Embedded MATLAB Subset Resolves Function Calls” in the Embedded
MATLAB documentation.

Can I Add Files to the Embedded MATLAB Path?
With Embedded MATLAB Coder, you can prepend directories and files to the
Embedded MATLAB path, as described in “Adding Directories to Search
Paths” on page 18-11. By default, the Embedded MATLAB path contains the
current directory and the Embedded MATLAB libraries.

When to Use the Embedded MATLAB Path
Use the Embedded MATLAB path to override a MATLAB function with
a customized version. Because Embedded MATLAB Coder searches the
Embedded MATLAB path first, an M-file on the Embedded MATLAB path
always shadows an M-file of the same name on the MATLAB path. To
override a MATLAB function with a version implemented in Embedded
MATLAB libraries, follow these steps:

1 Create each version of the M-function in identically-named M-files.

2 Add the MATLAB version of the function to the MATLAB path.

18-10

File Paths and Naming Conventions

3 Add the Embedded MATLAB version of the function to the Embedded
MATLAB path.

See “Adding Directories to Search Paths” on page 18-11.

Adding Directories to Search Paths
The following table explains how to add directories to search paths:

To add directories
to:

Do this:

Embedded MATLAB
path

Prepend directories to the Embedded MATLAB path
using the compiler option -I. See “-I Add Directories
to Embedded MATLAB Path” using emlc in the
Real-Time Workshop Function Reference.

MATLAB path Follow the instructions in “Adding a Directory to
the Search Path” in the MATLAB Programming
Fundamentals documentation.

Naming Conventions
Embedded MATLAB Coder enforces naming conventions for M-functions and
generated files.

• “Reserved Prefixes” on page 18-11

• “Conventions for Naming Generated files” on page 18-12

Reserved Prefixes
Embedded MATLAB Coder reserves the prefix eml for global C functions
and variables in generated code. For example, Embedded MATLAB
runtime library function names all begin with the prefix emlrt, such as
emlrtCallMATLAB. To avoid naming conflicts, do not name C functions or
primary M-functions with the prefix eml.

18-11

18 Working with Embedded MATLAB™ Coder

Conventions for Naming Generated files
The following table describes how Embedded MATLAB Coder names
generated files. Embedded MATLAB Coder follows MATLAB conventions by
providing platform-specific extensions for C MEX files.

Platform MEX File
Extension

Real-Time
Workshop
Library
Extension

Real-Time
Workshop
Executable
Extension

Linus Torvalds’
Linux (32-bit)

.mexglx .a None

Linux x86-64 .mexa64 .a None
Microsoft
Windows (32-bit)

.mexw32 .lib .exe

Windows x64 .mexw64 .lib .exe

18-12

Making M-Code Compliant with the Embedded MATLAB™ Subset

Making M-Code Compliant with the Embedded MATLAB
Subset

In this section...

“Debugging Strategies” on page 18-13
“Detecting Embedded MATLAB Syntax Violations at Compile Time” on
page 18-15

Debugging Strategies
Before you perform code verification, The MathWorks recommends that you
choose a debugging strategy for detecting and correcting noncompliant code
in your MATLAB applications, especially if they consist of a large number of
M-files that call each other’s functions. Here are two best practices:

18-13

18 Working with Embedded MATLAB™ Coder

Debugging
Strategy

What to Do Pros Cons

Bottom-up
verification 1 Verify that your

lowest-level (leaf)
functions are compliant.

2 Work your way up
the function hierarchy
incrementally to compile
and verify each function,
ending with the top-level
function.

• Efficient

• Safe

• Easy to isolate
Embedded
MATLAB syntax
violations

Requires application tests
that work from the bottom up

Top-down
verification 1 Declare all functions

called by the top-level
function to be extrinsic
so Embedded MATLAB
Coder does not compile
them (see “Declaring
MATLAB Functions as
Extrinsic Functions” in
the Embedded MATLAB
documentation).

2 Verify that your top-level
function is compliant.

3 Work your way down
the function hierarchy
incrementally by
removing extrinsic
declarations one by one to
compile and verify each
function, ending with the
leaf functions.

Lets you retain
your top-level tests

Introduces extraneous code
that you must remove after
code verification, including:
• Extrinsic declarations

• Additional assignment
statements as necessary
to convert opaque values
returned by extrinsic
functions to nonopaque
values (see “Working
with mxArrays” in the
Embedded MATLAB
documentation)

18-14

Making M-Code Compliant with the Embedded MATLAB™ Subset

Detecting Embedded MATLAB Syntax Violations at
Compile Time
Before you can successfully convert an M-file to C code, you must verify that
your M-code complies with Embedded MATLAB syntax and semantics, as
defined in “Working with the Embedded MATLAB Subset”.

Embedded MATLAB Coder checks for all potential Embedded MATLAB
syntax violations at compile time. When Embedded MATLAB Coder detects
errors or warnings, it automatically generates a compilation report that
describes the issues and provides links to the offending M-code. See “Working
with Compilation Reports” on page 18-53.

If your M-code calls functions on the MATLAB path, Embedded MATLAB
Coder attempts to compile these functions unless you declare them to be
extrinsic (see “How the Embedded MATLAB Subset Resolves Function Calls”
in the Embedded MATLAB documentation). To get detailed diagnostics,
add the %#eml compiler directive to each external function that you
want Embedded MATLAB Coder to compile, as described in “Adding the
Compilation Directive %#eml” in the Embedded MATLAB documentation.

18-15

18 Working with Embedded MATLAB™ Coder

Configuring Your Environment for Code Generation

In this section...

“Types of Configuration Objects” on page 18-16
“Working with Configuration Objects” on page 18-17
“Creating Configuration Objects” on page 18-18
“Modifying Configuration Objects” on page 18-19
“Saving Configuration Objects” on page 18-20

Types of Configuration Objects
Embedded MATLAB Coder provides configuration objects for customizing
your environment for code generation. You can create the following
configuration objects:

Configuration Object Description Default Target Parameter
Reference

emlcoder.MEXConfig Specifies
parameters for
C MEX code
generation (for
C MEX builds
only)

See “Automatic C
MEX Generation
Dialog Box
for Embedded
MATLAB Coder”
in the Real-Time
Workshop
Reference
documentation.

emlcoder.CompilerOptions Specifies
parameters
for fine-tuning
compilation.

mex

(generates C MEX
code unless you
specify a different
target)

See “Compiler
Options Dialog
Box” in the
Embedded
MATLAB
documentation.

18-16

Configuring Your Environment for Code Generation

Configuration Object Description Default Target Parameter
Reference

emlcoder.RTWConfig Specifies
parameters for
embeddable C
code generation
(for Real-Time
Workshop builds
only).

See “Real-Time
Workshop Dialog
Box for Embedded
MATLAB Coder”
in the Real-Time
Workshop
Reference
documentation.

emlcoder.Hardware-
Implementation

Specifies
parameters
of the target
hardware
implementation
(for Real-Time
Workshop
builds only). If
not specified,
Embedded
MATLAB Coder
generates
code that is
compatible with
the MATLAB
host computer.

rtw:lib

(generates an
embeddable C
library unless you
specify a different
target)

See “Hardware
Implementation
Dialog Box
for Embedded
MATLAB Coder”
in the Real-Time
Workshop
Reference
documentation.

For more information about the association between configuration objects and
targets, see “Choosing Your Target” on page 18-40.

Working with Configuration Objects
To use configuration objects to customize your environment for code
generation, follow these steps:

1 Define configuration object variables in the MATLAB workspace, as
described in “Creating Configuration Objects” on page 18-18.

18-17

18 Working with Embedded MATLAB™ Coder

For example, the following command defines a Real-Time Workshop
configuration object variable called rtwcfg:

rtwcfg = emlcoder.RTWConfig

2 Modify the parameters of the configuration object as necessary, using one
of these methods:

• Interactive commands, as described in “Modifying Configuration Objects
at the Command Line Using Dot Notation” on page 18-19

• Graphical user interface, as described in “Modifying Configuration
Objects Using Dialog Boxes” on page 18-20

3 Invoke Embedded MATLAB Coder with the -s option and specify the
configuration object as its argument.

The -s option instructs Embedded MATLAB Coder to generate code for
the target, based on the configuration property values. In the following
example, Embedded MATLAB Coder generates a C code library from an
M-file myMfile.m, based on the parameters of a Real-Time Workshop
configuration object rtwcfg defined in the first step:

emlc -T rtw:lib -s rtwcfg myMfile

Note that the -T option specifies the type of target you want to build — in
this case, a library of embeddable C code. For more information about
invoking Embedded MATLAB Coder, see emlc in the Real-Time Workshop
Function Reference.

Creating Configuration Objects
You can define a configuration object in the MATLAB workspace, as follows:

To Create: Use a Constructor Command
Like This

C MEX configuration object mexcfg = emlcoder.MEXConfig

Real-Time Workshop configuration
object for generating embeddable C
code

rtwcfg = emlcoder.RTWConfig

18-18

Configuring Your Environment for Code Generation

To Create: Use a Constructor Command
Like This

Hardware implementation
configuration object

hwcfg =
emlcoder.HardwareImplementation

Compiler options configuration
object

cocfg =
emlcoder.CompilerOptions

Each configuration object comes with a set of parameters, initialized to
default values (see “Embedded MATLAB Coder Configuration Parameters” in
the Real-Time Workshop Reference documentation). You can change these
settings as described in “Modifying Configuration Objects” on page 18-19.

Modifying Configuration Objects
There are two ways to modify the values of configuration objects for Embedded
MATLAB Coder.

• “Modifying Configuration Objects at the Command Line Using Dot
Notation” on page 18-19

• “Modifying Configuration Objects Using Dialog Boxes” on page 18-20

Modifying Configuration Objects at the Command Line Using
Dot Notation
You can use dot notation to modify the value of one configuration object
parameter at a time, using this syntax:

configuration_object.property = value

Dot notation uses assignment statements to modify configuration object
properties:

• To specify a main function during C code generation, enter this code at
the command line:

rtwcfg = emlcoder.RTWConfig
rtwcfg.CustomInclude = 'c:\myfiles';
rtwcfg.CustomSource = 'main.c';
emlc -T rtw:exe -s rtwcfg myFun

18-19

18 Working with Embedded MATLAB™ Coder

• To automatically generate and launch HTML reports after generating a
C library, enter this code:

rtwcfg = emlcoder.RTWConfig
rtwcfg.GenerateReport= true
rtwcfg.LaunchReport = true
emlc -T rtw:lib -s rtwcfg myFun

Modifying Configuration Objects Using Dialog Boxes
Besides using commands, you can modify code generation parameters using
dialog boxes. To learn how to work with these dialog boxes, see “Embedded
MATLAB Coder Configuration Parameters” in the Real-Time Workshop
Reference documentation.

Saving Configuration Objects
Configuration objects do not automatically persist between MATLAB sessions,
but there are two ways to preserve your settings:

Save a configuration object to a MAT-file and then load the MAT-file
at your next session

For example, assume you create and customize a C MEX configuration object
mexcfg in the MATLAB workspace. To save the configuration object, type this
command at the MATLAB prompt:

save mexcfg.mat mexcfg

The save command saves mexcfg to the file mexcfg.mat in the current
directory.

To restore mexcfg in a new MATLAB session, type this command at the
MATLAB prompt:

load mexcfg.mat

The load command loads the objects defined in mexcfg.mat to the MATLAB
workspace.

18-20

Configuring Your Environment for Code Generation

Write a script that creates the configuration object and sets its
properties.

You can rerun the script whenever you need to use the configuration object
again.

18-21

18 Working with Embedded MATLAB™ Coder

Specifying Properties of Primary Function Inputs

In this section...

“Why You Must Specify Input Properties” on page 18-22
“Properties to Specify” on page 18-22
“Rules for Specifying Properties of Primary Inputs” on page 18-26
“Methods for Defining Properties of Primary Inputs” on page 18-26
“Defining Input Properties by Example at the Command Line” on page 18-27
“Defining Input Properties Programmatically in the M-File” on page 18-30

Why You Must Specify Input Properties
Because C is a statically typed language, Embedded MATLAB Coder must
determine the properties of all variables in the M-files at compile time. To
infer variable properties in M-files, Embedded MATLAB Coder must be able
to identify the properties of the inputs to the primary function, also known
as the top-level or entry-point function. Therefore, if your primary function
has inputs, you must specify the properties of these inputs, also called
preconditions, to Embedded MATLAB Coder. If your primary function has no
input parameters, Embedded MATLAB Coder can compile your M-file without
modification. You do not need to specify properties of inputs to subfunctions
or external functions called by the primary function.

Properties to Specify
If your primary function has inputs, you must specify the following properties
for each input:

For: Specify Properties:

Class Size Complexity numerictype fimath
Fixed-point
inputs

18-22

Specifying Properties of Primary Function Inputs

For: Specify Properties:

Each field in
a structure
input

Specify properties for each field according to its class

When a primary input is a structure, Embedded MATLAB Coder treats each
field as a separate input. Therefore, you must specify properties for all fields
of a primary structure input in the order that they appear in the structure
definition, as follows:

• For each field of input structures, specify class, size, and complexity.

• For each field that is fixed-point class, also specify numerictype, and fimath.
All other
inputs

Default Property Values
Embedded MATLAB Coder assigns the following default values for properties
of primary function inputs:

Property Default

class double

size scalar

complexity real

numerictype No default
fimath MATLAB default fimath object

Specifying Default Values for Structure Fields. In most cases, Embedded
MATLAB Coder uses defaults when you don’t explicitly specify values for
properties — except for structure fields. The only way to name a field in a
structure is to set at least one of its properties. Therefore, you may need to
specify default values for properties of structure fields. For examples, see
“Example: Specifying Class and Size of Scalar Structure” on page 18-37 and
“Example: Specifying Class and Size of Structure Array” on page 18-38.

18-23

18 Working with Embedded MATLAB™ Coder

Specifying Default fimath Values for MEX Functions. MEX functions
generated with Embedded MATLAB Coder use the default fimath value
in effect at compile time. You can set the default fimath value explicitly
for functions that use fixed-point data by specifying the “-F Specify Default
fimath” option with the emlc command. If you do not specify a default fimath
value on the command line, Embedded MATLAB Coder uses the MATLAB
default fimath.

When running MEX functions that depend on the MATLAB default fimath
value, do not change this value during your MATLAB session. Otherwise, you
receive a runtime error, alerting you to a mismatch between the compile-time
and runtime fimath values.

For example, suppose you define the following M-function test:

function y = test %#eml
y = fi(0);

The function test constructs a fi object without explicitly specifying a
fimath object. Therefore, test will rely on the default fimath object in effect
at compile time. At the MATLAB prompt, generate the MEX function textx
to use the factory setting of the MATLAB default fimath:

resetdefaultfimath;
emlc -o testx test

Next, run testx to display the MATLAB default fimath value:

testx

ans =

0

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 15

RoundMode: nearest
OverflowMode: saturate

18-24

Specifying Properties of Primary Function Inputs

ProductMode: FullPrecision
MaxProductWordLength: 128

SumMode: FullPrecision
MaxSumWordLength: 128

CastBeforeSum: true

Now modify the MATLAB default fimath value so it no longer matches the
factory setting used at compile time:

setdefaultfimath(fimath('RoundMode','floor'));

Finally, clear the MEX function from memory and rerun it:

clear testx
testx

The mismatch is detected and causes an error:

??? Error using ==> testx
This function was compiled with a different default fimath than the curre

Supported Classes
The following table presents the class names supported by Embedded
MATLAB Coder:

Class Name Description

logical Logical array of true and false values
char Character array
int8 8-bit signed integer array
uint8 8-bit unsigned integer array
int16 16-bit signed integer array
uint16 16-bit unsigned integer array
int32 32-bit signed integer array
uint32 32-bit unsigned integer array
single Single-precision floating-point or

fixed-point number array

18-25

18 Working with Embedded MATLAB™ Coder

Class Name Description

double Double-precision floating-point or
fixed-point number array

struct Structure array
embedded.fi Fixed-point number array

Rules for Specifying Properties of Primary Inputs
Follow these rules when specifying the properties of primary inputs:

• For each primary function input whose class is fixed point (fi), you must
specify the input’s numerictype and fimath properties.

• For each primary function input whose class is struct, you must specify
the properties of each of its fields in the order that they appear in the
structure definition.

Methods for Defining Properties of Primary Inputs
Use one of the following methods to define the properties of primary function
inputs:

18-26

Specifying Properties of Primary Function Inputs

Method Pros Cons

“Defining Input
Properties by
Example at the
Command Line” on
page 18-27

• Easy to use

• Does not alter original M-code

• Designed for prototyping a
function that has a small
number of primary inputs

• Must be specified at the
command line every time you
invoke Embedded MATLAB
Coder (unless you use a script)

• Not efficient for specifying
memory-intensive inputs such
as large structures and arrays

“Defining Input
Properties
Programmatically
in the M-File” on page
18-30

• Integrated with M-code so you do
not need to redefine properties
each time you invoke Embedded
MATLAB Coder

• Provides documentation of
property specifications in the
M-code

• Efficient for specifying
memory-intensive inputs
such as large structures

• Uses complex syntax

Note To specify the properties of inputs for any given primary function, use
one of these methods, but not both.

Defining Input Properties by Example at the
Command Line

• “Command Line Option -eg” on page 18-28

• “Rules for Using the -eg Option” on page 18-28

• “Specifying Constant Inputs Using the -eg Option” on page 18-28

• “Example: Specifying Properties of Primary Inputs by Example” on page
18-28

• “Example: Specifying Properties of Primary Fixed-Point Inputs by
Example” on page 18-29

18-27

18 Working with Embedded MATLAB™ Coder

Command Line Option -eg
The command that invokes Embedded MATLAB Coder — emlc — provides
a command-line option -eg for specifying the properties of primary function
inputs as a cell array of example values. The cell array can be a variable or
literal array of constant values. Using this option, you specify the properties
of inputs at the same time as you compile the M-file with Embedded MATLAB
Coder.

See “-eg Specify Input Properties by Example” for emlc in the Real-Time
Workshop Function Reference.

Rules for Using the -eg Option
Follow these rules when using the -eg command-line option to define
properties by example:

• The cell array of sample values must contain the same number of elements
as primary function inputs.

• The order of elements in the cell array must correspond to the order in
which inputs appear in the primary function signature — for example, the
first element in the cell array defines the properties of the first primary
function input.

