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Introduction to Real-Time Workshop® Technology

What You Can Accomplish Using Real-Time Workshop

Technology

Real-Time Workshop® technology generates C or C++ source code and
executables for algorithms that you model graphically in the Simulink®
environment or programmatically with the Embedded MATLAB™ language
subset. You can generate code for any Simulink blocks and MATLAB®
functions that are useful for real-time or embedded applications. The
generated source code and executables for floating-point algorithms match
the functional behavior of Simulink simulations and Embedded MATLAB
code execution to high degrees of fidelity. Using the Simulink® Fixed Point™
product, you can generate fixed-point code that provides a bit-wise accurate
match to model simulation results. Such broad support and high degrees
of accuracy are possible because Real-Time Workshop technology is tightly
integrated with the MATLAB and Simulink execution and simulation
engines. In fact, the built-in accelerated simulation modes in Simulink use
Real-Time Workshop technology.

You apply Real-Time Workshop technology explicitly with the Real-Time
Workshop and Real-Time Workshop® Embedded Coder™ products. Using the
Real-Time Workshop product, you can

® Generate source code and executables for discrete-time, continuous-time
(fixed-step), and hybrid systems modeled in Simulink

¢ Use the generated code for real-time and non-real-time applications,
including simulation acceleration, rapid prototyping, and
hardware-in-the-loop (HIL) testing

® Tune and monitor the generated code by using Simulink blocks and built-in
analysis capabilities, or run and interact with the code completely outside
the MATLAB and Simulink environment

® Generate code for finite state machines modeled in Stateflow® event-based
modeling software, using the optional Stateflow® Coder™ product

® Produce source code for many Simulink products and blocksets provided
by The MathWorks™ and third-party vendors.

The Real-Time Workshop Embedded Coder product extends the Real-Time
Workshop product with features that are important for embedded software


http://www.mathworks.com/products/simulink/
http://www.mathworks.com/products/featured/embeddedmatlab/
http://www.mathworks.com/products/featured/embeddedmatlab/
http://www.mathworks.com/products/simfixed/
http://www.mathworks.com/products/stateflow/
http://www.mathworks.com/products/sfcoder/

What You Can Accomplish Using Real-Time Workshop® Technology

development. Using the Real-Time Workshop Embedded Coder add-on
product, you gain access to all aspects of Real-Time Workshop technology
and can generate code that has the clarity and efficiency of professional
handwritten code. For example, you can

® Generate code that is compact and fast, which is essential for real-time
simulators, on-target rapid prototyping boards, microprocessors used in
mass production, and embedded systems

e Customize the appearance of the generated code

* Optimize the generated code for a specific target environment

* Integrate existing (legacy) applications, functions, and data

® Enable tracing, reporting, and testing options that facilitate code

verification activities

The following table compares typical applications and key capabilities for
these two code generation products.
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Product

Typical Applications

Key Capabilities

Real-Time Workshop

Simulation acceleration
Simulink model encryption
Rapid prototyping

HIL testing

Generate code for discrete-time,
continuous-time (fixed-step),
and hybrid systems modeled in
Simulink

Tune and monitor the execution of
generated code by using Simulink
blocks and built-in analysis
capabilities or by running and
interacting with the code outside
the MATLAB and Simulink
environment

Generate code for finite state
machines modeled in Stateflow
event-based modeling software,
using the optional Stateflow Coder
product

Generate code for many
MathWorks™ and third-party
Simulink products and blocksets

Integrate existing applications,
functions, and data

Real-Time Workshop
Embedded Coder

All applications listed for the
Real-Time Workshop product

Embedded systems

On-target rapid prototyping
boards

Microprocessors used in mass
production

All capabilities listed for the
Real-Time Workshop product

Generate code that has the clarity
and efficiency of professional
handwritten code

Customize the appearance and
performance of the code for specific
target environments

Enable tracing, reporting, and
testing options that facilitate code
verification activities
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How the Technology Can Fit Into Your Development
Process

In this section...

“Tools for Algorithm Development” on page 1-5

“Target Environments” on page 1-9

“Applications” on page 1-13

Tools for Algorithm Development

You can use Real-Time Workshop technology to generate standalone C or C++
source code for algorithms that you develop the following ways:

e With MATLAB code, using the Embedded MATLAB language subset
® As Simulink models

o With MATLAB code that you incorporate into Simulink models

The Embedded MATLAB language subset supports MATLAB operators
and functions for floating-point and fixed-point math. Simulink support for
dynamic system simulation, conditional execution of system semantics, and
large model hierarchies provides an environment for modeling periodic and
event-driven algorithms commonly found in embedded systems. Real-Time
Workshop technology generates code for most Simulink blocks and many
MathWorks products.

If you are familiar with C language constructs and want to learn about how
to map commonly used C constructs to code generated from model design
patterns that include Simulink blocks, Stateflow charts, and Embedded
MATLAB functions, see Technical Solution 1-6AWSQ9 on the MathWorks
Web site.

The following table lists products that the Real-Time Workshop and
Real-Time Workshop Embedded Coder software support.
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Products Supported by Real-Time
Workshop and Real-Time Workshop
Embedded Coder

Notes

Aerospace Blockset™

Communications Blockset™

Control System Toolbox™

Gauges Blockset™

Fuzzy Logic Toolbox™

Embedded IDE Link™ VS

Embedded IDE Link CC

Embedded IDE Link MU

Embedded IDE Link TS

MATLAB

Details: Supports Embedded MATLAB

Model Predictive Control Toolbox™

Model-Based Calibration Toolbox™

PolySpace™ Model Link™ SL

Not supported by Real-Time Workshop

Real-Time Windows Target™

Signal Processing Blockset™

Details: “Simulink Block Data Type Support
for Signal Processing Blockset” Table (enter the
MATLAB showsignalblockdatatypetable
command)

SimDriveline™

SimElectronics™

SimHydraulics®

SimMechanics™

SimPowerSystems™

Not supported by Real-Time Workshop
Embedded Coder

Simscape™
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Products Supported by Real-Time
Workshop and Real-Time Workshop
Embedded Coder

Notes

Simulink

Details: “Simulink Block Support” Table in the
Real-Time Workshop documentation

Simulink Fixed Point

Simulink® Parameter Estimation™

Simulink® Report Generator™

Simulink® Verification and Validation™

Stateflow and Stateflow Coder

System Identification Toolbox™

Exceptions: ;
¢ Nonlinear IDNLGREY Model, IDDATA
Source, IDDATA Sink, and estimator blocks

e Nonlinear ARX models that contain custom
regressors

® neuralnet nonlinearities

e customnet nonlinearities

Target Support Package™ FM5

Target Support Package IC1

Target Support Package TC2

Target Support Package TC6

Video and Image Processing Blockset™

Virtual Reality Toolbox™

xPC Target™

xPC Target Embedded Option™

Use of both Embedded MATLAB code and Simulink models is typical for
Model-Based Design projects where you start developing an algorithm
through research and development or advanced production, using MATLAB,
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and then use Simulink for system deployment and verification. Benefits of
this approach include:

Richer system simulation environment

e Ability to verify the Embedded MATLAB code
e Real-Time Workshop and Real-Time Workshop Embedded Coder C/C++

code generation for the model and embedded M-code

The following table summarizes how to generate C or C++ code for each of the
three approaches and identifies where you can find more information.

If you develop
algorithms using...

You generate code by...

For more information, see...

Embedded MATLAB
language subset

Entering the Real-Time
Workshop function emlc in the
MATLAB Command Window.

“Working with the Embedded
MATLAB Subset”

Chapter 18, “Working with
Embedded MATLAB Coder”

Simulink

Configuring and initiating code
generation for your model or
subsystem with the Simulink
Configuration Parameters
dialog.