Specifying Constant Inputs Using the -eg Option
You can define inputs to be constants using the-eg option with emlc in the
same way as you can with emlmex. See “Specifying Constant Inputs” in the
Embedded MATLAB User’s Guide.

Example: Specifying Properties of Primary Inputs by Example
Consider an M-function that adds its two inputs:

%#eml
function y = emcf(u,v)
y = u + v;

The following examples show how to specify different properties of the
primary inputs u and v by example at the command line:

18-28

Specifying Properties of Primary Function Inputs

• Use a literal cell array of constants to specify that both inputs are real
scalar doubles:

emlc -o emcfx emcf -eg {0,0}

• Use a literal cell array of constants to specify that input u is an unsigned
16-bit, 1-by-4 vector and input v is a scalar double:

emlc -o emcfx emcf -eg {zeros(1,4,'uint16'),0}

• Assign sample values to a cell array variable to specify that both inputs are
real, unsigned 8-bit integer vectors:

a = uint8([1;2;3;4])
b = uint8([5;6;7;8])
ex = {a,b}
emlc -o emcfx emcf -eg ex

Example: Specifying Properties of Primary Fixed-Point Inputs
by Example
Consider an M-function that calculates the square root of a fixed-point
number:

%#eml
function y = sqrtfi(x)
y = sqrt(x);

To specify the properties of the primary fixed-point input x by example on the
MATLAB command line, follow these steps:

1 Define the numerictype properties for x, as in this example:

T = numerictype('WordLength',32,
'FractionLength',23,
'Signed',true);

2 Define the fimath properties for x, as in this example:

F = fimath('SumMode','SpecifyPrecision',
'SumWordLength',32,
'SumFractionLength',23,

18-29

18 Working with Embedded MATLAB™ Coder

'ProductMode','SpecifyPrecision',
'ProductWordLength',32,
'ProductFractionLength',23);

3 Create a fixed-point variable with the numerictype and fimath properties
you just defined, as in this example:

myeg = { fi(4.0,T,F) };

4 Compile the function sqrtfi using the emlc command, passing the variable
myeg as the argument to the -eg option, as in this example:

emlc sqrtfi -eg myeg;

Defining Input Properties Programmatically in the
M-File
Embedded MATLAB Coder lets you use the MATLAB assert function to
define properties of primary function inputs directly in your M-file.

• “How to Use assert with Embedded MATLAB Coder” on page 18-30

• “Rules for Using assert Function” on page 18-35

• “Example: Specifying General Properties of Primary Inputs” on page 18-36

• “Example: Specifying Properties of Primary Fixed-Point Inputs” on page
18-37

• “Example: Specifying Class and Size of Scalar Structure” on page 18-37

• “Example: Specifying Class and Size of Structure Array” on page 18-38

How to Use assert with Embedded MATLAB Coder
Use the assert function to invoke standard MATLAB functions for specifying
the class, size, and complexity of primary function inputs.

• “Specify Any Class” on page 18-31

• “Specify fi Class” on page 18-31

• “Specify Structure Class” on page 18-32

• “Specify Any Size” on page 18-32

18-30

Specifying Properties of Primary Function Inputs

• “Specify Scalar Size” on page 18-33

• “Specify Real Input” on page 18-33

• “Specify Complex Input” on page 18-33

• “Specify numerictype of Fixed-Point Input” on page 18-34

• “Specify fimath of Fixed-Point Input” on page 18-34

• “Specify Multiple Properties of Input” on page 18-35

Specify Any Class.

assert (isa (param, 'class_name'))

Sets the input parameter param to the MATLAB class class_name. For
example, to set the class of input U to a 32-bit signed integer, call:

...
assert(isa(U,'int32'));
...

Note If you set the class of an input parameter to fi, you must also set its
numerictype and fimath properties (see “Specify numerictype of Fixed-Point
Input” on page 18-34 and “Specify fimath of Fixed-Point Input” on page 18-34.

If you set the class of an input parameter to struct, you must specify the
properties of all fields in the order that they appear in the structure definition.

Specify fi Class.

assert (isfi (param))
assert (isa (param, 'embedded.fi'))

Sets the input parameter param to the MATLAB class fi (fixed-point numeric
object). For example, to set the class of input U to fi, call:

...
assert(isfi(U));
...

18-31

18 Working with Embedded MATLAB™ Coder

or

...
assert(isa(U,'embedded.fi'));
...

Note If you set the class of an input parameter to fi, you must also set its
numerictype and fimath properties (see “Specify numerictype of Fixed-Point
Input” on page 18-34 and “Specify fimath of Fixed-Point Input” on page 18-34).

If you set the class of an input parameter to struct, you must specify the
properties of all fields in the order they appear in the structure definition.

Specify Structure Class.

assert (isstruct (param))
assert (isa (param, 'struct'))

Sets the input parameter param to the MATLAB class struct (structure). For
example, to set the class of input U to a struct, call:

...
assert(isstruct(U));
...

or

...
assert(isa(U, 'struct'));
...

Note If you set the class of an input parameter to struct, you must specify
the properties of all fields in the order they appear in the structure definition.

Specify Any Size.

assert (all (size (param == [dims]))

18-32

Specifying Properties of Primary Function Inputs

Sets the input parameter param to the size specified by dimensions dims. For
example, to set the size of input U to a 3-by-2 matrix, call:

...
assert(all(size(U)== [3 2]));
...

Specify Scalar Size.

assert (isscalar (param))
assert (all (size (param == [1]))

Sets the size of input parameter param to scalar. For example, to set the
size of input U to scalar, call:

...
assert(isscalar(U));
...

or

...
assert(all(size(U)== [1]));
...

Specify Real Input.

assert (isreal (param))

Specifies that the input parameter param is real. For example, to specify
that input U is real, call:

...
assert(isreal(U));
...

Specify Complex Input.

assert (~isreal (param))

Specifies that the input parameter param is complex. For example, to specify
that input U is complex, call:

18-33

18 Working with Embedded MATLAB™ Coder

...
assert(~isreal(U));
...

Specify numerictype of Fixed-Point Input.

assert (isequal (numerictype (fiparam), T))

Sets the numerictype properties of fi input parameter fiparam to the
numerictype object T. For example, to specify the numerictype property of
fixed-point input U as a signed numerictype object T with 32-bit word length
and 30-bit fraction length, use the following code:

%#eml
...
% Define the numerictype object.
T = numerictype(1, 32, 30);

% Set the numerictype property of input U to T.
assert(isequal(numerictype(U),T));
...

Specify fimath of Fixed-Point Input.

assert (isequal (fimath (fiparam), F))

Sets the fimath properties of fi input parameter fiparam to the fimath
object F. For example, to specify the fimath property of fixed-point input U so
that it saturates on integer overflow, use the following code:

%#eml
...
% Define the fimath object.
F = fimath('OverflowMode','saturate');

% Set the fimath property of input U to F.
assert(isequal(fimath(U),F));
...

18-34

Specifying Properties of Primary Function Inputs

Specify Multiple Properties of Input.

assert (function1 (params) &&
function2 (params) &&
function3 (params) && ...)

Specifies the class, size, and complexity of one or more inputs using a single
assert function call. For example, the following code specifies that input U is
a double, complex, 3-by-3 matrix, and input V is a 16-bit unsigned integer:

%#eml
...
assert(isa(U,'double') &&

~isreal(U) &&
all(size(U) == [3 3]) &&
isa(V,'uint16'));

...

Rules for Using assert Function
Follow these rules when using the assert function to specify the properties
of primary function inputs:

• Call assert functions at the beginning of the primary function, before any
control-flow operations such as if statements or subroutine calls.

• Do not call assert functions inside conditional constructs, such as if, for,
while, and switch statements.

• Use the assert function with Embedded MATLAB Coder only for
specifying properties of primary function inputs before converting your
M-code to C code.

• If you set the class of an input parameter to fi, you must also set
its numerictype and fimath properties (see “Specify numerictype of
Fixed-Point Input” on page 18-34 and “Specify fimath of Fixed-Point Input”
on page 18-34).

• If you set the class of an input parameter to struct, you must specify the
class, size, and complexity of all fields in the order they appear in the
structure definition.

18-35

18 Working with Embedded MATLAB™ Coder

Example: Specifying General Properties of Primary Inputs
In the following code excerpt, a primary MATLAB function emcspecgram
takes two inputs: pennywhistle and win. The code specifies the following
properties for these inputs:

Input Property Value

class int16

size 220500-by-1 vector

pennywhistle

complexity real (by default)
class double (by default)
size 1024-by-1 vector

win

complexity real (by default)

%#eml
function y = emcspecgram(pennywhistle,win)
nx = 220500;
nfft = 1024;
assert(isa(pennywhistle,'int16'));
assert(all(size(pennywhistle) == [nx 1]));
assert(isa(win, 'double'));
assert(all(size(win) == [nfft 1]));
...

Alternatively, you can combine property specifications for one or more inputs
inside assert commands, as follows:

%#eml

function y = emcspecgram(pennywhistle,win)

nx = 220500;

nfft = 1024;

assert(isa(pennywhistle,'int16') && all(size(pennywhistle) == [nx 1]));

assert(isa(win, 'double') && all(size(win) == [nfft 1]));

...

18-36

Specifying Properties of Primary Function Inputs

Example: Specifying Properties of Primary Fixed-Point Inputs
In the following example, the primary MATLAB function emcsqrtfi takes one
fixed-point input: x. The code specifies the following properties for this input:

Property Value

class fi

numerictype numerictype object T, as specified in the
primary function

fimath fimath object F, as specified in the primary
function

size scalar (by default)
complexity real (by default)

%#eml
function y = emcsqrtfi(x)
T = numerictype('WordLength',32,'FractionLength',23,

'Signed',true);
F = fimath('SumMode','SpecifyPrecision',

'SumWordLength',32,'SumFractionLength',23,
'ProductMode','SpecifyPrecision',
'ProductWordLength',32,'ProductFractionLength',23);

assert(isfi(x));
assert(isequal(numerictype(x),T));
assert(isequal(fimath(x),F));

y = sqrt(x);

Example: Specifying Class and Size of Scalar Structure
Assume you have defined S as the following scalar MATLAB structure:

S = struct('r',double(1),'i',int8(4));

Here is code that specifies the class and size of S and its fields when passed as
an input to your M-function:

%#eml
function y = fcn(S)

18-37

18 Working with Embedded MATLAB™ Coder

% Specify the class of the input as struct.
assert(isstruct(S));

% Specify the class and size of the fields r and i
% in the order in which you defined them.
assert(isa(S.r,'double'));
assert(isa(S.i,'int8');
...

Note In most cases, Embedded MATLAB Coder uses defaults when you
don’t explicitly specify values for properties — except for structure fields. The
only way to name a field in a structure is to set at least one of its properties.
Therefore in the example above, an assert function specifies that field S.r is
of type double, even though double is the default.

Example: Specifying Class and Size of Structure Array
For structure arrays, you must choose a representative element of the array
for specifying the properties of each field. For example, assume you have
defined S as the following 2-by-2 array of MATLAB structures:

S = struct('r',{double(1), double(2)},'i',{int8(4), int8(5)});

The following code specifies the class and size of each field of structure input S
using the first element of the array:

%#eml
function y = fcn(S)

% Specify the class of the input S as struct.
assert(isstruct(S));

% Specify the size of the fields r and i
% based on the first element of the array.
assert(all(size(S) == [2 2]));
assert(isa(S(1).r,'double'));
assert(isa(S(1).i,'int8'));

18-38

Specifying Properties of Primary Function Inputs

Note In most cases, Embedded MATLAB Coder uses defaults when you
don’t explicitly specify values for properties — except for structure fields. The
only way to name a field in a structure is to set at least one of its properties.
Therefore in the example above, an assert function specifies that field S(1).r
is of type double, even though double is the default.

18-39

18 Working with Embedded MATLAB™ Coder

Choosing Your Target

In this section...

“Types of Targets” on page 18-40
“Specifying the Target to the Compiler” on page 18-41
“Relationship of Targets and Configuration Objects” on page 18-41
“Location of Generated Files” on page 18-42
“Specifying main Functions for C Executables” on page 18-42

Types of Targets
Before compiling your M-file with Embedded MATLAB Coder, you must
choose the appropriate target for code generation. Embedded MATLAB Coder
provides reserved words that represent each possible target.

To Generate: Use Target Reserved Word:

C MEX function mex
(the default)

Embeddable C code and compile it to an executable

Note When you choose this target, you must
provide a C file that contains the main function
for generating the executable, as described in
“Specifying main Functions for C Executables” on
page 18-42.

rtw:exe

Embeddable C code and compile it to a library rtw:lib
or
rtw

18-40

Choosing Your Target

Specifying the Target to the Compiler
After choosing your target, invoke Embedded MATLAB Coder with the
-T option and pass the appropriate reserved word as its argument (see “-T
Specify Target” for emlc in the Real-Time Workshop Reference). For example,
suppose you have a primary function called MyFcn. The following table shows
how to specify different targets when compiling MyFcn:

To Generate: Use This Command:

C MEX function emlc -T mex MyFcn
or
emlc MyFcn
(translates M-function to C MEX function by default)

Embeddable C code and compile
it to an executable rtwcfg = emlcoder.RTWConfig;

rtwcfg.CustomSource = 'main.c';
rtwcfg.CustomInclude = 'c:\myfiles';
emlc -T rtw:exe -s rtwcfg MyFcn

Note You must specify a main function for generating an
embeddable C executable. See “Specifying main Functions for
C Executables” on page 18-42.

Embeddable C code and compile
it to a library

emlc -T rtw:lib MyFcn
or
emlc -T rtw MyFcn

Relationship of Targets and Configuration Objects
There is a relationship between targets and configuration objects.
For example, there is a Real-Time Workshop configuration object,
emlcoder.RTWConfig, that allows you to define properties for the rtw:lib
and rtw:exe targets, that is, for generating embeddable code as a C library or
executable. The best practice is to match your configuration object with your
target when you invoke Embedded MATLAB Coder, as in this example:

rtwcfg = emlcoder.RTWConfig;
emlc -T rtw:lib -s rtwcfg myMFcn

18-41

18 Working with Embedded MATLAB™ Coder

However, if you do not specify a target, but do provide a configuration object,
Embedded MATLAB Coder determines the target from the configuration
object. For example, consider these sample commands:

rtwcfg = emlcoder.RTWConfig;
emlc -s rtwcfg myMFcn

Normally, when you do not specify a target explicitly, Embedded MATLAB
Coder assumes the default target, mex, and generates C MEX code. However
in this case, Embedded MATLAB Coder assumes the desired target is
rtw:lib, based on the configuration object rtwcfg, and therefore, generates
embeddable C code as a library instead of generating C MEX code.

For more information about configuration objects, see “Configuring Your
Environment for Code Generation” on page 18-16. For more information
about invoking Embedded MATLAB Coder, see “Compiling Your M-File” on
page 18-44.

Location of Generated Files
By default, Embedded MATLAB Coder generates files in output directories
based on your target. See “Generated Files and Locations” on page 18-49.

Specifying main Functions for C Executables
When you choose rtw:exe as your target, you must provide a C file that
contains the main function for generating your C executable. You can
specify the C file by using the CustomSource and CustomInclude properties
of the Real-Time Workshop configuration object (see “Configuring Your
Environment for Code Generation” on page 18-16). The CustomInclude
property indicates the location of C files specified by CustomSource.

To specify a main function for a C executable, follow these steps:

1 Create a Real-Time Workshop configuration object, as in this command:

rtwcfg = emlcoder.RTWConfig;

2 Set the CustomSource property to the name of the C source file that
contains the main function, as in this command:

18-42

Choosing Your Target

rtwcfg.CustomSource = 'main.c';

3 Set the CustomInclude property to the location of main.c, as in this
command:

rtwcfg.CustomInclude = 'c:\myfiles';

4 Generate the C executable using the appropriate command line options, as
in this example:

emlc -T rtw:exe -s rtwcfg myMFunction

Embedded MATLAB Coder compiles and links main.c with the C code
it generates from myMFunction.m.

18-43

18 Working with Embedded MATLAB™ Coder

Compiling Your M-File

In this section...

“Before Compiling Your M-Code” on page 18-44
“Running Embedded MATLAB Coder” on page 18-44
“Specifying Compiler Options” on page 18-45
“Specifying Custom Files to Build” on page 18-45

Before Compiling Your M-Code
Before compiling M-code, make sure you have followed the prerequisite steps
in “Workflows for Converting M-Code to C Code” on page 18-5 or “Workflow
for Converting M-Code to a C MEX Function” on page 18-6.

Running Embedded MATLAB Coder
You run Embedded MATLAB Coder from the MATLAB command prompt by
using the emlc function. The basic command is:

emlc M_fcn

By default, emlc performs the following actions:

• Searches for the function M_fcn stored in the file M_fcn.m as specified in
“Compile Path Search Order” on page 18-10.

• Compiles M_fcn, checking for compliance with Embedded MATLAB subset.

• If there are no errors or warnings, generates a platform-specific C MEX
file in the current directory, using the naming conventions described in
“Naming Conventions” on page 18-11.

• If there are errors, does not generate a C MEX file, but produces an error
report in a default output directory, as described in “Generated Files and
Locations” on page 18-49. Error reports are described in “Working with
Compilation Reports” on page 18-53.

• If there are warnings, but no errors, generates a platform-specific C MEX
file in the current directory, but does report the warnings.

18-44

Compiling Your M-File

Specifying Compiler Options
You can modify this default behavior by specifying one or more compiler
options with emlc, separated by spaces on the command line. For example, to
generate a C code executable you must specify the target rtw:exe and the
location of a main function, as in this example:

emlc -T rtw:exe C:\custom\myMain.c M_fcn

For a complete list of compiler options and how to use them, see emlc in the
Real-Time Workshop Function Reference.

Specifying Custom Files to Build
In addition to your M-file, you can specify the following types of custom files to
include in the build for embeddable C code generation:

File Extension Description

.c Custom C file

.h Custom header file

.o , .obj Custom object file

.a , .lib, .so Library

.tmf Template makefile for custom
Real-Time Workshop buildsSee
“Template Makefiles and Tokens” in
the Real-Time Workshop Embedded
Coder Developing Embedded Targets
documentation.

18-45

18 Working with Embedded MATLAB™ Coder

How emlc Generates Code

In this section...

“Partitioning Generated Files for Readability” on page 18-46
“How emlc Partitions M-functions in Generated Code” on page 18-46
“Generated Files and Locations” on page 18-49
“File Partitioning and Inlining” on page 18-51

Partitioning Generated Files for Readability
During code generation with Real-Time Workshop software, the emlc function
partitions the code to match your M-file structure (see “How emlc Partitions
M-functions in Generated Code” on page 18-46). This one-to-one mapping lets
you easily correlate your files generated in C with the compiled M code.

emlc cannot produce the same one-to-one correspondence for M-functions
that are inlined in generated code (see “File Partitioning and Inlining” on
page 18-51).

How emlc Partitions M-functions in Generated Code
For M-functions that are not inlined, emlc partitions generated C code so that
it correspond to your M-files.

How emlc Partitions Top-Level M-functions
For each top-level M-function, emlc generates one C source, header, and
object file with the same name as the M-file.

For example, suppose you define a simple function foo that calls the function
identity. The source file foo.m contains the following code:

function y = foo(u,v) %#eml
s = single(u);
d = double(v);
y = double(identity(s)) + identity(d);

Here is the code for identity.m :

18-46

How emlc Generates Code

function y = identity(u) %#eml
y = u;

To generate a C library for foo.m, execute the following command at the
MATLAB prompt:

emlc -T rtw:lib -O disable:inline foo

emlc generates source, header, and object files for foo and identity in your
output directory:

How emlc Partitions Subfunctions
For each subfunction, emlc generates code in the same C file as the calling
function.

18-47

18 Working with Embedded MATLAB™ Coder

How emlc Partitions Overloaded Functions
An overloaded function is a function that has multiple implementations to
accommodate different classes of input. For each implementation (that is not
inlined), emlc generates a separate C file with a unique numeric suffix.

For example, suppose you define a simple function multiply_defined:

%#eml
function y = multiply_defined(u)

y = u+1;

You then add two more implementations of multiply_defined, one to handle
inputs of type single (in an @single subdirectory) and another for inputs of
type double (in an @double subdirectory).

To call each implementation, define the function call_multiply_defined:

%#eml
function [y1,y2,y3] = call_multiply_defined

y1 = multiply_defined(int32(2));
y2 = multiply_defined(2);
y3 = multiply_defined(single(2));

Next, execute the following command to generate C code for the overloaded
function multiply_defined:

emlc -T rtw:lib -O disable:inline call_multiply_defined

emlc generates C source, header, and object files for each implementation
of multiply_defined, as highlighted. Numeric suffixes ensure unique file
names.

18-48

How emlc Generates Code

For more information about overloaded functions, see “Overloaded MATLAB
Functions” in the MATLAB Programming Fundamentals documentation.

Generated Files and Locations
The types and locations of generated files depend on the target that you
specify. For all targets, emlc generates HTML reports if errors or warnings
occur during compilation or if you explicitly request a report.

18-49

18 Working with Embedded MATLAB™ Coder

Generated Files for C MEX Targets
By default, emlc generates the following files for C MEX function (mex) targets:

Type of Files Location

Platform-specific C MEX files Current directory
C MEX, and C source, header,
and object files

emcprj/mexfcn/function_name

HTML reports emcprj/mexfcn/function_name/html

Generated Files for C Executable Targets
By default, emlc generates the following files for embeddable C executable
(rtw:exe) targets:

Type of Files Location

C source, header, and object
files

emcprj/rtwexe/function_name

HTML reports emcprj/rtwexe/function_name/html

Generated Files for C Library Targets
By default, emlc generates the following files for embeddable C library
(rtw:lib or rtw) targets:

Type of Files Location

C source, library, header, and
object files

emcprj/rtwlib/function_name

HTML reports emcprj/rtwlib/function_name/html

Changing Names and Locations of Generated Files
You can change the name and location of generated files by using the compiler
options “-o Specify Output File Name” and “-d Specify Output Directory” (see
emlc in the Real-Time Workshop Function Reference).

18-50

How emlc Generates Code

File Partitioning and Inlining
How emlc partitions generated C code depends on whether or not you inline
your M-functions.

If you... emlc...

Disable inlining Partitions generated C code to match M-file structure.
See “How emlc Partitions M-functions in Generated
Code” on page 18-46.

Enable inlining Places inlined functions in the same C file as the
function into which they are inlined. Even when you
enable inlining, not all functions are inlined, only those
whose sizes fall within the inlining threshold. For
M-functions that are not inlined, emlc partitions the
generated C code as described above.

Tradeoffs Between File Partitioning and Inlining
Weighing file partitioning against inlining represents a trade-off between
readability and efficiency.

Inlined
Functions?

Generated C
Code

Advantages Disadvantages

Yes Does not match
M-file structure

Program
executes faster

Difficult to map
C code to original
M-file

No Matches M-File
structure

Easy to map C
code to original
M-file

Program runs
less efficiently

Disabling Inlining to Ensure File Partitioning
Inlining is enabled by default. Therefore, to ensure that emlc generates one C
file for each top-level M-function, you must explicitly disable inlining, either
globally or for individual M-functions.

18-51

18 Working with Embedded MATLAB™ Coder

How to Disable Inlining Globally. To disable inlining of functions, use the
-O disable:inline option with emlc. For example:

emlc foo -T RTW:LIB -O disable:inline

For more information, see “-O Specify Compiler Optimization Option” for emlc
in the Real-Time Workshop Reference documentation.

How to Disable Inlining for Individual Functions. To disable inlining
for an individual M-function, add the directive eml_inline('never'); on
a separate line in the source M-file after the function signature, as in this
example:

function y = foo(u,v) %#eml
eml.inline(never);
s = single(u);
d = double(v);
y = double(identity(s)) + identity(d);

The directive applies only to the function in which it appears. In this example,
inlining is disabled for function foo, but not for identity, a top-level
function defined in a separate M-file and called by foo. To disable inlining
for identity, add this directive after its function signature in the source
file identity.m. For more information, see eml.inline in the Embedded
MATLAB Reference documentation.

For a more efficient way to disable inlining for both functions, use the -O
compiler option described in “How to Disable Inlining Globally” on page 18-52.

Correlating C Code with Inlined Functions
To correlate the C that you generate with the original inlined functions,
add comments in the M-code to identify the function. These comments will
appear in the C code and help you map the generated code back to the original
M-functions.

Modifying the Inlining Threshold
To change inlining behavior, you may want to adjust the inlining threshold, a
compiler options parameter. To modify this parameter, see “Compiler Options
Dialog Box” in the Embedded MATLAB documentation.

18-52

Working with Compilation Reports

Working with Compilation Reports

In this section...

“About Compilation Reports” on page 18-53
“Generating Compilation Reports” on page 18-53
“Names and Locations of Compilation Reports” on page 18-53
“Description of Compilation Reports” on page 18-54
“Examples of Reports” on page 18-56

About Compilation Reports
Embedded MATLAB Coder produces reports in HTML format at compile time
to help you debug your M-code and verify compliance with the Embedded
MATLAB subset.

Generating Compilation Reports
Embedded MATLAB Coder automatically reports errors and warnings. You
can also use the “-report Generate Compilation Report” to request reports
even when there are no errors or warnings.

Names and Locations of Compilation Reports
Embedded MATLAB Coder produces compilation reports in the following
locations:

• For C MEX targets (mex):

output_directory/mexfcn/
primary_function_name/html/
primary_function_name_report.html

• For C executable targets (rtw:exe):

output_directory/rtwexe/
primary_function_name/html/
primary_function_name_report.html

18-53

18 Working with Embedded MATLAB™ Coder

• For C library targets (rtw:lib):

output_directory/rtwlib/
primary_function_name/html/
primary_function_name_report.html

Note The default output directory is emcprj, but you can specify a different
directory with the “-d Specify Output Directory” option (see emlc in the
Real-Time Workshop Function Reference).

Description of Compilation Reports
When you compile M-files with the -report option, Embedded MATLAB
Coder generates an HTML report that contains the following information:

• Summary of compilation results, including type of target and number of
warnings or errors

• Target build log that records compilation and linking activities

• Links to generated files

• Error and warning messages

Embedded MATLAB Coder automatically reports errors and warnings. If
errors occur during compilation, Embedded MATLAB Coder does not generate
code. If compilation produces warnings, but no errors, Embedded MATLAB
Coder does generate code.

Reports present error and warning messages in two views:

• Tree view (default)

For example:

18-54

Working with Compilation Reports

In the tree view, clicking on the document icon brings you to the offending
code in the source file.

• List view

For example:

In the list view, clicking on the location link brings you to the offending
code in the source file.

When you click on an error or warning message, the report highlights the
location of the offending code in the source listing, as in this example:

18-55

18 Working with Embedded MATLAB™ Coder

Examples of Reports
The topic shows examples of the following reports:

• “Example: Summary Report” on page 18-57

• “Example: Error Report” on page 18-58

18-56

Working with Compilation Reports

Example: Summary Report

This report summarizes C library code generation for the following M-file:

%#eml
function r = emcsin1(num)

% Declare MATLAB function "plot" extrinsic
% so it is not compiled and instead executed
% in MATLAB
eml.extrinsic('plot')

% Define size and type of input "num"
assert(isa(num,'single'));
assert(all(size(num) == [1 10]));

r = sin(num);
plot(num,r);

Embedded MATLAB Coder does not generate reports automatically unless
warnings or errors occur during compilation. To request a report, use the
“-report Generate Compilation Report” option, as in this example command:

18-57

18 Working with Embedded MATLAB™ Coder

emlc -T rtw:lib -report emcsin1

Example: Error Report

This report, produced by the command emlc -T rtw:lib emcsin1, displays
errors encountered during compilation of the M-code shown in the source
listing in the bottom right pane. In this case, there are two errors:

• Embedded MATLAB subset does not support the MATLAB construct
global.

• Embedded MATLAB subset does not support the MATLAB function plot .

18-58

Working with Compilation Reports

Note Even though you cannot call unsupported MATLAB functions such
as plot directly from Embedded MATLAB functions, you can call them as
extrinsic functions or using feval (see “Calling MATLAB Functions” in the
Embedded MATLAB documentation).

18-59

18 Working with Embedded MATLAB™ Coder

Calling Generated C Functions

In this section...

“Calling C Functions from the Embedded MATLAB Subset” on page 18-60
“Calling Initialize and Terminate Functions” on page 18-61
“Calling C Functions with Multiple Outputs” on page 18-65
“Calling C Functions that Return Arrays” on page 18-65

Calling C Functions from the Embedded MATLAB
Subset
You can call the C functions generated for rtw:lib targets as custom C code
from M-functions that comply with the Embedded MATLAB subset. In this
scenario, you must use the Embedded MATLAB interface eml.ceval to wrap
the function calls, as in this example:

%#eml
function y = callmyCFunction
y = 1.5;
y = eml.ceval('myCFunction',y);

Here, the Embedded MATLAB function callmyCFunction calls the custom
C function myCFunction, which takes one input argument. For more
information about eml.ceval, see “Calling C Functions from the Embedded
MATLAB Subset” in the Embedded MATLAB documentation.

Note eml.ceval is part of the Embedded MATLAB language, but is not
supported in the native MATLAB language.

There are additional requirements for calling C functions from the Embedded
MATLAB subset in the following situations:

• You want to call generated C libraries (rtw:lib targets) or executables
(rtw:exe targets) from an Embedded MATLAB function. In this case, you
must call housekeeping functions generated by Embedded MATLAB Coder,
as described in “Calling Initialize and Terminate Functions” on page 18-61.

18-60

Calling Generated C Functions

• You want to call C functions that are generated from M-functions that have
more than one output, as described in “Calling C Functions with Multiple
Outputs” on page 18-65.

• You want to call C functions that are generated from M-functions that
return arrays, as described in “Calling C Functions that Return Arrays” on
page 18-65.

Calling Initialize and Terminate Functions
When you convert an M-function to a C library function for rtw:lib targets or
a C executable for rtw:exe targets, Embedded MATLAB Coder automatically
generates two housekeeping functions that you must call along with the C
function, as follows:

Housekeeping Function When to Call

primary_function_name_initialize Before you call your C executable
or library function for the first
time

primary_function_name_terminate After you call your C executable
or library function for the last
time

Note From C code, you can call these functions directly. However, to call
them from M-code that conforms to the Embedded MATLAB subset, you must
use the eml.ceval interface, as described in “Calling C Functions from the
Embedded MATLAB Subset” in the Embedded MATLAB documentation.
eml.ceval is part of the Embedded MATLAB subset, but not supported by
the native MATLAB language. Therefore, if your M-code uses this interface,
you must compile your M-code on the Embedded MATLAB path (see “Adding
Directories to Search Paths” on page 18-11).

Example: Calling a C Library Function from M-Code
This example shows how to call a C library function from M-code that
conforms to the Embedded MATLAB subset.

Suppose you have an M-file absval.m that contains the following M-function:

18-61

18 Working with Embedded MATLAB™ Coder

%#eml
function y = absval(u)
y = abs(u);

To generate a C library function and call it from an M-code, follow these steps:

1 Generate the C library for absval.m by invoking Embedded MATLAB
Coder, as follows:

emlc -T rtw:lib absval -eg {0.0}

Note Here are key points about this command:

• The-T rtw:lib option instructs Embedded MATLAB Coder to generate
absval as a C library function.

• Embedded MATLAB Coder creates the library absval.lib (or
absval.a on Linus Torvalds’ Linux) and header file absval.h in the
directory /emcprj/rtwlib/absval. It also generates the functions
absval_initialize and absval_terminate in the C library.

• The -eg option specifies the class, size, and complexity of the primary
function input u by example, as described in “Defining Input Properties
by Example at the Command Line” on page 18-27.

2 Write an M-function to call the generated library, as follows:

%#eml
function y = callabsval

% Call the initialize function before
% calling the C function for the first time
eml.ceval('absval_initialize');

y = -2.75;
y = eml.ceval('absval',y);

% Call the terminate function after
% calling the C function for the last time
eml.ceval('absval_terminate');

18-62

Calling Generated C Functions

Note The M-function callabsval uses the interface eml.ceval
to call the generated C functions absval_initialize, absval, and
absval_terminate. You must use this interface to call C functions
from the Embedded MATLAB language subset, as described in “Calling
C Functions from the Embedded MATLAB Subset” in the Embedded
MATLAB documentation.

3 Convert the M-code in callabsval.m to a C MEX function so you can call
the C library function absval directly from the MATLAB prompt. Follow
these steps:

a Generate the C MEX function by invoking Embedded MATLAB Coder as
follows:

On Microsoft Windows platforms, use this command:

emlc -T mex callabsval emcprj/rtwlib/absval/absval.lib
emcprj/rtwlib/absval/absval.h

On the Linus Torvalds’ Linux platform, use this command:

emlc -T mex callabsval emcprj/rtwlib/absval/absval.a
emcprj/rtwlib/absval/absval.h

b Call the C library by running the C MEX function from the MATLAB
prompt, like this:

callabsval

Example: Calling a C Library Function from C Code
This example shows how to call a generated C library function from C code. It
uses the C library function absval described in “Example: Calling a C Library
Function from M-Code” on page 18-61.

To call a C library function from a C file, follow these steps:

1 Write a main function in C that does the following:

18-63

18 Working with Embedded MATLAB™ Coder

• Includes the generated header file, which contains the function
prototypes for the library function

• Calls the initialize function before calling the library function for the
first time

• Calls the terminate function after calling the library function for the
last time

Here is an example of a C main function that can be used to call the library
function absval:

/*
** main.c
*/
#include <stdio.h>
#include <stdlib.h>
#include "absval.h"

int main(int argc, char *argv[])
{

absval_initialize();

printf("absval(-2.75)=%g\n", absval(-2.75));

absval_terminate();

return 0;
}

2 Configure your target to integrate this custom C main function with
your generated code, as described in “Integrating Custom C Code with
Generated Code” on page 18-66.

For example, you can define a Real-Time Workshop configuration object
that points to the custom C code by following these steps:

a Create a Real-Time Workshop configuration object, by entering a
command like this at the MATLAB prompt:

rtwcfg = emlcoder.RTWConfig;

18-64

Calling Generated C Functions

b Set custom code properties on the configuration object, as in these
example command lines:

rtwcfg.CustomSource = 'main.c';
rtwcfg.CustomInclude = 'c:\myfiles';

3 Generate the C executable, by entering a command like this at the
MATLAB prompt:

emlc -T rtw:exe -s rtwcfg absval;

4 Call the executable, as in this example command:

absval(-2.75);

Calling C Functions with Multiple Outputs
Although Embedded MATLAB Coder can generate C code from M-functions
that have multiple outputs, the generated C code cannot return multiple
outputs directly because the C language does not support multiple return
values. Instead, you can achieve the effect of returning multiple outputs from
your C function by using the eml.wref construct with eml.ceval, as described
in “Returning Multiple Values from C Functions” in the Embedded MATLAB
documentation.

Calling C Functions that Return Arrays
Although Embedded MATLAB Coder can generate C code from M-functions
that return values as arrays, the generated code cannot return arrays by
value because the C language is limited to returning single, scalar values.
Instead, you can return arrays from your C function by reference as pointers
by using the eml.wref construct with eml.ceval, as described in “Calling C
Functions from the Embedded MATLAB Subset” in the Embedded MATLAB
documentation.

18-65

18 Working with Embedded MATLAB™ Coder

Integrating Custom C Code with Generated Code

In this section...

“About Custom C Code Integration with Embedded MATLAB Coder” on
page 18-66
“Specifying Custom C Files on the Command Line” on page 18-66
“Specifying Custom C Files with Configuration Objects” on page 18-66

About Custom C Code Integration with Embedded
MATLAB Coder
You integrate custom C code with generated C code by specifying the
locations of your external source files, header files, and libraries to Embedded
MATLAB Coder. You can specify custom C files on the command line or with
configuration objects.