“Workflow for Developing
Applications Using Real-Time
Workshop Software” in Getting
Started with Real-Time
Workshop

Embedded MATLAB
language subset and
Simulink

Including Embedded MATLAB
code in Simulink models or
subsystems by using the
Embedded MATLAB Function
block.

To use this block, you can do
one of the following:

¢ Copy your M-code into the
block.

e (Call your M-code from the
block by referencing the
appropriate M-files on the
MATLAB path.

“Working with the Embedded
MATLAB Subset” in

the Embedded MATLAB
documentation
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The following figure shows the three design and deployment environment
options. Although not shown in the figure, other products that support code
generation, such as Stateflow software, are available.

MATLAB® Simulink®
Other MATLAB Embedded MATLAB™ »| Embedded MATLAB™ Other Simulink
code language subset Function block blocks

l |

Real-Time Workshop® technology

'

CorC++

'

Compiler or
IDE toolchain

'

Executable
(runs in target environment)

Target Environments

In addition to generating source code for a model or subsystem, Real-Time
Workshop technology generates make or project files you need to build an
executable for a specific target environment. The generated make or project
files are optional. That is, if you prefer, you can build an executable for the
generated source files by using an existing target build environment, such
as a third-party integrated development environment (IDE). Applications
of code generated with Real-Time Workshop technology range from calling
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a few exported C or C++ functions on a host computer to generating a
complete executable using a custom build process, for custom hardware, in an
environment completely separate from the host computer running MATLAB
and Simulink.

Real-Time Workshop technology provides built-in system target files that
generate, build, and execute code for specific target environments. These
system target files offer varying degrees of support for interacting with the
generated code to log data, tune parameters, and experiment with or without
Simulink as the external interface to your generated code.

Before you select a system target file, you need to identify the target
environment on which you expect to execute your generated code. The three
most common target environments include:

Target Description
Environment
Host computer The same computer that runs MATLAB and Simulink. Typically, a host

computer is a PC or UNIX®! environment that uses a non-real-time
operating system, such as Microsoft®Windows® or Linux®2. Non-real-time
(general purpose) operating systems are nondeterministic. For example,
they might suspend code execution to run an operating system service
and then, after providing the service, continue code execution. Thus, the
executable for your generated code might run faster or slower than the
sample rates you specified in your model.

1. UNIX® is a registered trademark of The Open Group in the United States and other
countries.

2. Linux® is a registered trademark of Linus Torvalds.
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Target
Environment

Description

Real-time
simulator

A different computer than the host computer. A real-time simulator can

be a PC or UNIX environment that uses a real-time operating system
(RTOS), such as:

¢ xPC Target system
® A real-time Linux system

e A Versa Module Eurocard (VME) chassis with PowerPC® processors
running a commercial RTOS, such as VxWorks® from Wind River®
Systems

The generated code runs in real time and behaves deterministically.
Although, the exact nature of execution varies based on the particular
behavior of the system hardware and RTOS.

Typically, a real-time simulator connects to a host computer for data

logging, interactive parameter tuning, and Monte Carlo batch execution
studies.

Embedded

microprocessor

A computer that you eventually disconnect from a host computer and
run standalone as part of an electronics-based product. Embedded
microprocessors range in price and performance, from high-end digital
signal processors (DSPs) used to process communication signals to
inexpensive 8-bit fixed-point microcontrollers used in mass production (for
example, electronic parts produced in the millions of units). Embedded
microprocessors can:

¢ Use a full-featured RTOS
¢ Be driven by basic interrupts

e Use rate monotonic scheduling provided with Real-Time Workshop
technology

A target environment can:

e Have single- or multiple-core CPUs

® Be standalone or communicate as part of a computer network

1-11
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In addition, you can deploy different parts of a Simulink model on different
target environments. For example, it 1s common to separate the component
(algorithm or controller) portion of a model from the environment (or plant).
Using Simulink to model an entire system (plant and controller) is often
referred to as closed-loop simulation and can provide many benefits such as
early verification of component correctness.

The following figure shows example target environments for code generated
for a model.

System model

Algorithm model Environment model !

Embedded Real-time
microprocessor simulator

Host
executable

Host computer(s)
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Applications

The following table lists several ways you can apply Real-Time Workshop
technology in the context of the different target environments.

Application Description

Host Computer

Accelerated simulation You apply techniques to speed up
the execution of model simulation
in the context of the MATLAB
and Simulink environment.
Accelerated simulations are
especially useful when run time
is long compared to the time
associated with compilation and
checking whether the target is up
to date.

Rapid simulation You execute code generated for a
model in non-real time on the host
computer, but outside the context
of the MATLAB and Simulink

environment.

System simulation You integrate components into

a larger system. You provide
generated source code and
related dependencies for building
in another environment or a
host-based shared library to which
other code can dynamically link.

Model encryption You generate a Simulink shareable
object library for a model or
subsystem for use by a third-party
vendor in another Simulink
simulation environment.

Real-Time Simulator
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Application

Description

Rapid prototyping

You generate, deploy, and tune
code on a real-time simulator
connected to the system hardware
(for example, physical plant or
vehicle) being controlled. This
design step is also crucial for
validating whether a component
can adequately control the physical
system.

System simulation

You integrate generated source
code and dependencies for
components into a larger

system that is built in another
environment. You can use shared
library files to encrypt components
for intellectual property protection.

On-target rapid prototyping

You generate code for a detailed
design that you can run in real time
on an embedded microprocessor
while tuning parameters and
monitoring real-time data. This
design step allows you to assess,
interact with, and optimize code,
using embedded compilers and
hardware.

Embedded Microprocessor

Production code generation

From a model, you generate

code that is optimized for speed,
memory usage, simplicity, and

if necessary, compliance with
industry standards and guidelines.
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Application

Description

Software-in-the-loop (SIL) testing

You execute generated code with
your plant model within Simulink
to verify successful conversion

of the model to code. You might
change the code to emulate target
word size behavior and verify
numerical results expected when
the code runs on an embedded
microprocessor, or use actual target
word sizes and just test production
code behavior.

Processor-in-the-loop (PIL) testing

You test an object code component
with a plant or environment
model in an open- or closed-loop
simulation to verify successful
model-to-code conversion,
cross-compilation, and software
integration.

Hardware-in-the-loop (HIL) testing

You verify an embedded system
or embedded computing unit
(ECU), using a real-time target
environment.
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How You Can Apply the Technology to the V-Model for
System Development

In this section...

“What Is the V-Model?” on page 1-16
“Types of Simulation and Prototyping” on page 1-18

“Types of In-the-Loop Testing for Verification and Validation” on page 1-19

What Is the V-Model?

The V-model is a representation of system development that highlights
verification and validation steps in the system development process. As the
following figure shows, the left side of the V identifies steps that lead to code
generation, including requirements analysis, system specification, detailed
software design, and coding. The right side focuses on the verification and
validation of steps cited on the left side, including software integration and
system integration.
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Verification and validation

-—

Simulation Hardware-in-the-loop

Rapid simulation (HIL) testing

o System Integration
System Specification and Calibration

System simulation (export) Processor-in-the-loop

Rapid prototyping (PIL) testing

Software Detailed

. Software Integration
Design

On-target rapid prototyping Software-in-the-loop

(SIL) testing

Production code generation
Model encryption (export)

Depending on your application and role in the process, you might focus on one
or more of the steps called out in the V or repeat steps at several stages of
the V. Real-Time Workshop technology and related products provide tooling
you can apply at each step.

The following sections compare

¢ Types of simulation and prototyping
¢ Types of in-the-loop testing for verification and validation
For details on applications of Real-Time Workshop technology for steps

identified in the figure, see the following topics in the Real-Time Workshop
documentation:
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® “Documenting and Validating Requirements” on page 1-21

* “Developing a Model Design Specification” on page 1-28

® “Developing a Detailed Software Design” on page 1-38

® “Developing the Application Code” on page 1-48

® “Integrating Software” on page 1-57

® “Integrating and Calibrating System Components” on page 1-67

Types of Simulation and Prototyping

The following table compares the types of simulation and prototyping
identified on the left side of the V-model diagram.

Host-Based Standalone Rapid On-Target Rapid
Simulation Rapid Prototyping Prototyping
Simulations
Purpose Test and validate | Refine, test, Test new ideas Refine and
functionality of and validate and research calibrate
concept model functionality of designs during
concept model in development
non-real time process
Execution Host computer Host computer PC or nontarget Embedded
hardware Standalone hardware corpputing
executable il (O or
X near-production
runs outside hardware
of MATLAB
and Simulink
environment
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Host-Based
Simulation

Standalone
Rapid
Simulations

Rapid
Prototyping

On-Target Rapid
Prototyping

Code
efficiency
and I/O
latency

Not applicable

Not applicable

Less emphasis
on code efficiency
and I/0O latency

More emphasis on
code efficiency and
1/0 latency

Ease of use
and cost

Can simulate
component
(algorithm or
controller) and
environment (or
plant)

Normal mode
simulation in
Simulink enables
you to access,
display, and
tune data and
parameters while
experimenting

Can accelerate
Simulink
simulations with
Accelerated and
Rapid Accelerated
modes

Easy to simulate
models of hybrid
dynamic systems
that include
components and
environment
models

Ideal for batch
or Monte Carlo
simulations

Can repeat
simulations with
varying data sets,
interactively or
programmatically
with scripts,
without rebuilding
the model

Can be connected
to Simulink

to monitor
signals and tune
parameters

Might require
custom real-time
simulators and
hardware

Might be done
with inexpensive
off-the-shelf PC
hardware and I/0
cards

Might use existing
hardware, thus
less expensive and
more convenient

Types of In-the-Loop Testing for Verification and

Validation

The following table compares the types of in-the-loop testing for verification
and validation identified on the right side of the V-model diagram.
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SIL Testing

PIL Testing
on Embedded
Hardware

PIL Testing on
Instruction Set
Simulator

HIL Testing

Purpose

Verify component
source code

Verify component
object code

Verify component
object code

Verify system
functionality

Fidelity and

Two options:

Same object code

Same object code

Same executable

accuracy Same source Bit accurate for Bit accurate for codle
code as target, fixed-point math fixed-point math | Bit accurate for
UG THZIG Cycle accurate Might not be cycle 535 PO s mEtn
have numerical .
. since code runs on | accurate Cycle accurate
differences
hardware
Use real and
Changes source
emulated system
code to emulate
s . /0
word sizes, but is
bit accurate for
fixed-point math
Execution Host Target Host Target
platforms
Ease of use | Desktop Executes on desk | Desktop Executes on test
and cost convenience or test bench convenience bench or in lab
Executes just in Uses hardware — | Executes just on | Uses hardware
Simulink process board and | host computer — processor,
cables with Simulink embedded
No cost for . .
hardware and integrated computer unit
development (ECU), IO devices,
environment and cables
(IDE)
No cost for
hardware
Real time Not real time Not real time Not real time Hard real time
capability (between samples) | (between
samples)
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Documenting and Validating Requirements

In this section...

“Documenting Requirements” on page 1-21
“Validating Requirements with Traceability” on page 1-21
“Validating Requirements with Host-Based Simulation” on page 1-23

“Refining Concept Models with Standalone Rapid Simulations” on page 1-24

Documenting Requirements
Requirements impact the code generation process by dictating what the

system is to do.

Prerequisites and Goals

Prerequisite

Goal

Problem to solve

Capture the functional requirements for the
solution in writing so they can be reviewed and
validated

Mapping of Engineering Tasks to Related Product Information

Engineering Tasks

Related Product Information

Capture the requirements in a document,
spreadsheet, data base, or requirements
management tool

Simulink Report Generator documentation

Third-party vendor tools such as Microsoft
Word,Microsoft® Excel®, raw HTML, or Telelogic®
DOORS®

Validating Requirements with Traceability

Interactive traceability and traceability reports provide a way to validate
whether generated code meets documented requirements.

1-21



Introduction to Real-Time Workshop® Technology

1-22

Prerequisites and Goals

Prerequisite

Goals

Requirements are documented

Generate traceability reports

Trace generated code back to documented requirements

Mapping of Engineering Tasks to Related Product Information

Engineering Tasks

Related Product Information

Demo

Associate requirements
documents with objects in
concept models

Generate a report on
requirements associated
with a model

Simulink Verification and
Validation

“Managing Model Requirements”
in the Simulink Verification and
Validation documentation

Bidirectional tracing in Microsoft
Word, Microsoft Excel, HTML,
and Telelogic DOORS

slvnvdemo_fuelsys_docreq

Include requirements tags in
generated code

Simulink Verification and
Validation

“Including Requirements with
Generated Code” in the Simulink
Verification and Validation
documentation

rtwdemo_requirements

Trace model blocks and
subsystems to generated code
and vice versa

Real-Time Workshop Embedded
Coder

“Using Code-to-Model
Traceability” in the Real-Time
Workshop Embedded Coder
documentation

“Using Model-to-Code
Traceability” in the Real-Time
Workshop Embedded Coder
documentation

rtwdemo_hyperlinks
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Validating Requirements with Host-Based Simulation

Using Simulink, you can create, simulate, analyze, and maintain models for
components (algorithms and controllers) and the operating environments (or
plants) that they control, throughout a product life cycle.

As your models and simulation scenarios increase in size and complexity, you
can adjust Simulink simulation modes to improve simulation performance.
Normal simulations run in an interpretive mode that allows you to

access, display, and tune data and parameters. This mode is useful for
experimentation and initial model development. If normal mode simulations
are not fast enough, you can improve simulation performance by using
alternative modes, Accelerator mode and Rapid Accelerator mode, which
leverage Real-Time Workshop technology by replacing the interpreted code
with compiled target code.

Note Code generated by the Accelerator and Rapid Accelerator modes is
suitable only for speeding model simulation. You must use the Real-Time
Workshop product to generate code for other purposes.

Prerequisites and Goals

Prerequisites Goals

Requirements are documented Based on documented requirements:
Donsert mmolel] @l e Validate functionality of the model in
non-real time

¢ Refine the concept model for an algorithm

® Test the concept model

Mapping of Engineering Tasks to Related Product Information

Engineering Tasks Related Product Information

Run host-based simulations “Accelerating Models”
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Refining Concept Models with Standalone Rapid
Simulations

Standalone rapid simulations run in non-real time outside of the MATLAB
and Simulink environment on your host computer, using standalone source
code and executables generated by Real-Time Workshop technology. You

develop the executables by using the Real-Time Workshop rapid simulation
(RSim) system target file.

Prerequisites and Goals

Prerequisites Goals

Functional requirements Based on requirements:

Uongerpt molel] ¢ Refine the concept model for an algorithm

¢ Validate functionality of the model in
non-real time

® Test the concept model

Approaches for Applying Real-Time Workshop Technology

As the following figure shows, you can:

1 Generate an RSim host executable that runs outside the context of
MATLAB and Simulink.

2 Use the Simulink external mode feature to establish a communications
link between an RSim host executable and a system model running in
the Simulink environment.

3 Use the communications link interactively to monitor signals, tune
parameters, and log data.
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The following figure shows a single host configuration setup for multiple

batch runs.