Specifying Custom C Files on the Command Line
When you compile an M-function with Embedded MATLAB Coder, you can
specify custom C files — such as source, header, and library files — on
the command line along with your M-file. For example, suppose you want
to generate an embeddable C code executable that integrates a custom C
function myCfcn with an M-function myMfcn. The custom source and header
files for myCfcn reside in the directory C:\custom. You can use the following
command to generate the code:

emlc -T rtw:exe C:\custom\myCfcn.c C:\custom\myCfcn.h myMfcn

Specifying Custom C Files with Configuration Objects

You can specify custom C files by setting custom code properties on Real-Time
Workshop configuration objects (as described in “Real-Time Workshop Dialog
Box Overview” in the Real-Time Workshop Reference documentation). Follow
these steps:

1 Define a Real-Time Workshop configuration object, as described in
“Creating Configuration Objects” on page 18-18.

18-66

Integrating Custom C Code with Generated Code

For example:

cc = emlcoder.RTWConfig;

2 Set one or more of the custom code properties as needed:

Custom Code Property Description

CustomInclude Specifies a list of directories that contain custom header,
source, object, or library files.

Note If your directory path name contains spaces, you must
enclose it in double quotes, as in this example:

cc.CustomInclue = '"C:\Program Files\MATLAB\work"'

CustomSource Specifies additional custom C files to be compiled with the
M-file.

CustomLibrary Specifies the names of object or library files to be linked with
the generated code.

CustomSourceCode Specifies code to insert at the top of each generated C source file.
CustomHeaderCode Specifies custom code to insert at the top of each generated

C header file.

For example:

cc.CustomInclude = 'C:\custom\src C:\custom\lib';
cc.CustomSource = 'cfunction.c';
cc.CustomLibrary = 'chelper.obj clibrary.lib';
cc.CustomSourceCode = '#include "cgfunction.h"';

3 Compile the M-code with the Real-Time Workshop configuration object.

For example:

emlc -T rtw:lib -s cc myFunc

4 Call custom C functions as follows:

18-67

18 Working with Embedded MATLAB™ Coder

From: Call:

C source code Custom C functions directly
M-code, compiled on the Embedded
MATLAB path

Custom C functions using
eml.ceval, as described in “Calling
C Functions from the Embedded
MATLAB Subset” in the Embedded
MATLAB documentation.

For example (from M-code):

...
y = 2.5;
y = eml.ceval('myFunc',y);
...

For more information, see “Configuring Your Environment for Code
Generation” on page 18-16.

18-68

A

Limitations on the Use of
Absolute Time

• “About Absolute Time Limitations” on page A-2

• “Logging Absolute Time” on page A-3

• “Absolute Time in Stateflow Charts” on page A-4

• “Blocks that Depend on Absolute Time” on page A-5

A Limitations on the Use of Absolute Time

About Absolute Time Limitations
Absolute time is the time that has elapsed from the beginning of program
execution to the present time, as distinct from elapsed time, the interval
between two events. See “Absolute and Elapsed Time Computation” on page
15-2 for more information.

When you design an application that is intended to run indefinitely, you must
take care when logging time values, or using charts or blocks that depend
on absolute time. If the value of time reaches the largest value that can
be represented by the data type used by the timer to store time, the timer
overflows and the logged time or block output is no longer correct.

If your target uses rtModel, you can avoid timer overflow by setting an
appropriate Application life span option. See “Integer Timers in Generated
Code” on page 15-3 for more information.

A-2

Logging Absolute Time

Logging Absolute Time
If you log time values by enabling Configuration Parameters > Data
Import/Export > Save to workspace > Time your model uses absolute
time.

A-3

A Limitations on the Use of Absolute Time

Absolute Time in Stateflow Charts
Every Stateflow chart that uses time is dependent on absolute time. The
only way to eliminate the dependency is to change the Stateflow chart to
not use time.

A-4

Blocks that Depend on Absolute Time

Blocks that Depend on Absolute Time
The following Simulink blocks depend on absolute time:

• Backlash

• Chirp Signal

• Clock

• Derivative

• Digital Clock

• Discrete-Time Integrator (only when used in triggered subsystems)

• From File

• From Workspace

• Pulse Generator

• Ramp

• Rate Limiter

• Repeating Sequence

• Signal Generator

• Sine Wave (only when the Sine type parameter is set to Time-based)

• Step

• To File

• To Workspace (only when logging to StructureWithTime format)

• Transport Delay

• Variable Time Delay

• Variable Transport Delay

In addition to the Simulink blocks above, blocks in other blocksets may depend
on absolute time. See the documentation for the blocksets that you use.

A-5

A Limitations on the Use of Absolute Time

A-6

B

Generating ASAP2 Files

ASAP2 is a data definition standard proposed by the Association for
Standardization of Automation and Measuring Systems (ASAM). ASAP2
is a standard description you use for data measurement, calibration, and
diagnostic systems.

• “Overview” on page B-2

• “Targets Supporting ASAP2” on page B-3

• “Defining ASAP2 Information” on page B-4

• “Generating an ASAP2 File” on page B-7

• “Customizing an ASAP2 File” on page B-12

• “Structure of the ASAP2 File” on page B-19

• “Generating ASAP2 and C API Files” on page B-21

B Generating ASAP2 Files

Overview
The Real-Time Workshop product lets you export an ASAP2 file containing
information about your model during the code generation process.

To make use of ASAP2 file generation, you should become familiar with the
following topics:

• ASAM and the ASAP2 standard and terminology. See the ASAM Web
site at http://www.asam.de.

• Simulink data objects. Data objects are used to supply information not
contained in the model. For an overview, see “Working with Data” in the
Simulink documentation.

• Storage and representation of signals and parameters in generated code.
See Chapter 5, “Working with Data”.

• Signal and parameter objects and their use in code generation. See Chapter
5, “Working with Data”.

If you are reading this document online in the MATLAB Help browser, you
can run an interactive demo of ASAP2 file generation.

Alternatively, you can access the demo by typing the following command
at the MATLAB command prompt:

rtwdemo_asap2

B-2

http://www.asam.de

Targets Supporting ASAP2

Targets Supporting ASAP2
ASAP2 file generation is available to all Real-Time Workshop target
configurations. You can select these target configurations from the System
Target File Browser. For example,

• The Generic Real-Time Target lets you generate an ASAP2 file as part of
the code generation and build process.

• Any of the Real-Time Workshop Embedded Coder Target selections also
lets you generate an ASAP2 file as part of the code generation and build
process.

• The ASAM-ASAP2 Data Definition Target lets you generate only an
ASAP2 file, without building an executable.

Procedures for generating ASAP2 files by using these target configurations
are given in “Generating an ASAP2 File” on page B-7.

B-3

B Generating ASAP2 Files

Defining ASAP2 Information
The ASAP2 file generation process requires information about your model’s
parameters and signals. Some of this information is contained in the model
itself. You must supply the rest by using Simulink data objects with the
necessary properties.

You can use built-in Simulink data objects to provide the necessary
information. For example, you can use Simulink.Signal objects to provide
information about MEASUREMENTS and Simulink.Parameter objects to provide
information about CHARACTERISTICS. Also, you can use data objects from data
classes that are derived from Simulink.Signal and Simulink.Parameter to
provide the necessary information. For details, see “Working with Data” in
the Simulink documentation.

The following table contains the minimum set of data attributes required
for ASAP2 file generation. Some data attributes are defined in the model;
others are supplied in the properties of objects. For attributes that are
defined in Simulink.Signal or Simulink.Parameter objects, the table gives
the associated property name.

Data Attribute Defined In Property Name

Name (symbol) Data object Inherited from the
handle of the data object
to which parameter or
signal name resolves

Description Data object Description

Data type Model Not applicable
Scaling
(if fixed-point data type)

Model Data type (for signals)

Inherited from value (for
parameters)

Minimum allowable
value

Data object Min

Maximum allowable
value

Data object Max

B-4

Defining ASAP2 Information

Data Attribute Defined In Property Name

Units Data object DocUnits

Memory address
(optional)

Data object MemoryAddress_ASAP2
(optional; see “Memory
Address Attribute” on
page B-5.)

Memory Address Attribute
If the memory address attribute is unknown before code generation, a
placeholder string is inserted in the generated ASAP2 file. You can substitute
an actual address for the placeholder by postprocessing the generated file.
See the file matlabroot/toolbox/rtw/targets/asap2/asap2/asap2post.m
for an example.

If the memory address attribute is known before code generation, it can be
defined in the data object. By default, the MemoryAddress_ASAP2 property
does not exist in the ASAP2.Signal or ASAP2.Parameter data object classes.
If you want to add the attribute, add a property called MemoryAddress_ASAP2
to a custom class that is a subclass of the Simulink or ASAP2 class. For
information on subclassing Simulink data classes, see “Subclassing Simulink
Data Classes” in the Simulink documentation.

Note In previous releases, for ASAP2 file generation, it was necessary to
define objects explicitly as ASAP2.Signal and ASAP2.Parameter. This is no
longer a limitation. As explained above, you can use built-in Simulink objects
for generating an ASAP2 file. If you have been using an earlier release, you
can continue to use the ASAP2 objects. If one of these ASAP2 objects was
created in the previous release, and you use it in this release, the MATLAB
Command Window displays a warning the first time the objects are loaded.

The following table indicates the Simulink object properties that have
replaced the ASAP2 object properties of the previous release:

B-5

B Generating ASAP2 Files

Differences Between ASAP2 and Simulink Parameter and Signal
Object Properties

ASAP2 Object Properties
(Previous)

Simulink Object Properties
(Current)

LONGIG_ASAP2 Description
PhysicalMin_ASAP2 Min
PhysicalMax_ASAP2 Max
Units_ASAP2 DocUnits

B-6

Generating an ASAP2 File

Generating an ASAP2 File

In this section...

“Introduction” on page B-7
“Using Generic Real-Time Target or Embedded Coder Target” on page B-7
“Using the ASAM-ASAP2 Data Definition Target” on page B-10

Introduction
You can generate an ASAP2 file from your model in one of the following ways:

• Use the Generic Real-Time target or a Real-Time Workshop Embedded
Coder target to generate an ASAP2 file as part of the code generation and
build process.

• Use the ASAM-ASAP2 Data Definition target to generate only an ASAP2
file, without building an executable.

This section discusses how to generate an ASAP2 file by using the targets
that have built-in ASAP2 support. For an example, see the ASAP2 demo,
rtwdemo_asap2.mdl.

Using Generic Real-Time Target or Embedded Coder
Target
The procedure for generating a model’s data definition in ASAP2 format using
the generic Real-Time target or a Real-Time Workshop Embedded Coder
target is as follows:

1 Create the desired model. Use appropriate parameter names and signal
labels to refer to CHARACTERISTICS and MEASUREMENTS, respectively.

2 Define the desired parameters and signals in the model to be
Simulink.Parameter and Simulink.Signal objects in the MATLAB
workspace. A convenient way of creating multiple signal and parameter
data objects is to use the Data Object Wizard. Alternatively, you can create
data objects one at a time from the MATLAB command line. For details on

B-7

B Generating ASAP2 Files

how to use the Data Object Wizard, see the Real-Time Workshop Embedded
Coder Module Packaging Features documentation.

3 For each data object, configure the Storage class property to a setting
other than Auto or SimulinkGlobal. This ensures that the data object
is declared as global in the generated code. For example, a storage class
setting of ExportedGlobal configures the data object as unstructured
global in the generated code.

Note If you set the storage class to Custom and custom storage class
settings cause the Real-Time Workshop code generator to generate a
macro or non-addressable variable, the data object is not represented in
the ASAP2 file.

4 Configure the remaining properties as desired for each data object.

5 On the Optimization pane of the Configuration Parameters dialog box,
select the Inline parameters check box.

You should not configure the parameters associated with your data
objects as Simulink global (tunable) parameters in the Model Parameter
Configuration dialog box. If a parameter that resolves to a Simulink data
object is configured using the Model Parameter Configuration dialog box,
the dialog box configuration is ignored. You can, however, use the Model
Parameter Configuration dialog box to configure other parameters in your
model.

6 On the Real-Time Workshop pane, click Browse to open the System
Target File Browser. In the browser, select Generic Real-Time Target
or any embedded real-time target and click OK.

7 In the Interface field on the Interface pane, select ASAP2. The next
figure shows the Interface pane when the Generic Real-Time Target is
selected. If you select an embedded real-time target, the Interface pane
looks different.

B-8

Generating an ASAP2 File

8 Select the Generate code only check box on the Real-Time Workshop
pane.

9 Click Apply.

10 Click Generate code.

The Real-Time Workshop code generator writes the ASAP2 file to the build
directory. By default, the file is named model.a2l, where model is the name
of the model. The ASAP2 filename is controlled by the ASAP2 setup file. For
details see “Customizing an ASAP2 File” on page B-12.

B-9

B Generating ASAP2 Files

Using the ASAM-ASAP2 Data Definition Target
The procedure for generating a model’s data definition in ASAP2 format using
the ASAM-ASAP2 Data Definition Target is as follows:

1 Create the desired model. Use appropriate parameter names and signal
labels to refer to CHARACTERISTICS and MEASUREMENTS, respectively.

2 Define the desired parameters and signals in the model to be
Simulink.Parameter and Simulink.Signal objects in the MATLAB
workspace. A convenient way of creating multiple signal and parameter
data objects is to use the Data Object Wizard. Alternatively, you can create
data objects one at a time from the MATLAB command line. For details on
how to use the Data Object Wizard, see the Real-Time Workshop Embedded
Coder Module Packaging Features documentation.

3 For each data object, configure the Storage class property to a setting
other than Auto or SimulinkGlobal. This configures the data objects
so that their corresponding declarations in the generated code are
unstructured global storage declarations.

Note If you set the storage class to Custom and custom storage class
settings cause the Real-Time Workshop code generator to generate a
macro or non-addressable variable, the data object is not represented in
the ASAP2 file.

4 Configure the remaining properties as desired for each data object.

5 On the Optimization pane of the Configuration Parameters dialog box,
select the Inline parameters check box.

You should not configure the parameters associated with your data objects
as global (tunable) parameters in the Model Parameter Configuration
dialog box. If a parameter that resolves to a Simulink data object is
configured using the Model Parameter Configuration dialog box, the dialog
box configuration is ignored.

B-10

Generating an ASAP2 File

6 On the Real-Time Workshop pane, click Browse to open the System
Target File Browser. In the browser, select ASAM-ASAP2 Data Definition
Target and click OK.

7 Select the Generate code only check box on the Real-Time Workshop
pane.

8 Click Apply.

9 Click Generate code.

The Real-Time Workshop code generator writes the ASAP2 file to the build
directory. By default, the file is named model.a2l, where model is the
name of the model. The ASAP2 filename is controlled by the ASAP2 setup
file. For details see “Customizing an ASAP2 File” on page B-12.

B-11

B Generating ASAP2 Files

Customizing an ASAP2 File

In this section...

“Introduction” on page B-12
“ASAP2 File Structure on the MATLAB Path” on page B-12
“Customizing the Contents of the ASAP2 File” on page B-13
“ASAP2 Templates” on page B-14

Introduction
The Real-Time Workshop Embedded Coder product provides a number of TLC
files to enable you to customize the ASAP2 file generated from a Simulink
model.

ASAP2 File Structure on the MATLAB Path
The ASAP2 related files are organized within the directories identified below:

• TLC files for generating ASAP2 file

The matlabroot/rtw/c/tlc/mw directory contains TLC files that generate
ASAP2 files, asamlib.tlc, asap2lib.tlc, and asap2main.tlc. These files
are included by the selected System target file. (See “Targets Supporting
ASAP2” on page B-3.)

• ASAP2 target files

The matlabroot/toolbox/rtw/targets/asap2/asap2 directory contains
the ASAP2 system target file and other control files.

• Customizable TLC files

The matlabroot/toolbox/rtw/targets/asap2/asap2/user directory
contains files that you can modify to customize the content of your ASAP2
files.

• ASAP2 templates

The matlabroot/toolbox/rtw/targets/asap2/asap2/user/templates
directory contains templates that define each type of CHARACTERISTIC in
the ASAP2 file.

B-12

Customizing an ASAP2 File

Customizing the Contents of the ASAP2 File
The ASAP2 related TLC files enable you to customize the appearance of
the ASAP2 file generated from a Simulink model. Most customization
is done by modifying or adding to the files contained in the
matlabroot/toolbox/rtw/targets/asap2/asap2/user directory. This
section refers to this directory as the asap2/user directory.

The user-customizable files provided are divided into two groups:

• The static files define the parts of the ASAP2 file that are related to
the environment in which the generated code is used. They describe
information specific to the user or project. The static files are not model
dependent.

• The dynamic files define the parts of the ASAP2 file that are generated
based on the structure of the source model.

The procedure for customizing the ASAP2 file is as follows:

1 Make a copy of the asap2/user directory before making any modifications.

2 Remove the old asap2/user directory from the MATLAB path, or add the
new asap2/user directory to the MATLAB path above the old directory.
This ensures that the MATLAB session uses the ASAP2 setup file,
asap2setup.tlc (new for Release 14).

asap2setup.tlc specifies the directories and files to include in the TLC
path during the ASAP2 file generation process. Modify asap2setup.tlc to
control the directories and folders included in the TLC path.

3 Modify the static parts of the ASAP2 file. These include

• Project and header symbols, which are specified in asap2setup.tlc

• Static sections of the file, such as file header and tail, A2ML, MOD_COMMON,
and so on These are specified in asap2userlib.tlc.

• Specify the appearance of the dynamic contents of the ASAP2 file by
modifying the existing ASAP2 templates or by defining new ASAP2
templates. Sections of the ASAP2 file affected include

RECORD_LAYOUTS: modify appropriate parts of the ASAP2 template files.

B-13

B Generating ASAP2 Files

CHARACTERISTICS: modify appropriate parts of the ASAP2 template files.
For more information on modifying the appearance of CHARACTERISTICS,
see “ASAP2 Templates” on page B-14.

• MEASUREMENTS: These are specified in asap2userlib.tlc.

• COMPU_METHODS: These are specified in asap2userlib.tlc.

ASAP2 Templates
The appearance of CHARACTERISTICS in the ASAP2 file is controlled using
a different template for each type of CHARACTERISTIC. The asap2/user
directory contains template definition files for scalars, 1-D Lookup Table
blocks and 2-D Lookup Table blocks. You can modify these template definition
files, or you can create additional templates as required.