If you have software licenses for the SystemTest™ and Parallel Computing
Toolbox™ products, you can create an automated parallel processing
computer environment that runs vast amounts of Monte Carlo tests, as the
following figure shows. You specify the tests with the SystemTest product on
a cluster of computers managed by the Parallel Computing Toolbox product

System model

Algorithm model

Environment model

Host
executable

Run control,
tuning, and

logging

System model

Algorithm model Environment model

Test inputs
(.mat)

Host
executable

Test results
(.mat)

on behalf of the host computer running the RSim executable.
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Compute Cluster
MATLAB® Distributed Computing Server™

E Client Host E :
| | = :
| MATLAB | Worker :
! Simulink Parallel , T :
! Computing ! : \
.| Real-Time Workshop Toolbox o= g é E
: | T AR !
1 . 1 ! Work !
! RSim ! : Scheduler oer

: = :

! A !

: Worker :
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Mapping of Engineering Tasks to Related Product Information

Engineering Tasks

Related Product
Information

Demos

Run standalone rapid
simulations

Run batch or Monte-Carlo
simulations

Repeat simulations

with varying data

sets, interactively or
programmatically with
scripts, without rebuilding
the model

Tune parameters and monitor
signals interactively

Simulate models for hybrid
dynamic systems that
include components and

an environment or plant that
requires variable-step solvers
and zero-crossing detection

Chapter 12, “Running
Rapid Simulations” in
the Real-Time Workshop
documentation

Chapter 6, “External Mode”
in the Real-Time Workshop
documentation

rtwdemo_rsim_param_survey_script

rtwdemo_rsim_batch_script

rtwdemo_rsim_param_tuning

Distribute simulation runs
across multiple computers

SystemTest
SystemTest documentation

MATLAB® Distributed
Computing Server™
documentation

Parallel Computing Toolbox
documentation
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Developing a Model Design Specification

In this section...

“Do You Have the Correct Products Installed for Modeling Your Domain?”
on page 1-28

“Documenting Model Designs” on page 1-29
“Integrating Component Models for System Simulation” on page 1-30

“Integrating Component Models Into a System for Real-Time Rapid

Prototyping” on page 1-34

Do You Have the Correct Products Installed for
Modeling Your Domain?

When developing a system, it is important to use the correct combination of
products to model each system component based on the domain to which it
applies.

Prerequisites and Goals

Prerequisites

Goal

Functional requirements Refine the concept model for a component or

Concept model

system to match the project domain

Mapping of Engineering Tasks to Related Product Information

Engineering Tasks Related Product Information | Demos

Specify algorithms as Embedded MATLAB rtwdemo_emlcbasicdemo
MATLAB code documentation

Specify algorithms graphically | “Creating a Model” in the rtwdemo_f14

as Simulink models for controls | Simulink documentation

design

Call Embedded MATLAB “MATLAB Function Blocks” in | rtwdemo_eml_aero_radar
functions in Simulink the Simulink documentation




Developing a Model Design Specification

Engineering Tasks

Related Product Information

Demos

Model finite state machines
and truth tables in Simulink
for fault detection, modes, and
conditional logic

Stateflow

“Creating Stateflow Charts” in
the Stateflow documentation

rtwdemo_fuelsys

Model signal processing filters
(for example, fast Fourier
transform (FFT) and infinite
impulse response (IIR)) in
Simulink

Signal Processing Blockset

Signal Processing Blockset
documentation

rtwdemo_lmsadeq

Model video processing models
in Simulink

Video and Image Processing
Blockset

Video and Image Processing
Blockset documentation

Create physical models or
plant models in Simulink

Simscape

Simscape documentation

Model other domains and
applications

All products supported by code
generation

Documenting Model Designs

After you refine your concept models, you should document them so they can
be reviewed and, if necessary, archived. For some domains, you might be
contractually required to provide such documentation to your customers.

Prerequisites and Goals

Prerequisites

Goal

Functional requirements

Refined concept models

archiving

Produce design artifacts for reviews and
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Mapping of Engineering Tasks to Related Product Information

Engineering Tasks Related Product Demos
Information
Create documentation for MATLAB® Report Generator™
algorithms that you develop « ”
0 MATLAR MATLAB Report Generator
documentation
Create documentation from Simulink Report Generator rtwdemo_codegenrpt
ibaanllinls gl Sl “Simulink Report Generator”
models .
documentation
Integrating Component Models for System Simulation
During system specification, your components might be integrated into
another environment. You may need to share components with a different
group or plug them into another execution environment for additional
analysis and model iterations.
Prerequisites and Goals
Prerequisites Goals
Functional requirements Add one or more components to another

TFtPeel comoest mmadils environment for system simulation

Environment or system into which your ligsitine Hloe eompoment modlel

component is to be added must exist Refine the integrated system model

Validate functionality of the model in non-real
time

Test the concept model

Approaches for Applying Real-Time Workshop Technology

Two ways to integrate a modeled component into another environment
include:
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® Generating source code from the model and supplying the code and
dependent files and data for building in another environment

® Generating and supplying a shared library that can be dynamically linked
when needed

You then simulate the system. In both cases, during simulation and testing,
you might need to refine the component model. You iterate until the
component is validated in the context of the system.

At some point in your process, you might add hardware, perhaps for rapid
prototyping.

The following figure shows a typical approach for generating code from a
model and then integrating that code as a component in a separate target
environment, which can be host based or not.

Simulink ‘
Source Other
Component model Code ssg(rjcee

I

Other Other
source | source
code code

System Simulator

Test inputs
Test results

Real-Time Workshop Embedded Coder can generate a shared library for a
model for your host platform. You can choose between generating a Microsoft
Windows dynamic link library (.d11) file or a UNIXshared object (. so) file.
Shared libraries package source code securely for easy distribution and shared
use. You can share a .d11 or .so file among applications and you can upgrade
it without having to recompile the applications that use it.

System Executable
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The following figure shows a typical approach for generating a shared library
from a model and then integrating the library as a component in a separate
target environment.

Simulink ‘

Library Other
Component model libraries
(.dllor.so) (optional)

System Simulator

Test inputs
Test results

System Executable

Mapping of Engineering Tasks to Related Product Information

Engineering Tasks Related Product Demos
Information
Schedule the generated code Chapter 8, “Models with rtwdemos, select Multirate
Multiple Sample Rates” in Support folder
the Real-Time Workshop
documentation

Chapter 16, “Asynchronous
Support” in the Real-Time
Workshop documentation

Specify function boundaries of | “Nonvirtual Subsystem Code :
rtwdemo_atomic

systems Generation” on page 4-2 in
the Real-Time Workshop rtwdemo_ssreuse
documentation rtwdemo_filepart

rtwdemo_export_functions
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Engineering Tasks

Related Product
Information

Demos

Specify components and
boundaries for design and
incremental code generation

Chapter 4, “Building
Subsystems and Working
with Referenced Models” in
the Real-Time Workshop
documentation

rtwdemo_mdlref_top

Specify function interfaces so
that external software can
compile, build, and invoke, the
generated code appropriately

Real-Time Workshop
Embedded Coder

“Controlling Model Function
Prototypes” in the Real-Time
Workshop Embedded Coder
documentation

rtwdemo_fcnprotoctrl

Manage data packaging in the
generated code for integrating
and packaging data

Real-Time Workshop
Embedded Coder

Module Packaging
Features in the Real-Time
Workshop Embedded Coder
documentation

rtwdemos, select Data
Packaging folder

Generate and control the
format of comments and
1dentifiers in generated code

Real-Time Workshop
Embedded Coder

“Customizing Comments

in Generated Code” and
“Configuring Symbols”

in the Real-Time
Workshop Embedded Coder
documentation

rtwdemo_comments
rtwdemo_symbols
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Engineering Tasks