The procedure for creating a new ASAP2 template is as follows:

1 Define a parameter group. See “Defining Parameter Groups” on page B-14.

2 Create a template definition file. See “Creating Template Definition Files”
on page B-16.

3 Include the template definition file in the TLC path. The path is specified
in the ASAP2 setup file, asap2setup.tlc.

Defining Parameter Groups
In some cases you must group multiple parameters together in the ASAP2
file (for example, the x andy data in a 1-D Lookup Table block). Parameter
groups enable Simulink blocks to define an associative relationship among
some or all of their parameters. The following example shows the Lookup1D
parameter group and describes how to create and use parameter groups in
conjunction with the ASAP2 file generation process.

The BlockInstanceSetup function, within a block’s TLC file, creates
parameter groups. There are two built-in TLC functions that facilitate this
process: SLibCreateParameterGroup and SLibAddMember. The following code
creates the Lookup1D parameter group in look_up.tlc. Similar syntax is
used to create parameter groups for the Look-Up Table (2-D) block.

%if GenerateInterfaceAPI

B-14

Customizing an ASAP2 File

%% Create a parameter group for ASAP2 data definition
%assign group = SLibCreateParameterGroup(block,"Lookup1D")
%assign tmpVar = SLibAddMember(block,group,InputValues)
%assign tmpVar = SLibAddMember(block,group,OutputValues)

%endif

ParameterGroup records are not written to the model.rtw file, but are
included as part of the relevant block records in the compiled model.
The following code shows the Lookup1D parameter group. The Lookup1D
parameter group has two member records. The reference fields of these
records refer to the relevant x and y data records in GlobalMemoryMap:

Block {
Type Lookup
Name "<Root>/Look-Up Table"
...
NumParameterGroups 1
ParameterGroup {

Name Lookup1D
NumMembers 2
Member {

NumMembers 0
Reference ...

}
Member {

NumMembers 0
Reference ...

}
}

}

The Lookup1D parameter group is used by the function
ASAP2UserFcnWriteCharacteristic_Lookup1D, which is defined
in the template definition file, asap2lookup1d.tlc. This function uses the
parameter group to obtain the references to the associated x and y data
records in the GlobalMemoryMap, as shown in the following code.

%function ASAP2UserFcnWriteCharacteristic_Lookup1D(paramGroup)\
Output

%assign xParam = paramGroup.Member[0].Reference

B-15

B Generating ASAP2 Files

%assign yParam = paramGroup.Member[1].Reference
...

%endfunction

Creating Template Definition Files
This section describes the components that make up an ASAP2 template
definition file. This description is in the form of code examples from
asap2lookup1d.tlc, the template definition file for the Lookup1D template.
This template corresponds to the Lookup1D parameter group.

Note When creating a new template, use the corresponding parameter group
name in place of Lookup1D in the code shown.

Template Registration Function
The input argument is the name of the parameter group associated with
this template:

%<LibASAP2RegisterTemplate("Lookup1D")>

RECORD_LAYOUT Name Definition Function
Record layout names (aliases) can be arbitrarily specified for each data type.
This function is used by the other components of this file.

%function ASAP2UserFcnRecordLayoutAlias_Lookup1D(dtId) void
%switch dtId
%case tSS_UINT8

%return "Lookup1D_UBYTE"
...
%endswitch

%endfunction

B-16

Customizing an ASAP2 File

Function to Write RECORD_LAYOUT Definitions
This function writes RECORD_LAYOUT definitions associated with this template.
The function is called by the built-in functions involved in the ASAP2 file
generation process. The function name must be defined as shown, with the
appropriate template name after the underscore:

%function ASAP2UserFcnWriteRecordLayout_Lookup1D() Output
/begin RECORD_LAYOUT

%<ASAP2UserFcnRecordLayoutAlias_Lookup1D(tSS_UINT8)>
...

/end RECORD_LAYOUT
%endfunction

Function to Write the CHARACTERISTIC
This function writes the CHARACTERISTIC associated with this template.
The function is called by the built-in functions involved in the ASAP2 file
generation process. The function name must be defined as shown, with the
appropriate template name after the underscore.

The input argument to this function is a pointer to a parameter group record.
The example shown is for a Lookup1D parameter group that has two members.
The references to the associated x and y data records are obtained from the
parameter group record as shown.

This function calls a number of built-in functions to obtain the required
information. For example, LibASAP2GetSymbol returns the symbol (name)
for the specified data record:

%function ASAP2UserFcnWriteCharacteristic_Lookup1D(paramGroup)
Output

%assign xParam = paramGroup.Member[0].Reference
%assign yParam = paramGroup.Member[1].Reference
%assign dtId = LibASAP2GetDataTypeId(xParam)

/begin CHARACTERISTIC
/* Name */ %<LibASAP2GetSymbol(xParam)>
/* Long identifier */ "%<LibASAP2GetLongID(xParam)>"
...

/end CHARACTERISTIC
%endfunction

B-17

B Generating ASAP2 Files

B-18

Structure of the ASAP2 File

Structure of the ASAP2 File
The following table outlines the basic structure of the ASAP2 file and
describes the Target Language Compiler functions and files used to create
each part of the file:

• Static parts of the ASAP2 file are shown in bold.

• Function calls are indicated by %<FunctionName()>.

File Section Contents of asap2main.tlc
TLC File Containing
Function Definition

File header %<ASAP2UserFcnWriteFileHead()> asap2userlib.tlc

/begin PROJECT "" /begin PROJECT "%<ASAP2ProjectName>" asap2setup.tlc

/begin HEADER ""
HEADER contents

/begin HEADER"%<ASAP2HeaderName>"
%<ASAP2UserFcnWriteHeader()>

asap2setup.tlc
asap2userlib.tlc

/end HEADER /end HEADER

/begin MODULE ""
MODULE contents:

/begin MODULE "%<ASAP2ModuleName>"} asap2setup.tlc
asap2userlib.tlc

- A2ML
- MOD_PAR
- MOD_COMMON
...

%<ASAP2UserFcnWriteHardwareInterface()>

Model-dependent
MODULE contents:

%<SLibASAP2WriteDynamicContents()>
Calls user-defined functions:

asap2lib.tlc

- RECORD_LAYOUTs
- CHARACTERISTICS
- ParameterGroups
- ModelParameters

...WriteRecordLayout_TemplateName()

...WriteCharacteristic_TemplateName()

...WriteCharacteristic_Scalar()

user/templates/...

- MEASUREMENTS
- ExternalInputs
- BlockOutputs

...WriteMeasurement() asap2userlib.tlc

- COMPU_METHODS ...WriteCompuMethod() asap2userlib.tlc

B-19

B Generating ASAP2 Files

File Section Contents of asap2main.tlc
TLC File Containing
Function Definition

/end MODULE /end MODULE

File footer/tail %<ASAP2UserFcnWriteFileTail()> asap2userlib.tlc

B-20

Generating ASAP2 and C API Files

Generating ASAP2 and C API Files
The ASAP2 and C API interfaces are not mutually exclusive. Although the
Interface option on the Real-Time Workshop > Interface pane of the
Configuration Parameters dialog box allows you to select either the ASAP2
or C API interface, you can instruct the Real-Time Workshop product to
generate files for both interfaces by doing the following:

1 In the Data exchange section of the Real-Time Workshop > Interface
pane of the Configuration Parameters dialog box, select C API for the
Interface option.

2 In the Build process section of the Real-Time Workshop pane, add the
following to the TLC options text box:

-aGenerateASAP2=1

B-21

B Generating ASAP2 Files

3 Click Generate or Build. The Real-Time Workshop code generator
generates the following ASAP2 and C API files:

• model.a2l — ASAP2 description file

• model_capi.c — C API source file

• model_capi.h — C API header file

For more information about using the C API interface, see “C API for
Interfacing with Signals and Parameters” on page 17-2.

B-22

C

Troubleshooting

C Troubleshooting

Troubleshooting Compiler Configurations

In this section...

“Compiler Version Mismatch Errors” on page C-2
“Generated Executable Image Produces Incorrect Results” on page C-2
“Compile-Time Errors” on page C-3

Compiler Version Mismatch Errors

Explanation
You received a version mismatch error when you compiled code generated by
the Real-Time Workshop software.

User Action

1 Check the list of currently supported and compatible compilers available at
http://www.mathworks.com/support/compilers/current_release.

2 If necessary, upgrade or change your compiler. For more information, see
“Choosing and Configuring a Compiler” on page 2-18.

3 Rebuild the model.

Generated Executable Image Produces Incorrect
Results

Explanation
You applied compiler optimizations when you used Real-Time Workshop
to generate an executable image. However, due to a compiler defect, the
optimizations caused the executable image to produce incorrect results, even
though the generated code is correct.

User Action
Do one of the following:

C-2

http://www.mathworks.com/support/compilers/current_release

Troubleshooting Compiler Configurations

• Lower the compiler optimization level.

1 Select Custom for the Model Configuration parameter Real-Time
Workshop > Compiler optimization level. The Custom compiler
optimization flags field appears.

2 Specify a lower optimization level in the Custom compiler
optimization flags field.

3 Rebuild the model.

• Disable compiler optimizations.

1 Select Optimizations off (faster builds) for the Model
Configuration parameter Real-Time Workshop > Compiler
optimization level.

2 Rebuild the model.

For more information, see “Controlling Compiler Optimization Level and
Specifying Custom Optimization Settings” on page 2-61 and your compiler
documentation.

Compile-Time Errors

Explanations

• You received a compiler configuration error.

• Environment variables for your make utility, compiler, or linker are not
set up correctly. For example, installation of Cygwin tools on a Windows
platform might affect environment variables used by other compilers.

• Custom code specified as an S-function block or in the Real-Time
Workshop > Custom Code pane of the Configuration Parameters dialog
includes errors. For example, the code might refer to a header file that the
compiler cannot find.

• The model includes a block, such as a device driver block, that is not
intended for use with the currently selected target.

C-3

C Troubleshooting

User Actions

• Make sure that MATLAB supports the compiler and version that you want
to use. For a list of currently supported and compatible compilers, see
http://www.mathworks.com/support/compilers/current_release. If
necessary, upgrade or change your compiler (see “Choosing and Configuring
a Compiler” on page 2-18).

• Review the environment variable settings for your system by using the set
command on a Windows platform or setenv on a UNIX platform. Make
sure the settings match what is required for the tools you are using.

• Remove the custom code from the model, to help isolate the source of the
problem, debug, and rebuild.

• Remove the target-specific block or configure the model for use with the
correct target.

C-4

http://www.mathworks.com/support/compilers/current_release

D

Examples

Use this list to find examples in the documentation.

D Examples

Models
“Block Execution Order” on page 2-53
“Controlling Signal Object Code Generation By Using Typed Commands”
on page 5-56
“Single-Tasking and Multitasking Execution of a Model: an Example”
on page 8-27
“Other Optimization Tools and Techniques” on page 9-6
“Inlining Invariant Signals” on page 9-43
“Configuring a Loop Unrolling Threshold” on page 9-47
“Dual-Model Approach: Simulation” on page 16-9
“Spawning a Wind River Systems VxWorks Task” on page 16-14

Model Code Packaging
“Code Packaging Example” on page 2-158

Model Reference
“Code Reuse and Model Blocks with Root Inport or Outport Blocks” on
page 4-43

Data Management
“Nontunable Parameter Storage” on page 5-3
“Tunable Expressions in Masked Subsystems” on page 5-14
“Signals with Auto Storage Class” on page 5-34
“Symbolic Naming Conventions for Signals in Generated Code” on page
5-42

D-2

Optimizations

Optimizations
“Expression Folding Example” on page 9-10
“Ignore integer downcasts in folded expressions” on page 9-14
“Multiple Tables with Common Inputs” on page 9-28
“Optimizing Data Type Usage” on page 9-35
“Expression Folding for Blocks with Multiple Outputs” on page 10-70

S-Functions
“TLC S-Function Wrapper” on page 10-17
“Writing Fully Inlined S-Functions” on page 10-23
“Multiport S-Function Example” on page 10-23
“S-Function RTWdata” on page 10-31
“The Direct-Index Lookup Table Example” on page 10-33

Custom Code
“Example: Using a Custom Code Block” on page 14-6

Timing Services
“Elapsed Timer Code Generation Example” on page 15-10

Interfaces
“Generating Example C API Files” on page 17-9
“Using the C API in an Application” on page 17-18

D-3

D Examples

D-4

Index

IndexA
absolute time computation 15-2
accelerated simulation

as an application of Real-Time Workshop
technology 1-13

addLibs field 10-104
algorithm development

tools for 1-5
algorithm models

integrating for real-time rapid
prototyping 1-34

integrating for system simulation 1-30
algorithms

verifying in context of complete real-time
target environment 1-61

APIs
timer services 15-5

application modules
application-specific components 7-35
definition of 7-24
system-independent components 7-29

ASAP2 files
customizing B-12
data attributes required for B-4
generating B-7
structure of B-19
targets supporting B-3

assertion blocks
in generated code 2-33

asynchronous tasks
timers for 15-3

atomic subsystem 4-2
automatic S-function generation 11-14

See also S-function target

B
block states

Simulink data objects and 5-85
State Properties dialog box and 5-80
storage and interfacing 5-78
storage classes for 5-79
symbolic names for 5-82

block-based code integration 2-150
with S-functions 10-92

blocks
Custom Code 14-2
depending on absolute time A-5
Model Header 14-3
Model Source 14-3
Rate Transition 8-13
scope 2-31
to file 2-31
to workspace 2-31

Browse button
on Real-Time Workshop pane 2-60

buffer reuse option 9-42
build directory

contents of 2-98
naming convention 2-97

build directory optional contents
C API files 2-98
HTML report files 2-98
model.rtw 2-98
object files 2-98
subsystem code modules 2-98
TLC profiler files 2-98

build process
controlling 2-134
files and directories created 2-92
steps in 2-87

build specification 10-103

Index-1

Index

C
C API

files used in 17-5
for S-functions 15-5
generating files 17-3
introduction 17-2
mapping to real-time model 17-17
using for your application 17-18

C language
selecting 2-61

C++ language
selecting 2-61

calibration
of an embedded computing unit (ECU) 1-70

checksums
and S-Function target 11-20
for models 11-20
subsystem 11-20

code
developing 1-48
integrating 1-57
integrating existing 2-150

block-based mechanisms for 2-150
build support for 10-92
mechanisms for 2-152

code files
porting 2-155
relocating 2-155

code format
choosing 3-10
embedded 3-18
real-time 3-14
real-time malloc 3-16
S-function 3-18

code generation 2-1
and simulation parameters 2-27
from nonvirtual subsystems 4-2

code generation options
Application lifespan (days) 9-53
Boolean logic signals 9-41
buffer reuse 9-42

See also signal storage reuse 9-42
Compiler optimization level 2-61
create code generation report 2-64
Custom compiler optimization flags 2-61
expression folding 9-9
Generate makefile option 2-62
GRT compatible call interface 3-23
inline invariant signals 9-43
inline parameters 9-45
local block outputs 9-42

See also signal storage reuse 9-42
loop rolling threshold 9-47
MAT-file variable name modifier 2-75
retain .rtw file 2-72
show eliminated blocks 2-66
signal storage reuse 9-41

See also local block outputs 9-41
Solver pane 2-28
TLC options 2-62
Use memcpy for vector assignment 9-49
verbose builds 2-72
Workspace I/O pane 2-29

code reuse
diagnostics for 4-16
enabling 4-12

code tracing
by using hilite_system command 2-147
by using HTML reports 2-147

code, generated
testing in software environment 1-54
verifying in target environment 1-57

combining models
by using grt_malloc target 17-49
in Real-Time Workshop Embedded Coder

target 17-49

Index-2

Index

communication
external mode 6-2
external mode API for 17-32

compilation 2-130
customizing 2-131

compiler
configuring 2-18

compiler options
specifying 2-131

compilers
list of supported 2-18
MEX 2-18
optimization settings C-2
supported for generating C code with

emlc 18-8
supported for generating MEX functions

with emlc 18-8
version mismatches for C-2

component models
integrating for real-time rapid

prototyping 1-34
integrating for system simulation 1-30
verifying in context of complete real-time

target environment 1-61
components

integrating system 1-67
concept models

refining with standalone rapid
simulations 1-24

configuration parameters
TargetLibSuffix

controlling suffix applied to library
names with 2-137

TargetPreCompLibLocation
controlling location of precompiled

libraries with 2-135

Configuration Parameters dialog box 2-27
Data Import/Export pane 2-29
Real-Time Workshop pane 2-59

configuring code generation parameters
with 2-58

specifying nonvirtual code generation
with 4-2

Solver options pane 2-28
configuring data logging 2-29
continuous states, integration of 7-28
controller models

integrating for real-time rapid
prototyping 1-34

integrating for system simulation 1-30
controllers

verifying in context of complete real-time
target environment 1-61

counters
in triggered subsystems 15-4
time 15-2

Create code generation report 2-64
cross-development

relocating files for 2-155
custcode command 14-2
custom code

block-based integration with generated
code 2-150

build support for 10-92
integrating with C MEX S-functions 10-25
integrating with generated code 2-150
integration with generated code 2-152

Custom Code blocks 14-2
example 14-6
in subsystems 14-9

Custom Code library
overview 14-2

Index-3

Index

D
data logging

by using scope blocks 2-31
by using to file blocks 2-31
by using to workspace blocks 2-31
in single- and multitasking models 2-32
to MAT-files 2-29

data representation and storage
deciding on 1-38

Data Store Memory blocks
Simulink data objects and 5-90

data structures in generated code
block I/O 7-22
block parameters 7-22
block states 7-22
external inputs 7-22
external outputs 7-22

declaration code 14-5
design

developing 1-38
design specification

developing 1-28
designs

documenting 1-29
designs, model

optimizing for specific hardware with
on-target rapid prototyping 1-43

direct-index lookup table
algorithm 10-32
example 10-33

directories
used in build process 2-18

directory
precompiled library 10-102

discrete states
initializing 5-60

domain
installing products for 1-28

dt_info.h 2-115

E
elapsed time computation 15-2
elapsed time counters 15-2

in triggered subsystems 15-4
elapsed timer

example 15-10
embedded computing unit (ECU)

calibrating 1-70
Embedded MATLAB blocks

and Stateflow optimizations 9-48
Embedded MATLAB Coder

combining property specifications 18-36
specifying general properties of primary

inputs 18-36
Embedded MATLAB Language Subset

for algorithm development 1-5
embedded microprocessor

as target environment 1-9
embedded systems

developing code for 1-48
emlc

supported compilers for generating C
code 18-8

supported compilers for generating MEX
functions 18-8

encrypted models
protecting with intellectual property

with 1-53
Euler integration algorithm 7-29
examples

direct-index lookup table 10-33
multiport S-function 10-23

execution code 14-5
exit code 14-5
Expression folding 9-9

configuring options for 9-13
in S-Functions 10-57

ext_work.h 2-116

Index-4

Index

external mode 6-2
architecture 6-31
baud rates 6-16
blocks compatible with 6-26
client-server architecture 17-32
command line options for target

program 6-40
communication channel creation 17-32
communications overview 17-35
configuration parameter options 6-4
control panel options 6-12
data archiving options 6-21
design of 17-32
download mechanism 6-29
ext_comm MEX-file

optional arguments to (serial) 6-38
optional arguments to (TCP/IP) 6-35
rebuilding 17-43

host and target systems in 6-2
menu and toolbar items and keyboard

shortcuts 6-7
parameter downloading options 6-23
Signal Viewing Subsystems in 6-27
signals and triggering options 6-16
target communications options 6-14
TCP implementation 6-33
transport layer 17-35
using with VxWorks 13-17

external mode API
host source files 17-37
implementing transport layer 17-41
target source files 17-39

External Target Interface dialog box
MEX-file arguments 6-16

F
files

for inlined S-functions 10-26
generated. See generated files

fixedpoint.h 2-116
float.h 2-113
From File block

specifying signal data file for 12-28
functions

rtw_precompile_libs 10-101
ssSetChecksumVal 11-20

G
general code appearance options

Maximum identifier length 2-66
Reserved names 2-66

generated code
compiling and linking 2-130
include path specification 2-124
operations performed by 7-30
profiling 2-128
testing in software environment 1-54
verifying in target environment 1-57

Index-5

Index

generated files 2-92
contents of 2-107
dependencies among 2-107
model (UNIX executable) 2-95
model.c 2-93
model_capi.c 2-96
model_capi.h 2-96
model_data.c 2-94
model_dt.h 2-96
model.exe (PC executable) 2-95
model.h 2-93
model.mdl 2-92
model.mk 2-95
model_private.h 2-94
model.rtw 2-93
model_targ_data_map.m 2-96
model_target_rtw 2-97
model_types.h 2-94
modelsources.txt 2-96
rt_nonfinite.c 2-95
rt_nonfinite.h 2-95
rt_sfcn_helper.c, 2-97
rt_sfcn_helper.h 2-97
rtmodel.h 2-95
rtw_proj.tmw 2-95
rtwtypes.h 2-95
subsystem.c 2-96
subsystem.h 2-96

generated S-functions
tunable parameters in 11-11

H
hand-written code

block-based integration with generated
code 2-150

build support for 10-92
integrating with generated code 2-150
integration with generated code 2-152

hardware-in-the-loop (HIL) testing
as an application of Real-Time Workshop

technology 1-13
compared with other types of in-the-loop

testing 1-19
verifying system integration with 1-67

header files
dependencies of

model.h 2-112
rtwtypes.h 2-109

hook interface
for profiling generated code 2-128

host
in external mode 6-2

host computer
as target environment 1-9

host-based simulation
compared to standalone rapid simulations

and prototyping 1-18
validating requirements with 1-23

I
in-the-loop testing

types of 1-19
include paths

specifying 2-124
initial values

tunable 5-68
initialization

of signals and discrete states 5-60
inlined S-functions 10-23

with mdlRTW routine 10-30
Inport block

latch options
generated code for option 2-53

specifying signal data file for 12-31
integration, code 2-152

block-based 2-150
build support for 10-92

Index-6

Index

integration, software
verifying 1-64

intellectual property
protecting with encrypted models 1-53

interrupt service routine
under VxWorks 8-4

interrupt service routines 16-6
interrupts

handling 16-6
intOnlyBuild field 10-103

L
Language option

description of 2-61
Latch input by copying inside signal option

generated code for 2-53
Latch input by delaying outside signal

generated code for 2-53
latches

generated code for 2-53
legacy code

block-based integration with generated
code 2-150

build support for 10-92
integrating with C MEX S-functions 10-25
integrating with generated code 2-150
integration with generated code 2-152

Legacy Code Tool
deploying S-functions generated with 10-29
generating code with 10-25

legacy_code function
addressing file dependencies for code

generation 10-28
LibAddToCommonIncludes function

using for S-function build support 10-95
LibAddToModelSources function

using for S-function build support 10-95

libraries
controlling suffix applied to names of 2-137
model reference

controlling the location of 2-136
precompiled

controlling the location of 2-135
S-function

precompiling 10-101
suffixes for 10-103

local block outputs option 9-42

M
make_rtw 2-63
makefile 2-89

customizations 2-134
options for 10-104

makefile commands
USE_MDLREF_LIBPATHS

controlling location of model reference
libraries with 2-136

makeInfo.precompile rtwmakecfg field 10-102
makeOpts field 10-104
MAT-files

file naming convention 2-30
logging data to 2-29
variable names in 2-31

math.h 2-114
mdlRTW routine

writing inlined S-functions 10-30
MEX S-function wrapper

definition 10-12
model (on UNIX) 2-95
Model blocks

in Real-Time Workshop 4-26
model code

execution of 7-34
model compiling process 2-88
model design specification

developing 1-28

Index-7

Index

model designs
documenting 1-29
optimizing for specific hardware with

on-target rapid prototyping 1-43
model encryption

as an application of Real-Time Workshop
technology 1-13

model execution
in real time 8-11
in Simulink 8-11
Simulink versus real-time 8-10

Model Header block 14-3
Model Parameter Configuration dialog box

tunable parameters and 5-2
using 5-10

model reference
code generation 4-26
compatibility of top and referenced

models 4-30
inherited sample time and 4-41
parameter interfacing 4-38
project directory structure and 4-28
signal interfacing 4-37
subsystem code reuse and 4-42

model reference libraries
controlling location of 2-136

model registration function 7-34
Model Source block 14-3
model.bat 2-96
model.c 2-93
model_capi.c 2-96
model_capi.h 2-96
model_data.c 2-94
model_dt.h 2-96
model.h 2-93
model.mdl 2-92
model.mk 2-95
model_private.h 2-94
model.rtw 2-93

model_targ_data_map.m 2-96
model_target_rtw 2-97
model_types.h 2-94
models

checking against best practices 1-41
checksums for 11-20
code files for

porting 2-155
relocating 2-155

encrypted 1-53
getting reviews of 1-41
integrating for real-time rapid

prototyping 1-34
integrating for system simulation 1-30
protecting intellectual property in 1-53

models code integration
code integration for 2-152

modelsources.txt 2-96
multiple models

combining 17-49
multiport S-function example 10-23
multitasking

automatic rate transition 8-18
building program for 8-9
enabling 8-9
example model 8-27
execution 8-30
inserted rate transition block HTML

report 8-20
model execution 8-5
operation 8-12
task identifiers in 8-5
task priorities 8-5
versus single-tasking 8-3

N
noninlined S-functions 10-9

Index-8

Index

nonvirtual subsystem code generation
Auto option 4-4
Function option 4-8
Inline option 4-6
Reusable function option 4-12

nonvirtual subsystems
atomic 4-2
categories of 4-2
conditionally executed 4-2
modularity of code generated from 4-14

O
on-target rapid prototyping

as an application of Real-Time Workshop
technology 1-13

optimizing model designs for specific
hardware with 1-43

operating system
tasking primitives 7-10

optimization pane
Stateflow and Embedded MATLAB

options 9-48

P
parameters

interfacing 5-2
storage declarations 5-2
TargetPreCompLibLocation 10-102
tunable 5-2
tuning 5-2

performance
of generated code 2-128

periodic tasks
timers for 15-3

persistent signals
initialization of 5-66

precompiled libraries
controlling location of 2-135

priority
of sample rates 8-6

processor-in-the-loop (PIL) testing
as an application of Real-Time Workshop

technology 1-13
compared with other types of in-the-loop

testing 1-19
verifying software integration with 1-64

production code generation
as an application of Real-Time Workshop

technology 1-13
ProfileGenCode variable 2-129
ProfilerTLC variable 2-129
program architecture

embedded 7-37
initialization functions 7-26
main function 7-26
model execution 7-27
program execution 7-14
program termination 7-27
program timing 7-13
rapid prototyping 7-24
real-time 7-24
termination functions 7-34

project directory 2-97
prototyping

types of 1-18
prototyping, rapid

integrating component models for 1-34
pseudomultitasking 8-6

Index-9

Index

R
rapid prototyping

as an application of Real-Time Workshop
technology 1-13

compared to simulations and on-target
prototyping 1-18

integrating component models for 1-34
optimizing model designs for specific

hardware with 1-43
rapid simulation

as an application of Real-Time Workshop
technology 1-13

rapid simulation target 12-2
batch simulations (Monte Carlo) 12-23
command line options 12-24
limitations 12-37
output filename specification 12-36
parameter structure access 12-27
signal data file specification for From File

block 12-28
signal data file specification for Inport

block 12-31
rapid simulations

refining concept models with 1-24
rapid simulations, standalone

compared to host-based simulations and
prototyping 1-18

rate transition block
and continuous sample time 8-20

Rate Transition block 8-13
auto-insertion of 8-18
HTML report of automatically inserted 8-20

rate transitions
faster to slower 8-21
slower to faster 8-23

real time
executing models in 8-11
integrating continuous states in 7-28

real-time malloc target 3-16
combining models with 17-49

Real-time model
description 7-31

real-time model data structure 3-19
real-time simulator

as target environment 1-9
Real-Time Workshop

configuring code generation parameters 2-58
parameters

interfacing 5-2
storage 5-2
tuning 5-2

specifying nonvirtual code generation 4-2
third-party compilers

configuration C-1
support 2-18

Real-Time Workshop Embedded Coder product
application examples of 1-3
key capabilities of 1-3

Real-Time Workshop pane 2-59
Language option 2-61
opening 2-59
overview 2-58
target configuration options

Browse button 2-60
generate code only option 2-64
Generate makefile 2-62
make command field 2-63
system target file field 2-61
template makefile field 2-63
TLC options 2-62

Real-Time Workshop product
application examples of 1-3
key capabilities of 1-3

Real-Time Workshop technology
applications of 1-13
introduction to 1-2
products associated with 1-2

referenced models
code generation incompatibilities 4-30
generating code for 4-26

Index-10

Index

registration files
multiple

for code generation 10-28
requirements

documenting 1-21
validating with host-based simulation 1-23
validating with traceability 1-21

reset value
initial value as 5-67

root models
Custom Code blocks in 14-3

rsim
See rapid simulation target 12-2

rt_logging.h 2-116
rt_nonfinite.c 2-95
rt_nonfinite.h 2-95
rt_sfcn_helper.c 2-97
rt_sfcn_helper.h 2-97
rtm macros 3-19
rtModel 3-19
rtmodel.h 2-95
rtw_continuous.h 2-117
rtw_extmode.h 2-117
rtw_local_blk_outs 5-35
rtw_matlogging.h 2-117
rtw_precompile_libs function 10-101
rtw_proj.tmw 2-95
rtw_solver.h 2-117
RTWdata structure

inlining an S-function 10-31
rtwlib command 14-2
rtwmakecfg field

TargetPreCompLibLocation 10-102
rtwmakecfg.m

creating S-functions 10-96
generating for C MEX S-functions 10-28
using for S-functions 10-95

rtwmakecfgDirs field 10-103
rtwMakecftDirs field 10-103
rtwtypes.h 2-95

S
S-Function blocks

masked
configured to call existing external

code 10-25
S-function libraries

precompiling 10-101
S-function target 3-18

applications of 11-2
automatic S-function generation 11-14
generating reusable components with 11-5
intellectual property protection in 11-3
tunable parameters in 11-11

S-Function target
checksums and 11-20

S-functions
API 7-34
build support for 10-92
creating rtwmakecfg.m for 10-96
deploying generated 10-29
fully inlined with mdlRTW routine 10-30
generating automatically 11-14
implicit build support for 10-93
inlined 10-23

generated with Legacy Code Tool 10-25
generating files for 10-26

models containing 7-34
modifying TMF for 10-99
noninlined 7-34 10-9
setting SFunctionModules parameter

for 10-93
that work with Real-Time Workshop 10-2
types of 10-4
using rtwmakecfg.m for 10-95
using TLC library functions for 10-95
wrapper 10-12

sample rate transitions 8-13
faster to slower

in real-time 8-21

Index-11

Index

in Simulink 8-21
slower to faster

in real-time 8-24
in Simulink 8-23

sample time constraints
setting for multitasking 8-5

sample time properties
setting for multitasking 8-5

SFunctionModules parameter
setting 10-93

signal data
specifying for From File block 12-28
specifying for Inport block 12-31

signal initialization
in generated code 5-66

signal objects
initializing 5-60

signal properties 5-28
setting by using Signal Properties dialog

box 5-28
signal storage reuse option 9-41
Signal Viewing Subsystems 6-27
signals

initializing 5-60
simstruc.h 2-118
simstruc_types.h 2-118
SimStruct data structure

and global registration function 7-34
definition of 7-30

simulation
integrating component models for 1-30
types of 1-18
validating requirements with 1-23

simulations
refining concept models with 1-24

Simulink
and Real-Time Workshop

adjusting configuration parameters 2-27
block execution order 2-53
interactions to consider 2-49

sample time propagation 2-51
using data objects 5-46
using parameter objects 5-47
using signal objects 5-55

for algorithm development 1-5
simulation parameters

and code generation 2-27
Simulink data objects 5-46

parameter objects 5-47
signal objects 5-55

single-tasking 8-9
building program for 8-9
enabling 8-10
example model 8-27
execution 8-28
operation 8-12

slprj directory 2-97
software

integrating 1-57
software design

developing 1-38
software environment

testing generated code in 1-54
software integration

verifying 1-64
software-in-the-loop (SIL) testing

as an application of Real-Time Workshop
technology 1-13

compared with other types of in-the-loop
testing 1-19

verifying generated code in software
environment with 1-54

specification
developing 1-28

ssSetChecksumVal function 11-20
standalone rapid simulations

refining concept models with 1-24
states, discrete

initializing 5-60
<stddef.h> 2-114

Index-12

Index

<stdio.h> 2-114
<stdlib.h> 2-115
step size

of real-time continuous system 7-29
StethoScope

See VxWorks 13-16
storage classes

required for signal initialization 5-61
<string.h> 2-115
subsystem

nonvirtual 4-2
subsystem.c 2-96
subsystem.h 2-96
subsystems

checksums for 11-20
custom code blocks in 14-9

suffixes
precompiled library 10-103

<sysran_types.h> 2-118
system

integrating components of 1-67
System Derivatives function block 14-5
System Disable function block 14-4
System Enable function block 14-4
System Initialize function block 14-4
system integration

verifying 1-67
System Outputs function block 14-4
system simulation

as an application of Real-Time Workshop
technology 1-13

integrating component models for 1-30
System Start function block 14-4
system target file 2-88
System Target File Browser 2-3
system target files

selecting programmatically 2-4
System Terminate function block 14-4
System Update function block 14-4

T
target

rapid simulation
See rapid simulation target 12-2

real-time malloc
See real-time malloc target 3-16

target environment
verifying generated code in 1-57

target environments 1-9
target file

system 2-88
Target function library option

relationship to TGT_FCN_LIB
variable 2-131

Target Language Compiler
function library 2-88
generation of code by 2-88
TLC scripts 2-88

target-based (on-target) rapid prototyping
compared to simulations and rapid

prototyping 1-18
target-based code integration 2-152
TargetLibSuffix parameter

controlling suffix applied to library names
with 2-137

TargetPreCompLibLocation parameter 10-102
controlling location of precompiled libraries

with 2-135
targets

available configurations 2-5
selecting programmatically 2-4

task
spawning 16-14

task identifier (tid) 8-5
template makefile

compiler-specific 2-10

Index-13

Index

template makefile options
LCC 2-15
UNIX 2-12
Visual C++ 2-13
Watcom 2-14

template makefile variables
TGT_FCN_LIB 2-131

testing
types of 1-19

TGT_FCN_LIB template makefile variable 2-131
time counters 15-2

in triggered subsystems 15-4
timer, elapsed

example 15-10
timers 15-2

allocation of 15-3
APIs for accessing 15-5
integer 15-3

timing services 15-2
TLC API

for code generation 15-8
TLC block file

generating for C MEX S-functions 10-26
TLC hook function interface

for profiling generated code 2-128
TLC library functions

using for inlined S-functions 10-95
TMFs

modifying for S-functions 10-99
Tornado

See VxWorks 13-1
traceability

for validating requirements 1-21
tunable expressions 5-2 5-14

in masked subsystems 5-14
operators, restrictions on 5-16

tunable parameters
in signal initial values 5-68

U
USE_MDLREF_LIBPATHS command

controlling location of model reference
libraries with 2-136

user code
block-based integration with generated

code 2-150
build support for 10-92
integrating with generated code 2-150
integration with generated code 2-152

utassert 2-33

V
V-model

applying Real-Time Workshop technology
to 1-16

Variables
ProfileGenCode 2-129
ProfilerTLC 2-129

VxWorks
application

building 13-22
application architecture 13-4
application implementation 13-12
automatic download 13-22

specifying 13-17
automatic downloading

configuring for 13-20
automatic execution 13-22
base task priority

specifying 13-17
block library 13-3
code generation options

specifying 13-13
communication tasks 13-8
configuration 13-10

verifying 13-11
CPU

Index-14

Index

specifying 13-19
device driver blocks

adding 13-12
execution tasks 13-7
external mode tasks 13-9
files

downloading 13-24
generated code format

specifying 13-16
GNU tools for 13-19
hardware architecture 13-4
header file paths

resolving 13-20
host processes 13-6
installation 13-10
manual download 13-24
manual execution 13-24
MAT-file logging

specifying 13-15
module architecture 13-6
multitasking 13-8
optStr

passing 13-27
program

starting 13-25
resetting 13-24
resources for applications 13-2
rt_main

calling 13-27
Simulink external mode 13-17
Simulink model

designing 13-12
single-tasking 13-7
software architecture 13-5
solver

specifying 13-14
StethoScope monitoring

specifying 13-16
StethoScope tasks 13-8
target 13-4

connecting to 13-10
downloading to 13-24

target type
specifying 13-19

target-specific options
setting 13-15

task priority 13-8
task stack size

specifying 13-17
tasks created by 13-7
template makefile 13-19

configuring 13-19
tool locations 13-19
Tornado environment 13-2
Tornado target 13-3

selecting 13-13
vxlib library obsolete 13-3

VxWorks task
spawning 16-14

W
working directory 2-97
wrapper S-functions 10-12

Index-15

	toc
	Introduction to Real-Time Workshop Technology
	What You Can Accomplish Using Real-Time Workshop Technology
	How the Technology Can Fit Into Your Development Process
	Tools for Algorithm Development
	Target Environments
	Applications