Related Product
Information

Demos

Create a zip file that contains
generated code files, static
files, and dependent data
needed to build the generated
code in an environment other
than your host computer

“Relocating Code to Another
Development Environment” on
page 2-155 in the Real-Time
Workshop documentation

rtwdemo_buildinfo

Export models for validation
in a system simulator using
shared libraries

Real-Time Workshop
Embedded Coder

“Creating and Using
Host-Based Shared
Libraries” in the Real-Time
Workshop Embedded Coder
documentation

rtwdemo_shrlib

Integrating Component Models Into a System for
Real-Time Rapid Prototyping

Some industries, such as the automotive industry, apply an integration step
called rapid prototyping. During rapid prototyping, you generate, deploy, and
tune code for a component (algorithm or controller) on a real-time simulator
connected to system hardware (the physical plant or vehicle being controlled).
As the following figure shows, rapid prototyping combines the algorithm,
software, and hardware design phases of system design, eliminating potential
bottlenecks. Engineers can see results and rapidly iterate solutions before
building expensive hardware.


http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/rtwembedded/

Developing a Model Design Specification

Traditional Approach Rapid Prototyping Process
S
Algorithm % > Algorithm design
development = and prototyping
Qo
O
[a'my

A4

Manual iteration

Hardware and
software design

A4 A4

Implementation of Implementation of
production system production system

Prerequisites and Goals

Prerequisites Goals

Functional requirements Refine component and environment model

R deS}gns by rapidly 1t.erat1ng between algorithm
design and prototyping

System hardware for the physical plant or

el being el Validate whether a component can adequately

control the physical system in non-real time
Access to target products you intend to use
(for example, the xPC Target or Real-Time
Windows Target product)

Evaluate system performance before laying
out hardware, coding production software, or
committing to a fixed design

Test hardware

Approaches for Applying Real-Time Workshop Technology

Real-Time Workshop technology supports rapid prototyping by providing a
framework for running generated code in real time, tuning parameters, and
monitoring real-time data. You can perform rapid prototyping by

1 Creating or acquiring a real-time system that runs in real time on rapid
prototyping hardware
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2 Using Real-Time Workshop or Real-Time Workshop Embedded Coder
system target files to generate code that you can deploy onto the real-time
simulator

3 Monitoring signals, tuning parameters, and logging data.

The following figure shows a typical approach for rapid prototyping.

System model

1 1
1 1
1 1
1 1
1 1
1 1
X Algorithm model Environment model X
1 1
1 1
1 1

- B U -

Tuning and
logging %
S

jolele

Real-time
simulator g

Actual environment (plants)

Another product that facilitates rapid prototyping is the xPC Target product.
This product provides a real-time operating system that makes PCs run

in real time. It also provides device driver blocks for numerous hardware
I/0 cards. This makes it easy for you to create a rapid prototyping system
using inexpensive commercial-off-the-shelf (COTS) hardware. In addition,
third-party vendors offer products based on the xPC Target product or other
Real-Time Workshop technology.
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Mapping of Engineering Tasks to Related Product Information

Engineering Tasks

Related Product
Information

Demos

Generate code for rapid
prototyping

Chapter 3, “Generated Code
Formats” in the Real-Time
Workshop documentation

Real-Time Workshop
Embedded Coder

“Data Structures, Code
Modules, and Program
Execution” in the Real-Time
Workshop Embedded Coder

documentation

Chapter 13, “Targeting the
Wind River Systems Tornado
Environment for Real-Time
Applications” in the Real-Time
Workshop documentation

rtwdemo_counter
rtwdemo_async

Generate code for rapid
prototyping in hard real time
using PCs

xPC Target

xPC Target documentation

help xpcdemos

Generate code for rapid
prototyping in soft real time
using PCs

Real-Time Windows Target

Real-Time Windows Target
documentation

rtvdp (and others)
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Developing a Detailed Software Design

In this section...

“Deciding on Data Representation and Storage” on page 1-38
“Checking Models Against Best Practices” on page 1-41

“Optimizing a Design for Specific Hardware with On-Target Rapid
Prototyping” on page 1-43

Deciding on Data Representation and Storage

After you validate a model and produce a specification, you design the
software by using a system simulator or rapid prototyping hardware.

The Real-Time Workshop and Real-Time Workshop Embedded Coder
products support the Simulink built-in data types. In addition, you can use
the Simulink Fixed Point product to specify fixed-point math for Simulink,
Stateflow, and Embedded MATLAB models. Fixed-point processing is
especially important in mass production environments that cannot afford
microprocessors with floating-point units. The process of converting from
floating-point to fixed-point math is time consuming, whether or not you are
using models. The Simulink Fixed Point product includes conversion and
scaling tools that help automate that process.

The Simulink Fixed Point product offers bit-wise accurate simulation results
when compared with the behavior on the actual embedded microprocessor.

It does this by using integer word sizes and other hardware characteristics
that you specify when you configure the model. You do not need to generate
code to perform fixed-point simulation or analysis. However, after assessing
the fixed-point model and confirming that the results match those of the
specification, or other reference, you can generate code for implementation
and further analysis. The Real-Time Workshop Embedded Coder product has
specific features that can help you generate highly efficient fixed-point code.
For example, you can explicitly suppress the generation of floating-point code.
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Developing a Detailed Software Design

Prerequisites and Goals

Prerequisites

Goal

Concept model that has been validated against

requirements

A design specification

code

Refine model design to account for
representation and storage of data in generated

Mapping of Engineering Tasks to Related Product Information

Engineering Tasks

Related Product
Information

Demos

Select a deployment code
format

Chapter 3, “Generated Code
Formats” in the Real-Time
Workshop documentation

Real-Time Workshop
Embedded Coder

“Data Structures, Code
Modules, and Program
Execution” in the Real-Time
Workshop Embedded Coder
documentation

Chapter 13, “Targeting the
Wind River Systems Tornado
Environment for Real-Time
Applications” in the Real-Time
Workshop documentation

“Generating Code That
Complies with AUTOSAR
Standards” in the Real-Time
Workshop Embedded Coder
documentation

rtwdemo_counter
rtwdemo_async
rtwdemo_osek
rtwdemo_autosar
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Engineering Tasks

Related Product
Information

Demos

Specify target hardware
settings

“Choosing and Configuring
Your Target” on page 2-2
in the Real-Time Workshop
documentation

rtwdemo_targetsettings

Specify fixed-point algorithms
in Simulink, Stateflow, and
Embedded MATLAB

Simulink Fixed Point

i

“Data Types and Scaling’
and “Code Generation” in
the Simulink Fixed Point
documentation

rtwdemo_fixpt1
rtwdemo_fuelsys_ fixpt

Convert a floating-point model
or subsystem to a fixed-point
representation

Simulink Fixed Point

“Fixed-Point Advisor” in
the Simulink Fixed Point
documentation

fxpdemo_fpa

Iterate to obtain an optimal
fixed-point design using
autoscaling

Simulink Fixed Point

“Automatic Scaling” in
the Simulink Fixed Point
documentation

fxpdemo_feedback

Create or rename data
types specifically for your
application

Real-Time Workshop
Embedded Coder

“Code Generation with
User-Defined Data
Types” in the Real-Time
Workshop Embedded
Coderdocumentation

rtwdemo_udt

Control the format of
identifiers in generated
code

Real-Time Workshop
Embedded Coder

“Configuring Symbols”
in the Real-Time
Workshop Embedded Coder

documentation

rtwdemo_symbols
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Engineering Tasks

Related Product
Information

Demos

Specify how signals, tunable
parameters, block states, and
data objects are declared,
stored, and represented in
generated code

Real-Time Workshop
Embedded Coder

“Custom Storage Classes”
in the Real-Time
Workshop Embedded Coder

documentation

rtwdemo_cscpredef

Create a data dictionary for a
model

Real-Time Workshop
Embedded Coder

“Managing the Data
Dictionary” in the Real-Time
Workshop Embedded Coder

documentation

rtwdemo_advsc

Relocate data segments for
generated functions and data

using #pragmas for calibration

or safe data access

Real-Time Workshop
Embedded Coder

“Memory Sections” in
the Real-Time Workshop
Embedded Coder

documentation

rtwdemo_memsec

Checking Models Against Best Practices

After you refine your model for embedded code generation, you should check
that the model adheres to standards and best practices automatically with

tooling, by conducting peer reviews, and by generating tests.