	How You Can Apply the Technology to the V-Model for System Devel
	What Is the V-Model?
	Types of Simulation and Prototyping
	Types of In-the-Loop Testing for Verification and Validation

	Documenting and Validating Requirements
	Documenting Requirements
	Prerequisites and Goals
	Mapping of Engineering Tasks to Related Product Information

	Validating Requirements with Traceability
	Prerequisites and Goals
	Mapping of Engineering Tasks to Related Product Information

	Validating Requirements with Host-Based Simulation
	Prerequisites and Goals
	Mapping of Engineering Tasks to Related Product Information

	Refining Concept Models with Standalone Rapid Simulations
	Prerequisites and Goals
	Approaches for Applying Real-Time Workshop Technology
	Mapping of Engineering Tasks to Related Product Information

	Developing a Model Design Specification
	Do You Have the Correct Products Installed for Modeling Your Dom
	Prerequisites and Goals
	Mapping of Engineering Tasks to Related Product Information

	Documenting Model Designs
	Prerequisites and Goals
	Mapping of Engineering Tasks to Related Product Information

	Integrating Component Models for System Simulation
	Prerequisites and Goals
	Approaches for Applying Real-Time Workshop Technology
	Mapping of Engineering Tasks to Related Product Information

	Integrating Component Models Into a System for Real-Time Rapid P
	Prerequisites and Goals
	Approaches for Applying Real-Time Workshop Technology
	Mapping of Engineering Tasks to Related Product Information

	Developing a Detailed Software Design
	Deciding on Data Representation and Storage
	Prerequisites and Goals
	Mapping of Engineering Tasks to Related Product Information

	Checking Models Against Best Practices
	Prerequisites and Goals
	Mapping of Engineering Tasks to Related Product Information

	Optimizing a Design for Specific Hardware with On-Target Rapid P
	Prerequisites and Goals
	Approach for Applying Real-Time Workshop Technology
	Mapping of Engineering Tasks to Related Product Information

	Developing the Application Code
	Developing Code for Embedded Systems
	Prerequisites and Goals
	Approach for Applying Real-Time Workshop Technology
	Mapping of Engineering Tasks to Related Product Information

	Developing Encrypted Models to Protect Intellectual Property
	Prerequisites and Goals
	Mapping of Engineering Tasks to Related Product Information

	Testing the Generated Code in a Software Environment
	Prerequisites and Goals
	Approaches for Applying Real-Time Workshop Technology
	Mapping of Engineering Tasks to Related Product Information

	Integrating Software
	Verifying Component Production Code in the Target Environment
	Prerequisites and Goals
	Approaches for Applying Real-Time Workshop Technology
	Mapping of Engineering Tasks to Related Product Information

	Verifying Component by Building a Complete Real-Time Target Envi
	Prerequisites and Goals
	Approach for Applying Real-Time Workshop Technology
	Mapping of Engineering Tasks to Related Product Information

	Verifying Software Integration
	Prerequisites and Goals
	Approaches for Applying Real-Time Workshop Technology
	Mapping of Engineering Tasks to Related Product Information

	Integrating and Calibrating System Components
	Verifying System Integration
	Prerequisites and Goals
	Approaches for Applying Real-Time Workshop Technology
	Mapping of Engineering Tasks to Related Product Information

	Calibrating the ECU
	Prerequisites and Goals
	Mapping of Engineering Tasks to Related Production Information

	Code Generation and the Build Process
	Choosing and Configuring Your Target
	Introduction
	Selecting a System Target File
	Selecting a System Target File Programmatically
	Available Targets
	Targets Supporting Nonzero Start Time

	Creating Custom Targets
	Template Makefiles and Make Options
	Template Makefiles for UNIX Platforms
	Template Makefiles for the Microsoft Visual C++ Compiler
	Template Makefiles for the Watcom C/C++ Compiler
	Template Makefiles for the LCC Compiler
	Enabling the Real-Time Workshop Software to Build When Path Name

	Choosing and Configuring a Compiler
	Compilers and the Build Process
	The Real-Time Workshop Product and ANSI 12 C/C++ Compliance
	Support for C and C++ Code Generation
	C++ Target Language Limitations

	Support for International (Non-US-ASCII) Characters
	Additional Support with Real-Time Workshop Embedded Coder
	Character Set Limitation

	C++ Target Language Considerations
	Choosing and Configuring Your Compiler on a Microsoft Windows Pl
	Choosing and Configuring Your Compiler on The Open Group UNIX Pl
	Including S-Function Source Code

	Adjusting Simulation Configuration Parameters for Code Generatio
	Introduction
	Configuring the Solver
	Configuring Start and Stop Times
	Configuring the Solver Type
	Configuring the Tasking Mode

	Configuring a Model for Data Logging
	Configuring a Model to Log States, Time, and Output
	Logging Data with Scope and To Workspace Blocks
	Logging Data with To File Blocks
	Data Logging Differences in Single- and Multitasking Models

	Configuring Optimizations
	Configuring Diagnostics
	Detecting Loss of Tunability
	Enabling Model Verification Blocks

	Describing Hardware Properties
	Describing the Emulation and Embedded Targets
	Describing Embedded Hardware Characteristics
	Describing Emulation Hardware Characteristics

	Configuring Referenced Models
	Interactions of the Simulink and Real-Time Workshop Products to
	Sample Time Propagation
	Latches for Subsystem Blocks
	Block Execution Order
	Algebraic Loops

	Configuring Real-Time Workshop Code Generation Parameters
	Introduction
	Opening the Real-Time Workshop Pane
	Selecting a Target Configuration
	Configuring the Target Language for Generated Code
	Configuring the Build Process
	Controlling Compiler Optimization Level and Specifying Custom Op
	Specifying TLC Options
	Specifying Whether To Generate a Makefile
	Specifying a Make Command
	Specifying the Template Makefile
	Generating Code Only

	Configuring Report Generation
	Configuring Code Comments
	Configuring Generated Identifiers
	Reserved Keywords

	Configuring Custom Code
	Troubleshooting the Build Process
	Configuring Model Interfaces
	Interface Dependencies

	Selecting and Viewing Target Function Libraries
	Selecting a Target-Specific Math Library for Your Model
	Function Replacement Table Overview
	Using the Target Function Library Viewer

	Build Process
	Build Process Steps
	Model Compilation
	Code Generation
	Customized Makefile Generation
	Executable Program Generation
	Files and Directories Created by the Build Process
	Files Created During Build Process
	Directories Used During the Build Process

	Configuring Generated Code with TLC
	Introduction
	Assigning Target Language Compiler Variables
	Setting Target Language Compiler Options

	Interacting with the Build Process
	Introduction
	Initiating the Build Process
	Construction of Symbols
	Generated Source Files and File Dependencies
	Header Dependencies When Interfacing Legacy/Custom Code with Gen
	Dependencies of the Model’s Generated code
	Specifying Include Paths in Real-Time Workshop Generated Source

	Reloading Code from the Model Explorer
	Rebuilding Generated Code
	Profiling Generated Code

	Customizing the Build Process
	Controlling the Compiling and Linking Phases of the Build Proces
	Cross-Compiling Code Generated on a Microsoft Windows System
	Controlling the Location and Naming of Libraries During the Buil
	Specifying the Location of Precompiled Libraries
	Controlling the Location of Model Reference Libraries
	Controlling the Suffix Applied to Library File Names

	Recompiling Precompiled Libraries
	Customizing Post Code Generation Build Processing
	Build Information Object
	Programming a Post Code Generation Command
	Defining a Post Code Generation Command
	Suppressing Makefile Generation

	Validating Generated Code
	Viewing Generated Code
	Viewing Generated Code in Generated HTML Reports
	Viewing Generated Code in Model Explorer

	Tracing Generated Code Back to Your Simulink Model

	Integrating Legacy and Custom Code
	Introduction
	Block-Based Integration
	Model or Target-Based Integration

	Relocating Code to Another Development Environment
	Introduction
	Deciding on a Structure for the Zip File
	Deciding on a Name for the Zip File
	Packaging Model Code Files in a Zip File
	Inspecting the Generated Zip File
	Relocating and Unpacking the Zip File
	Code Packaging Example
	packNGo Function Limitations

	Generated Code Formats
	Introduction
	Targets and Code Formats
	Introduction
	Backwards Compatibility of Code Formats
	How Symbols Are Formatted in Generated Code
	Model Referencing Considerations

	Choosing a Code Format for Your Application
	Real-Time Code Format
	Introduction
	Unsupported Blocks
	System Target Files
	Template Makefiles

	Real-Time malloc Code Format
	Introduction
	Unsupported Blocks
	System Target Files
	Template Makefiles

	S-Function Code Format
	Embedded Code Format
	Introduction
	Using the Real-Time Model Data Structure
	Making GRT-Based Targets ERT-Compatible
	Converting Your Target to Use rtModel
	Generating GRT Wrapper Code from the ERT target

	Building Subsystems and Working with Referenced Models
	Nonvirtual Subsystem Code Generation
	Introduction
	Nonvirtual Subsystem Code Generation Options
	Auto Option
	Inline Option
	Function Option
	Reusable Function Option

	Modularity of Subsystem Code
	Code Reuse Limitations
	Determining Why Subsystem Code Is Not Reused
	Reviewing the Subsystems Section of the HTML Code Generation Rep
	Comparing Subsystem Checksum Data

	Generating Code and Executables from Subsystems
	Generating Code for Model Referencing
	Introduction
	Overview of Referenced Model Code Generation
	Referenced Model Code Generation Tutorial

	Project Directory Structure for Model Reference Targets
	Building Model Reference Targets
	Reducing Change Checking Time

	Real-Time Workshop Model Referencing Requirements
	Configuration Parameter Requirements
	Naming Requirements
	Custom Target Requirements

	Storage Classes for Signals Used with Model Blocks
	Storage Classes for Parameters Used with Model Blocks
	Effects of Signal Name Mismatches

	Inherited Sample Time for Referenced Models
	Reusable Code and Referenced Models
	General Considerations
	Code Reuse and Model Blocks with Root Inport or Outport Blocks

	Customizing the Library File Suffix, Including the File Type Ext
	Real-Time Workshop Model Referencing Limitations
	Customization Limitations
	Data Logging Limitations
	Reusability Limitations
	S-Function Limitations
	Simulink Tool Limitations
	Subsystem Limitations
	Target Limitations
	Other Limitations

	Sharing Utility Functions
	Introduction
	Controlling Shared Utility Generation
	rtwtypes.h and Shared Utilities
	Incremental Shared Utility Generation and Compilation
	Shared Utility Checksum
	Shared Fixed-Point Utilities

	Supporting Shared Utility Directories in the Build Process
	Modifying Template Makefiles to Support Shared Utilities

	Working with Data
	Parameter Storage, Interfacing, and Tuning
	Introduction
	Nontunable Parameter Storage
	Tunable Parameter Storage
	Overriding Inlined Parameters for Tuning

	Tunable Parameter Storage Classes
	Using the Model Parameter Configuration Dialog Box
	Source List Panel
	Global (Tunable) Parameters Panel
	Declaring Tunable Variables

	Tunable Expressions
	Tunable Expressions in Masked Subsystems
	Tunable Expression Limitations

	Linear Block Parameter Tunability
	Code Reuse for Subsystems with Mask Parameters

	Parameter Configuration Quick Reference Diagram
	Generated Code for Parameter Data Types
	Tunable Workspace Parameter Data Type Considerations
	Guidelines for Specifying Data Types
	Limitations on Specifying Data Types in the Workspace Explicitly

	Parameter Tuning by Using MATLAB Commands

	Signal Storage, Optimization, and Interfacing
	Introduction
	Signal Storage Concepts
	The Global Block I/O Structure
	Signals Storage Classes

	Signals with Auto Storage Class
	Controlling Stack Space Allocation

	Signals with Test Points
	Interfacing Signals to External Code
	Symbolic Naming Conventions for Signals in Generated Code
	Summary of Signal Storage Class Options

	Parameter Tuning and Signal Monitoring
	Introduction
	Using the C API to Tune Parameters and Monitor Signals
	Using the Target Language Compiler API to Tune Parameters and Mo

	Simulink Data Objects and Code Generation
	Introduction
	Parameter Objects
	Configuring Parameter Objects for Code Generation
	Effect of Storage Classes on Code Generation for Parameter Objec
	Controlling Parameter Object Code Generation with Typed Commands
	Controlling Parameter Object Code Generation Using the Model Exp

	Parameter Object Configuration Quick Reference Diagram
	Signal Objects
	Configuring Signal Objects for Code Generation
	Effect of Storage Classes on Code Generation for Signal Objects
	Controlling Signal Object Code Generation By Using Typed Command
	Controlling Signal Object Code Generation By Using Model Explore

	Using Signal Objects to Initialize Signals and Discrete States
	Specifying an Initial Value for a Signal Object
	Signal Object Initialization in Generated Code
	Tunable Initial Values

	Resolving Conflicts in Configuration of Parameter and Signal Obj
	Parameters
	Signals and Block States

	Customizing Code for Parameter and Signal Objects
	Using Objects to Export ASAP2 Files

	Enumerated Data Types in Generated Code
	About Enumerated Data Types
	Default Code for an Enumerated Data Type
	Enumerated Type Safe Casting
	Overriding Default Methods (Optional)
	Specifying a Description
	Specifying a Header File
	Prefixing Class Names

	Enumerated Type Limitations

	Block State Storage and Interfacing
	Introduction
	Block State Storage
	Block State Storage Classes
	Default Storage Class
	Explicitly Assigned Storage Classes

	Using the State Properties Dialog Box to Interface States to Ext
	Symbolic Names for Block States
	Default Block State Naming Convention
	User-Defined Block State Names

	Block States and Simulink Signal Objects
	Summary of State Storage Class Options

	Storage Classes for Data Store Memory Blocks
	Data Store Memory and Simulink Signal Objects

	External Mode
	Introduction
	Using the External Mode User Interface
	External Mode Interface Options
	External Mode Related Menu and Toolbar Items
	Simulation Menu
	Toolbar Controls

	External Mode Control Panel
	Connecting, Starting, and Stopping
	Floating Scope Options

	Target Interfacing
	External Signal Uploading and Triggering
	Default Operation
	Signal Selection
	Trigger Options
	Trigger Signal Selection
	Setting Trigger Conditions

	Data Archiving
	Directory Notes
	File Notes
	Data Archiving

	Parameter Downloading

	External Mode Compatible Blocks and Subsystems
	Compatible Blocks
	Signal Viewing Subsystems

	External Mode Communications Overview
	Introduction
	Download Mechanism
	Inlined and Tunable Parameters
	Automatic Parameter Uploading on Host/Target Connection

	Client/Server Implementations
	Introduction
	Using the TCP/IP Implementation
	MEX-File Optional Arguments for TCP/IP Transport

	Using the Serial Implementation
	MEX-File Optional Arguments for Serial Transport

	Running the External Program
	Running the External Program Under the Windows Environment
	Running the External Program Under the UNIX Environment
	Command-Line Options for the External Program

	Implementing an External Mode Protocol Layer

	Using External Mode Programmatically
	External Mode Limitations
	Limitations on Changing Parameters
	Limitation on Mixing 32-bit and 64-bit Architectures
	Limitations on Uploading Data

	Program Architecture
	Introduction
	Model Execution
	Introduction
	Models for Non-Real-Time Single-Tasking Systems
	Models for Non-Real-Time Multitasking Systems
	Models for Real-Time Single-Tasking Systems
	Models for Real-Time Multitasking Systems
	Models for Multitasking Systems that Use Real-Time Tasking Primi
	Program Timing
	Program Execution
	External Mode Communication
	Data Logging in Single-Tasking and Multitasking Model Execution
	Rapid Prototyping and Embedded Model Execution Differences
	Rapid Prototyping Model Functions
	Embedded Model Functions

	Rapid Prototyping Program Framework
	Introduction
	Rapid Prototyping Program Architecture
	Rapid Prototyping System-Dependent Components
	The main Function
	Initialization
	Model Execution
	Program Termination
	Rapid Prototyping Application Modules for System-Dependent Comp

	Rapid Prototyping System-Independent Components
	Model Execution
	Integration of Continuous States
	Application Modules for System-Independent Components

	Rapid Prototyping Application Components
	The Real-Time Model Data Structure
	Rapid Prototyping Model Code Functions
	The Model Registration Function
	Models Containing S-Functions
	Code Generation and S-Functions
	Inlining S-Functions
	Application Modules for Application Components

	Embedded Program Framework

	Models with Multiple Sample Rates
	Introduction
	Single-Tasking and Multitasking Execution Modes
	Introduction
	Executing Multitasking Models
	Multitasking and Pseudomultitasking Modes
	Building a Program for Multitasking Execution
	Single-Tasking Mode
	Building a Program for Single-Tasking Execution
	Model Execution and Rate Transitions
	Simulating Models with the Simulink Product
	Executing Models in Real Time
	Single-Tasking Versus Multitasking Operation

	Sample Rate Transitions
	Introduction
	Data Transfer Problems
	Data Transfer Assumptions
	Rate Transition Block Options
	Automatic Rate Transition
	Rate Transition Blocks and Continuous Time

	Faster to Slower Transitions in a Simulink Model
	Faster to Slower Transitions in Real Time
	Slower to Faster Transitions in a Simulink Model
	Slower to Faster Transitions in Real Time

	Single-Tasking and Multitasking Execution of a Model: an Example
	Introduction
	Single-Tasking Execution
	Real-Time Single-Tasking Execution
	Simulated Single-Tasking Execution

	Multitasking Execution
	Real-Time Multitasking Execution
	Simulated Multitasking Execution

	Optimizing a Model for Code Generation
	Optimization Parameters Overview
	Optimizing Models
	Getting Advice About Optimizing Models for Code Generation
	Demos Illustrating Optimizations
	Other Optimization Tools and Techniques
	Minimizing Memory Requirements for Parameters and Data During Co