Prerequisites and Goals

Prerequisites

Goals

Model refined for embedded code generation

Standards and best practices to which code

must adhere

Generate tests

Check that the model adheres to standards and
best practices
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Mapping of Engineering Tasks to Related Product Information

Engineering Tasks

Related Product Information

Demos

Check a model against basic
modeling guidelines

“Consulting the Model Advisor”
in the Simulink documentation

rtwdemo_advisori

Add custom checks to the
Simulink Model Advisor

Simulink Verification and
Validation

“Customizing the Model
Advisor” in the Simulink
Verification and Validation
documentation

slvnvdemo_mdladv

Check a model against
custom standards or
guidelines

“Consulting the Model Advisor”
in the Simulink documentation

Check a model against
industry standards and
guidelines (MathWorks
Automotive Advisory Board
(MAAB), IEC 61508, and
DO-178B)

Real-Time Workshop
Embedded Coder

“Developing Models and
Code That Comply with
Industry Standards and
Guidelines” in the Real-Time
Workshop Embedded Coder
documentation

Simulink Verification and
Validation

“Model Advisor Checks” in
the Simulink Verification and
Validation documentation

Obtain model coverage for
structural coverage analysis
such as MC/DC

Simulink Verification and
Validation

“Using Model Coverage” in
the Simulink Verification and
Validation documentation
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Engineering Tasks

Related Product Information

Demos

Prove properties and
generate test vectors for
models

Simulink® Design Verifier™

Simulink Design Verifier
documentation

Generate reports of models
and software designs

MATLAB Report Generator

MATLAB Report Generator
documentation

Simulink Report Generator

Simulink Report Generator
documentation

rtwdemos_codegenrpt

Conduct reviews of your
model and software designs
with coworkers, customers,
and suppliers

Simulink Report Generator

“Exporting Simulink Models
to Web Views” in the
Simulink Report Generator
documentation

Optimizing a Design for Specific Hardware with
On-Target Rapid Prototyping

After you refine your detailed software design, you are ready to generate
code intended to run on an embedded microprocessor and optimize the code
with on-target rapid prototyping. During on-target rapid prototyping, you
run the generated code in real time, tune parameters, and monitor real-time
data on the same processor you plan to use in mass production, or a close
equivalent to it.

Real-Time Workshop technology provides a framework for on-target rapid
prototyping. You can generate code from your model and then assess, interact
with, and optimize the code using real embedded compilers and hardware.
This effort can help determine whether your algorithm can fit on or run

fast enough for production devices, which typically have limited processor

resources.
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Prerequisites and Goals

Prerequisites Goals
Detailed software design Refine the concept model of your component
or system

Embedded microprocessor target

Test and validate the model’s functionality in
real time

Test the hardware

Obtain real-time profiles and code metrics for
analysis and sizing based on your embedded
processor

Assess the feasibility of the algorithm based
on integration with the environment or plant
hardware

1-44

Approach for Applying Real-Time Workshop Technology
To do on-target rapid prototyping, you:

1 Generate the source code for your component.

2 Integrate any existing, externally written code required by the component,
such as device drivers.

3 Use a third-party integrated development environment (IDE) with a
MathWorks or third-party link product to build an executable for the
embedded microprocessor.

4 Use the link product to monitor signals, tune parameters, and log data as
the embedded microprocessor controls the actual environment or plant.

The following figure shows a typical on-target rapid prototyping .
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Mapping

of Engineering Tasks to Related Product Information

Engineering Tasks

Related Product Information

Demos

Generate source code for your
models, integrate the code
into your production build
environment, and run it on
existing hardware

“Integrating Component
Models for System Simulation”
on page 1-30

Chapter 3, “Generated Code
Formats” in the Real-Time
Workshop documentation

Real-Time Workshop
Embedded Coder

“Data Structures, Code
Modules, and Program
Execution” in the Real-Time
Workshop Embedded Coder
documentation

Chapter 13, “Targeting the
Wind River Systems Tornado
Environment for Real-Time
Applications” in the Real-Time
Workshop documentation

“Generating Code That
Complies with AUTOSAR
Standards” in the Real-Time
Workshop Embedded Coder
documentation

rtwdemo_counter
rtwdemo_fcnprotoctrl
rtwdemo_async
rtwdemo_osek
rtwdemo_autosar
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Developing a Detailed Software Design

Engineering Tasks

Related Product Information

Demos

Integrate existing externally
written C or C++ code with
your model for simulation
and code generation

“Integrating Existing C
Functions into Simulink
Models with the Legacy
Code Tool” in the Simulink

documentation

rtwdemos, select Custom
Code folder

Generate code for on-target
rapid prototyping on specific
embedded microprocessors
and IDEs

“Embedded IDE Link CC”
documentation

Embedded IDE Link MU
documentation

“Embedded IDE Link TS”
documentation

“Embedded IDE Link VS”
documentation

“Target Support Package TC2”
documentation

“Target Support Package TC6”
documentation

“Target Support Package FM5”
documentation

“Target Support Package 1C1”
documentation

See help for link and target
support package products
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Developing the Application Code

In this section...

“Developing Code for Embedded Systems” on page 1-48

“Developing Encrypted Models to Protect Intellectual Property” on page
1-53

“Testing the Generated Code in a Software Environment” on page 1-54

Developing Code for Embedded Systems

After you complete your detailed design and on-target rapid prototyping, you
generate production code. Generally, the production code varies little from
the code you used during on-target rapid prototyping. Differences generally
reflect code optimizations and code traceability and comments.

The Real-Time Workshop Embedded Coder exposes features of Real-Time

Workshop technology required to optimize generated code for speed, memory
usage, and simplicity, as required for production deployment.

Prerequisites and Goals

Prerequisites

Goals

Detailed software design exists

Software design has been optimized for specific

Optimize the speed and memory usage of the
generated code

hardware with on-target rapid prototyping Refine the code comments to facilitate

traceability

Approach for Applying Real-Time Workshop Technology

The following figure shows a typical production code generation .



Developing the Application Code
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Algorithm model

Environment model
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Mapping

of Engineering Tasks to Related Product Information

Engineering Tasks

Related Product Information

Demos

Generate source code for
production

Chapter 3, “Generated Code
Formats” in the Real-Time
Workshop documentation

Real-Time Workshop
Embedded Coder

“Data Structures, Code
Modules, and Program
Execution” in the Real-Time
Workshop Embedded Coder
documentation

Chapter 13, “Targeting the
Wind River Systems Tornado
Environment for Real-Time
Applications” in the Real-Time
Workshop documentation

“Generating Code That
Complies with AUTOSAR
Standards” in the Real-Time
Workshop Embedded Coder
documentation

rtwdemo_counter
rtwdemo_fcnprotoctrl
rtwdemo_async
rtwdemo_osek
rtwdemo_autosar

Optimize generated ANSI®
C code for production

(for example, disable
floating-point code, remove
termination and error
handling code, and combine
code entry points into single
functions)

Chapter 9, “Optimizing a
Model for Code Generation”
in the Real-Time Workshop
documentation

Real-Time Workshop
Embedded Coder

“Code Generation Options
and Optimizations” in
the Real-Time Workshop
Embedded Coder
documentation

rtwdemos, select
Optimization folder
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Developing the Application Code

Engineering Tasks Related Product Information | Demos

Optimize code for a specific Real-Time Workshop rtwdemo_tfl script
run-time environment, using | Embedded Coder

specialized function libraries Tzety Bhusom Mies”

in the Real-Time
Workshop Embedded Coder

documentation
Control the format and style | Real-Time Workshop rtwdemo_parentheses
of generated code Embedded Coder

“Controlling Code
Style” in the Real-Time
Workshop Embedded Coder

documentation
Control the comments that Real-Time Workshop rtwdemo_comments
get inserted into generated Embedded Coder
@cle “Customizing Comments

in Generated Code” in

the Real-Time Workshop

Embedded Coder
Enter special instructions or | “Customizing Post Code rtwdemo_buildinfo
tags for postprocessing by Generation Build Processing”

third-party tools or processes | on page 2-139 in the Real-Time
Workshop documentation

Include requirements tags in | Simulink Verification and rtwdemo_requirements
generated code Validation

“Including Requirements
with Generated Code” in the
Simulink Verification and
Validation documentation
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Engineering Tasks

Related Product Information

Demos

Trace model blocks and
subsystems to generated code
and vice versa

Real-Time Workshop
Embedded Coder

“Creating and Using

a Code Generation
Report” in the Real-Time
Workshop Embedded Coder
documentation

“Using Code-to-Model
Traceability” in the Real-Time
Workshop Embedded Coder
documentation

“Using Model-to-Code
Traceability” in the Real-Time
Workshop Embedded Coder
documentation

“Developing Models and
Code That Comply with
Industry Standards and
Guidelines” in the Real-Time
Workshop Embedded Coder
documentation

rtwdemo_comments
rtwdemo_hyperlinks
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Developing the Application Code

Engineering Tasks

Related Product Information

Demos

Integrate existing externally
written code with code
generated for a model

“Integrating Existing C
Functions into Simulink
Models with the Legacy
Code Tool” in the Simulink
documentation

rtwdemos, select Custom
Code folder

Validate generated code
for MISRA C®3 and other
run-time violations

Real-Time Workshop
Embedded Coder

“Developing Models and Code
That Comply with MISRA C
Guidelines” in the Real-Time
Workshop Embedded Coder
documentation

Documentation for PolySpace
Products

rtwdemo_polyspace

Developing Encrypted Models to Protect Intellectual
Property

Real-Time Workshop technology supports two approaches for encrypting
generated code to protect the intellectual property of your designs and

algorithms.

e Use the Real-Time Workshop S-function system target file to generate
a Simulink C MEX-file S-function for the model or subsystem for use in
another Simulink simulation.

¢ Use the Real-Time Workshop Embedded Coder shared library system
target file to generated a shared library for the model or subsystem for use
in a system simulation external to Simulink.

You can then deploy the binary MEX-file S-function or shared library for use
within another Simulink model developed by a third-party vendor, without
sharing source code.

3. MISRA® and MISRA C® are registered trademarks of MISRA® Ltd., held on behalf of
the MISRA® Consortium.
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Prerequisites and Goals

Prerequisites

Goals

Detailed software design exists

Software design has been optimized for specific
hardware with on-target rapid prototyping

Protect the intellectual property of component
model design and generated code

Generate a binary file (shared library)

Mapping of Engineering Tasks to Related Product Information

Engineering Tasks

Related Product Information

Generate a MEX-file S-function for a model
or subsystem so it can be shared with a
third-party vendor

Chapter 11, “S-Function Target” in the
Real-Time Workshop documentation

Generate a shared library for a model
or subsystem so it can be shared with a
third-party vendor

“Creating and Using Host-Based Shared
Libraries” in the Real-Time Workshop
Embedded Coder documentation

Testing the Generated Code in a Software

Environment

After you generate your code, you should test it with your environment or
plant model to verify a successful conversion of the model to code. Your
algorithm should behave as expected and the source code and model results

should be equivalent.

Prerequisites and Goals

Prerequisites

Goal

Production quality source code ready to be
tested with an environment or plant model

Environment or plant model

Test generated production code with an
environment or plant model to verify a
successful conversion of the model to code




Developing the Application Code

Approaches for Applying Real-Time Workshop Technology

To facilitate this testing, Real-Time Workshop Embedded Coder provides

an option for generating an S-function wrapper. An S-function wrapper is

an S-function block that calls your generated C or C++ code from within a
Simulink model. S-function wrappers provide a standard interface between a
Simulink model and externally written code, allowing you to integrate your
code into a model with minimal modification. You can replace or keep your
existing model algorithm portion and run software-in-the-loop (SIL) tests with
the code wrapped in an S-function as shown in the following figure.

|| simulink
: Options E
! 1. Emulate target word sizes
E Host-compiled C (change code) !
! with S-function 2. Use actual target word sizes |
! wrapper (do not change code) :

As the figure indicates, Real-Time Workshop Embedded Coder provides two
options for running SIL tests.

¢ Emulate target word size behavior when running Simulink host-based
simulations to produce numerical results that match results you would
obtain on the embedded microprocessor. This option modifies the generated
code to emulate the target behavior.

e Use portable word sizes that do not emulate the target behavior, but
simulate the code in Simulink using the host word sizes. While results in
this case might be different, you do not need to change the generated code.
You can test the actual production code in Simulink.
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Mapping of Engineering Tasks to Related Product Information

Engineering Tasks Related Product Information | Demos
Generate an S-function Real-Time Workshop rtwdemo_sil
wrapper for calling your Embedded Coder

generated source code from a

model running in Simulink Lligulile Smehon

Wrapper Generation”
in the Real-Time
Workshop Embedded Coder

documentation
Set up and run SIL tests on | Real-Time Workshop rtwdemo_sil
your host computer Embedded Coder

“Verifying Generated Code
with Software-in-the-Loop”
in the Real-Time
Workshop Embedded Coder
documentation

1-56


http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/rtwembedded/

Integrating Software

Integrating Software

In this section...

“Verifying Component Production Code in the Target Environment” on
page 1-57

“Verifying Component by Building a Complete Real-Time Target
Environment” on page 1-61

“Verifying Software Integration” on page 1-64

Verifying Component Production Code in the Target
Environment

After you generate the production code for a component design, you need to
integrate, compile, link, and deploy the code as a complete application on the
embedded system. One approach is to manually integrate the code into an
existing software framework that consists of an operating system, device
drivers, and support utilities. The algorithm can include externally written
legacy or custom code.

Prerequisites and Goals

Prerequisites Goal

Production quality source code generated Integrate all software components for testing
in the target environment

Externally written code to be integrated

Approaches for Applying Real-Time Workshop Technology

To maximize application portability, you should limit the generated code to
ANSI/ISO® C or C++ code only, as the following figure shows.

1-57



1 Introduction to Real-Time Workshop® Technology

Algorithm model

C — 5 c E ((j)gtput ««——>»  Actuators
ommunication | omm rivers
interfaces i drivers 1 EESGERerAted Y oo
i . Special
! interfaces
_______________ Special !
! i device !
: nout | drivers !
Sensors ! npu l | -
i drivers ! ! A—
: Tuning

N

Scheduler/operating system
and support utilities

You can simplify integration for a target environment by using Real-Time
Workshop Embedded Coder features for controlling code interfaces and
exporting subsystems. You also have the option of including target-specific
code, including compiler optimizations.