	Minimizing Computations and Storage for Intermediate Results
	Introduction
	Expression Folding Example
	Using and Configuring Expression Folding
	Enabling Expression Folding
	Expression Folding Options

	Block Diagram Performance Tuning
	Introduction
	Lookup Tables and Polynomials
	Multichannel Nonlinear Signal Conditioning
	Compute-Intensive Equations
	Tables with Repeated Points
	Slowly Versus Rapidly Changing Look-Up Table Block Inputs
	Multiple Tables with Common Inputs

	Reducing the Number of Blocks in a Model
	Accumulators
	Removal of Redundant Type Conversions
	Dead Code Elimination
	Fast-to-slow Rate Transition block in a single-tasking system

	Optimizing Code for Switch Blocks
	Optimizing Data Type Usage
	Additional Integer and Fixed-Point Optimizations
	Generating Pure Integer Code with the Real-Time Workshop Embedde
	Optimizing Integer Code with the Simulink Fixed Point and Statef

	Optimizing Signals
	Implementing Logic Signals as Boolean Data
	Reducing Memory Requirements for Signals
	Declaring Signals as Local Function Data
	Reusing Memory Allocated for Signals
	Inlining Invariant Signals

	Inlining Parameters
	Referenced Models

	Configuring a Loop Unrolling Threshold
	Optimizing Code Generated for Vector Assignments
	Overview
	Example: Using memcpy for Vector Assignments

	Controlling Memory Allocation for Time Counters
	Optimizing Code Resulting from Floating-Point to Integer Convers
	Removing Code That Wraps Out-of-Range Values
	Removing Code That Maps NaN Values to Integer Zero

	Optimization Dependencies

	Writing S-Functions for Real-Time Workshop Code Generation
	Introduction
	About S-Functions
	Additional Information
	Classes of Problems Solved by S-Functions
	Types of S-Functions
	Noninlined S-Functions
	Wrapper S-Functions
	Fully Inlined S-Functions

	Basic Files Required for Implementation
	Guidelines for Writing S-Functions for Use with Real-Time Worksh

	Writing Noninlined S-Functions
	About Noninlined S-Functions
	Guidelines for Writing Noninlined S-Functions
	Noninlined S-Function Parameter Type Limitations

	Writing Wrapper S-Functions
	About Wrapper S-Functions
	MEX S-Function Wrapper
	TLC S-Function Wrapper
	Code Overhead for Noninlined S-Functions
	How to Inline

	The Inlined Code

	Writing Fully Inlined S-Functions
	Multiport S-Function Example

	Automating the Generation of Files for Fully Inlined S-Functions
	Legacy Code Tool and Code Generation
	Generating Inlined S-Function Files for Code Generation Support
	singleCPPMexFile Limitations

	Applying Model Code Style Settings to Legacy Functions
	singleCPPMexFile Limitations

	Addressing Dependencies on Files in Different Locations
	Deploying Generated S-Functions for Simulation and Code Generati

	Writing Fully Inlined S-Functions with the mdlRTW Routine
	About S-Functions and mdlRTW
	S-Function RTWdata
	The Direct-Index Lookup Table Algorithm
	The Direct-Index Lookup Table Example
	Error Handling
	User Data Caching
	mdlRTW Usage
	matlabroot /simulink/src/sfun_directlook.c
	matlabroot /simulink/src/lookup_index.c
	matlabroot /toolbox/simulink/blocks/tlc_c/sfun_directlook.tlc

	Guidelines for Writing Inlined S-Functions
	Writing S-Functions That Support Expression Folding
	Introduction
	Categories of Output Expressions
	Examples of Trivial and Generic Output Expressions
	Specifying the Category of an Output Expression

	Acceptance or Denial of Requests for Input Expressions
	Example: Acceptance and Denial of Expressions at Block Inputs
	Using the S-Function API to Specify Input Expression Acceptance
	Generic Conditions for Denial of Requests to Output Expressions

	Utilizing Expression Folding in Your TLC Block Implementation
	Expression Folding Compliance
	Outputting Expressions
	Expression Folding for Blocks with Multiple Outputs
	Comments for Blocks That Are Expression-Folding-Compliant

	Writing S-Functions That Specify Port Scope and Reusability
	Writing S-Functions That Specify Sample Time Inheritance Rules
	Writing S-Functions That Support Code Reuse
	Writing S-Functions for Multirate Multitasking Environments
	Introduction
	Rate Grouping Support in S-Functions
	Creating Multitasking-Safe, Multirate, Port-Based Sample Time S-
	Rules for Properly Handling Fast-to-Slow Transitions
	Pseudocode Examples of Fast-to-Slow Rate Transition
	Rules for Properly Handling Slow-to-Fast Transitions
	Pseudocode Examples of Slow-to-Fast Rate Transition

	Integrating C and C++ Code
	Build Support for S-Functions
	Introduction
	Implicit Build Support
	Specifying Additional Source Files for an S-Function
	Using TLC Library Functions
	Using the rtwmakecfg.m API to Customize Generated Makefiles
	Overview
	Creating the rtwmakecfg.m M-File Function
	Modifying the Template Makefile
	Precompiling S-Function Libraries

	S-Function Target
	Introduction
	S-Function Target Overview
	Intellectual Property Protection for S-Function in Simulation
	Required Files for S-Function Deployment
	Sample Time Propagation in Generated S-Functions
	Choice of Solver Type

	Creating an S-Function Block from a Subsystem
	Tunable Parameters in Generated S-Functions
	Automated S-Function Generation
	System Target File and Template Makefiles
	Introduction
	System Target File
	Template Makefiles

	Checksums and the S-Function Target
	S-Function Target Limitations
	Run-Time Parameters and S-Function Compatibility Diagnostics
	Goto and From Block Limitations
	Building and Updating Limitations
	Unsupported Blocks

	Running Rapid Simulations
	Introduction
	About Rapid Simulation
	Rapid Simulation Performance

	General Rapid Simulation Workflow
	Identifying Your Rapid Simulation Requirements
	Configuring Inport Blocks to Provide Rapid Simulation Source Dat
	Configuring and Building a Model for Rapid Simulation
	Setting Up Rapid Simulation Input Data
	Introduction
	Creating a MAT-File That Includes a Model’s Parameter Structure
	Getting the Parameter Structure for a Model
	Saving the Parameter Structure to a MAT-File
	Converting the Parameter Structure for Running Simulations on Va

	Creating a MAT-File for a From File Block
	Creating a MAT-File for an Inport Block

	Programming Scripts for Batch and Monte Carlo Simulations
	Running Rapid Simulations
	Introduction
	Requirements for Running Rapid Simulations
	Setting a Clock Time Limit for a Rapid Simulation
	Overriding a Model’s Simulation Stop Time
	Reading the Parameter Vector into a Rapid Simulation
	Specifying New Signal Data File for a From File Block
	Specifying Signal Data File for an Inport Block
	Changing Block Parameters for an RSim Simulation
	Specifying a New Output Filename for a Simulation
	Specifying New Output Filenames for To File Blocks

	Rapid Simulation Target Limitations

	Targeting the Wind River Systems Tornado Environment for Real-Ti
	Resources for Wind River Systems Tornado Applications
	Introduction
	The Tornado Environment
	The Tornado Target
	Block Library for Wind River Systems VxWorks

	Wind River Systems Tornado Application Architecture
	Hardware Architecture
	Software Architecture
	Module Architecture
	Host Processes
	Wind River Systems VxWorks Tasks
	Execution Tasks
	Communication Tasks

	Installing the Wind River Systems Tornado Software
	Introduction
	Installing and Configuring the Tornado Environment
	Connecting to the Wind River Systems VxWorks Target
	Verifying the Tornado Installation

	Implementing a Wind River Systems Tornado Application
	Designing the Simulink Model
	Adding Device Driver Blocks
	Specifying Code Generation Options
	Selecting the Tornado Target
	Specifying the Solver
	Setting Target-Specific Options

	Configuring the Template Makefile
	Specifying the VxWorks Target Type and CPU
	Specifying the Tornado Tool Locations
	Resolving Header File Paths
	Configuring for Automatic Downloading

	Building the Application
	Automatic Download and Execution
	Manual Download and Execution
	Introduction
	Resetting Wind River Systems VxWorks System
	Downloading Files
	Starting the Program
	Passing optStr by Using the Template Makefile
	Calling rt_main

	Inserting Custom Code Into Generated Code
	Custom Code Library
	Example: Using a Custom Code Block
	Custom Code in Subsystems
	Preventing User Source Code from Being Deleted from Build Direct

	Timing Services
	Absolute and Elapsed Time Computation
	Introduction
	Timers for Periodic and Asynchronous Tasks
	Allocation of Timers
	Integer Timers in Generated Code
	Elapsed Time Counters in Triggered Subsystems

	APIs for Accessing Timers
	Introduction
	C API for S-Functions
	TLC API for Code Generation

	Elapsed Timer Code Generation Example

	Asynchronous Support
	Introduction
	About Asynchronous Support
	Overview of Block Library for Wind River Systems VxWorks Real-Ti
	Accessing the VxWorks Block Library
	Generating Code with the VxWorks Library Blocks
	Demos and Additional Information

	Handling Interrupts
	Generating Interrupt Service Routines
	Connecting the Async Interrupt Block
	Requirements and Restrictions
	Performance Considerations
	Using the Async Interrupt Block in Simulation and Code Generatio
	Dual-Model Approach: Simulation
	Dual-Model Approach: Code Generation

	Spawning a Wind River Systems VxWorks Task
	Initialization Code
	Task and Task Synchronization Code
	Task Termination Code

	Rate Transitions and Asynchronous Blocks
	Introduction
	Handling Rate Transitions for Asynchronous Tasks
	Handling Multiple Asynchronous Interrupts

	Using Timers in Asynchronous Tasks
	Creating a Customized Asynchronous Library
	Introduction
	Async Interrupt Block Implementation
	C MEX Block Implementation
	TLC Implementation

	Task Sync Block Implementation
	C MEX Block Implementation
	TLC Implementation

	asynclib.tlc Support Library

	Asynchronous Support Limitations

	Data Exchange APIs
	C API for Interfacing with Signals and Parameters
	Introduction
	Generating C API Files
	Selecting C API with the Configuration Parameters Dialog Box
	Selecting C API from the MATLAB Command Line

	Description of C API Files
	Overview
	Structure Arrays Generated in C API Files
	Generating Example C API Files
	C API Signals
	C API Parameters
	Mapping C API Data Structures to the Real-Time Model Data Struct

	Using the C API in an Application
	Example: Using the C API to Access Model Parameters
	Example: Using the C API to Access Model Signals

	C API Limitations
	Generating C API and ASAP2 Files
	Target Language Compiler API for Signals and Parameters

	Creating an External Mode Communication Channel
	Introduction
	Design of External Mode
	External Mode Communications Overview
	External Mode Source Files
	Client (Host) MEX-file Interface Source Files
	Server (Target) Source Files
	Other Files in the Server Directory

	Implementing a Custom Transport Layer
	Requirements
	Creating a Custom Client (Host) Transport Protocol
	Registering a Custom Client (Host) Transport Protocol
	Creating a Custom Server (Target) Transport Protocol for TCP/IP
	Creating a Custom Server (Target) Transport Protocol for Serial

	Combining Multiple Models
	Using GRT Malloc to Combine Models
	Sharing Data Across Models
	Timing Issues
	Data Logging and External Mode Support

	Working with Embedded MATLAB Coder
	About Embedded MATLAB Coder
	Converts M-code to C Code
	Package generated C code as an executable, library, or MEX funct
	Verify that your M-code complies with the Embedded MATLAB syntax
	Accelerate MATLAB code that uses Fixed-Point Toolbox functions.
	Generate C code from source-protected P-code
	Running a Demo of Embedded MATLAB Coder
	How Embedded MATLAB Coder Resolves Function Calls

	Workflows for Converting M-Code to C Code
	Workflow for Converting M-Code to Embeddable C Code
	Workflow for Converting M-Code to a C MEX Function

	Installing Prerequisite Products for Embedded MATLAB Coder
	Setting Up the C Compiler
	How to Set Up Your C Compiler
	Supported Compilers for Generating MEX Functions
	Supported Compilers for Generating C Code

	File Paths and Naming Conventions
	Compile Path Search Order
	Can I Add Files to the Embedded MATLAB Path?
	When to Use the Embedded MATLAB Path
	Adding Directories to Search Paths
	Naming Conventions
	Reserved Prefixes
	Conventions for Naming Generated files

	Making M-Code Compliant with the Embedded MATLAB Subset
	Debugging Strategies
	Detecting Embedded MATLAB Syntax Violations at Compile Time

	Configuring Your Environment for Code Generation
	Types of Configuration Objects
	Working with Configuration Objects
	Creating Configuration Objects
	Modifying Configuration Objects
	Modifying Configuration Objects at the Command Line Using Dot No
	Modifying Configuration Objects Using Dialog Boxes

	Saving Configuration Objects
	Save a configuration object to a MAT-file and then load the MAT-
	Write a script that creates the configuration object and sets it

	Specifying Properties of Primary Function Inputs
	Why You Must Specify Input Properties
	Properties to Specify
	Default Property Values
	Supported Classes

	Rules for Specifying Properties of Primary Inputs
	Methods for Defining Properties of Primary Inputs
	Defining Input Properties by Example at the Command Line
	Command Line Option -eg
	Rules for Using the -eg Option
	Specifying Constant Inputs Using the -eg Option
	Example: Specifying Properties of Primary Inputs by Example
	Example: Specifying Properties of Primary Fixed-Point Inputs by

	Defining Input Properties Programmatically in the M-File
	How to Use assert with Embedded MATLAB Coder
	Rules for Using assert Function
	Example: Specifying General Properties of Primary Inputs
	Example: Specifying Properties of Primary Fixed-Point Inputs
	Example: Specifying Class and Size of Scalar Structure
	Example: Specifying Class and Size of Structure Array

	Choosing Your Target
	Types of Targets
	Specifying the Target to the Compiler
	Relationship of Targets and Configuration Objects
	Location of Generated Files
	Specifying main Functions for C Executables

	Compiling Your M-File
	Before Compiling Your M-Code
	Running Embedded MATLAB Coder
	Specifying Compiler Options
	Specifying Custom Files to Build

	How emlc Generates Code
	Partitioning Generated Files for Readability
	How emlc Partitions M-functions in Generated Code
	How emlc Partitions Top-Level M-functions
	How emlc Partitions Subfunctions
	How emlc Partitions Overloaded Functions

	Generated Files and Locations
	Generated Files for C MEX Targets
	Generated Files for C Executable Targets
	Generated Files for C Library Targets
	Changing Names and Locations of Generated Files

	File Partitioning and Inlining
	Tradeoffs Between File Partitioning and Inlining
	Disabling Inlining to Ensure File Partitioning
	Correlating C Code with Inlined Functions
	Modifying the Inlining Threshold

	Working with Compilation Reports
	About Compilation Reports
	Generating Compilation Reports
	Names and Locations of Compilation Reports
	Description of Compilation Reports
	Examples of Reports
	Example: Summary Report
	Example: Error Report

	Calling Generated C Functions
	Calling C Functions from the Embedded MATLAB Subset
	Calling Initialize and Terminate Functions
	Example: Calling a C Library Function from M-Code
	Example: Calling a C Library Function from C Code

	Calling C Functions with Multiple Outputs
	Calling C Functions that Return Arrays

	Integrating Custom C Code with Generated Code
	About Custom C Code Integration with Embedded MATLAB Coder
	Specifying Custom C Files on the Command Line
	Specifying Custom C Files with Configuration Objects

	Limitations on the Use of Absolute Time
	About Absolute Time Limitations
	Logging Absolute Time
	Absolute Time in Stateflow Charts
	Blocks that Depend on Absolute Time

	Generating ASAP2 Files
	Overview
	Targets Supporting ASAP2
	Defining ASAP2 Information
	Memory Address Attribute

	Generating an ASAP2 File
	Introduction
	Using Generic Real-Time Target or Embedded Coder Target
	Using the ASAM-ASAP2 Data Definition Target

	Customizing an ASAP2 File
	Introduction
	ASAP2 File Structure on the MATLAB Path
	Customizing the Contents of the ASAP2 File
	ASAP2 Templates
	Defining Parameter Groups
	Creating Template Definition Files
	Template Registration Function
	RECORD_LAYOUT Name Definition Function
	Function to Write RECORD_LAYOUT Definitions
	Function to Write the CHARACTERISTIC

	Structure of the ASAP2 File
	Generating ASAP2 and C API Files

	Troubleshooting
	Troubleshooting Compiler Configurations
	Compiler Version Mismatch Errors
	Explanation
	User Action

	Generated Executable Image Produces Incorrect Results
	Explanation
	User Action

	Compile-Time Errors
	Explanations
	User Actions

	Examples
	Models
	Model Code Packaging
	Model Reference
	Data Management
	Optimizations
	S-Functions
	Custom Code
	Timing Services
	Interfaces

	Index

	tables
	Targets Available from the System Target File Browser
	Real-Time Workshop Language Keywords
	Real-Time Workshop Target Function Library Keywords
	Target Language Compiler Optional Variables
	Target Language Compiler Options
	System Header Files
	Real-Time Workshop Header Files
	Comparison of Features Licensed with the Real-Time Workshop Prod
	Features Supported by Real-Time Workshop Targets and Code Format
	Macros for Accessing the Real-Time Model Data Structure
	Configuration Requirements for Model Referencing with All System
	Configuration Requirements for Model Referencing with ERT System
	Relationships of Signals and Storage Classes Between Parent and
	External Mode Command-Line Parameters
	Code Styles Listed by Target
	Identifiers for Real-Time Model Data Structure Variants
	Execution Order and Sample Times (Single-Tasking)
	Task Allocation of Blocks in Multitasking Execution
	Types of Output Expressions
	Arguments to the rt_main RT_MODEL
	Supported Sample Time and Priority for Function Call Subsystem w
	Summary of asynclib.tlc Library Functions
	Built-In Transport Layer Implementations
	MATLAB Commands to Rebuild ext_comm and ext_serial_win32 MEX-Fil
	Specify properties for each field according to its class
	Differences Between ASAP2 and Simulink Parameter and Signal Obje