The following figure shows a mix of ANSI C/C++ code with code optimized for
a target environment.
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Controller model

_— i | Ogtput PELEEN Actuators
Communication  Comm ! drivers |
interfaces . drivers 1 “NGEnerated Y @ -
T Special
! interfaces
Included Special
; | target deywe :
s ; Input : optimized drivers . ——
ensors ! . : -
. drivers | code : a——
: : Tuning
Scheduler/operating system
and support utilities
The following table compares exporting code that is strictly ANSI C/C++ and
code that mixes ANSI C/C++ with code optimized for a target environment.
ANSI C/C++ Export Mixed Code Export
Purpose Mass production Mass production

Drivers and scheduler already exist

Drivers and scheduler already exist

Maximum processor resources
(optimizations) needed
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ANSI C/C++ Export

Mixed Code Export

Benefits Maximum code portability Maximum code efficiency
Maximum configurability Moderate configurability
Real time Requires external scheduler Requires external scheduler

integration

integration

Mapping of Engineering Tasks to Related Product Information

Engineering Tasks

Related Product Information

Demos

Integrate existing externally
written C or C++ code with
your model for simulation
and code generation

“Integrating Existing C
Functions into Simulink
Models with the Legacy
Code Tool” in the Simulink
documentation

rtwdemos, select Custom
Code folder

Connect to data interfaces
for the generated C code data
structures

Chapter 17, “Data Exchange
APIs” in the Real-Time
Workshop documentation

rtwdemo_capi
rtwdemo_asap2

Control the generation of code
interfaces so that external
software can compile, build,
and invoke the generated
code appropriately

Real-Time Workshop
Embedded Coder

“Controlling Model Function
Prototypes” in the Real-Time
Workshop Embedded Coder

documentation

rtwdemo_fcnprotoctrl

Export virtual and
function-call subsystems

Real-Time Workshop
Embedded Coder

Real-Time Workshop
Embedded Coder

“Exporting Function-Call
Subsystems” in the Real-Time
Workshop Embedded Coder
documentation

rtwdemo_export_functions
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Integrating Software

Engineering Tasks

Related Product Information

Demos

Include target-specific code

Real-Time Workshop
Embedded Coder

“Target Function Libraries”
in the Real-Time
Workshop Embedded Coder
documentation

rtwdemo_tfl _script

Customize and control the
build process

Chapter 2, “Code Generation
and the Build Process” in
the Real-Time Workshop

rtwdemo_buildinfo

Create a zip file that contains
generated code files, static
files, and dependent data
needed to build the generated
code in an environment other
than your host computer

“Relocating Code to Another
Development Environment” on
page 2-155 in the Real-Time
Workshop documentation

rtwdemo_buildinfo

Verifying Component by Building a Complete

Real-Time Target Environment

An approach to software integration is to build a complete system executable
for the target environment that includes:

® Your algorithm

® Scheduling algorithms

e (Calls to drivers for board-specific devices

This single build approach is more time consuming to set up, but makes it
easier to get the full application running on the target.
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Prerequisites and Goals

Prerequisites Goal

Production quality source code generated Integrate all software components as a

Externally written code to be integrated complete SHSIoEm. 305 (G0 1 Whe v
environment

Approach for Applying Real-Time Workshop Technology

The following figure shows a typical for building a complete system executable
for the target environment.

Algorithm model

5 Output <—> Actuators
Communication . Comm ! drivers !
interfaces L drivers 1 ISSGERBEAtEg o
T E Special
—
! interfaces
A Optional Special
: : target device
S " lnput optimized drivers
ensors «— . . > =
 drivers E code : A—
i | | Tuning

N7

Scheduler/operating system
and support utilities
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Mapping

of Engineering Tasks to Related Product Information

Engineering Tasks

Related Product Information

Demos

Generate source code for
production

Chapter 3, “Generated Code
Formats” in the Real-Time
Workshop documentation

Real-Time Workshop
Embedded Coder

“Data Structures, Code
Modules, and Program
Execution” in the Real-Time
Workshop Embedded Coder
documentation

Chapter 13, “Targeting the
Wind River Systems Tornado
Environment for Real-Time
Applications” in the Real-Time
Workshop documentation

“Generating Code That
Complies with AUTOSAR
Standards” in the Real-Time
Workshop Embedded Coder
documentation

rtwdemo_counter
rtwdemo_async
rtwdemo_osek
rtwdemo_autosar

Optimize code for a specific
run-time environment, using
specialized function libraries

Real-Time Workshop
Embedded Coder

“Target Function Libraries”
in the Real-Time
Workshop Embedded Coder
documentation

rtwdemo_tfl_script

Enter special instructions or
tags for postprocessing by
third-party tools or processes

“Customizing Post Code
Generation Build Processing”
on page 2-139 in the Real-Time
Workshop documentation

rtwdemo_buildinfo
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Engineering Tasks

Related Product Information

Demos

Integrate existing externally
written code with code
generated for a model

“Integrating Existing C
Functions into Simulink
Models with the Legacy
Code Tool” in the Simulink
documentation

rtwdemos, select Custom
Code folder

Connect to data interfaces
for the generated C code data
structures

Chapter 17, “Data Exchange
APIs” in the Real-Time
Workshop documentation

rtwdemo_capi
rtwdemo_asap2

Customize and control the
build process

Chapter 2, “Code Generation
and the Build Process” in
the Real-Time Workshop
documentation

rtwdemo_buildinfo

Create a zip file that contains
generated code files, static
files, and dependent data

“Relocating Code to Another
Development Environment” on
page 2-155 in the Real-Time

rtwdemo_buildinfo

Schedule the generated code

Chapter 8, “Models with
Multiple Sample Rates” in
the Real-Time Workshop
documentation

Chapter 16, “Asynchronous
Support” in the Real-Time
Workshop documentation

rtwdemos, select Multirate
Support folder

Verifying Software Integration

A common technique for verifying software integration is processor-in-the-loop
(PIL) testing.

Prerequisites and Goals

Prerequisites

Goals

Production quality source code generated

Externally written code to be integrated

Object code files that have been verified in a
target environment




Integrating Software

Approaches for Applying Real-Time Workshop Technology
During PIL testing you can:

Use the Real-Time Workshop Embedded Coder product to generate source
code for your component model.

2 Use an appropriate integrated development environment (IDE) to

cross-compile and link the generated code for your target hardware.

3 Use the IDE debugger or instruction set simulator (ISS) to integrate

the executable into a framework for cosimulation with your Simulink
environment or plant model for open- or closed-loop testing.

You can run PIL tests in different ways:

Use the IDE debugger or ISS to run your embedded code in lock step, non
real time for passing data to and from Simulink. In this case, a successful
PIL test produces results that match the original model behavior.
Depending on the capabilities of the IDE, it might be possible to also collect
execution profile metrics, stack measurements, code coverage, and other
measurements of your embedded code.

Run the code on the embedded hardware and use the IDE debugger or ISS
to shuffle data between the hardware and Simulink.

Run the code on the embedded hardware without an IDE, and use a
standard communication layer to handle interactions. Currently, limited
built-in tool support is available for this method. However, you can
accomplish it by using knowledge of the embedded environment and
Real-Time Workshop Embedded Coder custom target options.

The following figure shows the PIL testing .
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" | Simulink
E E Options |
E = 1. Run code in ISS E
: 2. Run code on HW, with 1SS
E Cross-compiled C as conduit !
! (IDE, ISS) 3. Run code directly on HW, |
! with limited product support |

Mapping of Engineering Tasks to Related Product Information

Engineering Tasks Related Product Information | Demos

Set up and run PIL tests on | “Verifying Generated Code rtwdemo_pil

your target system Wlth Processo?-ln-the-Loop rtwdeno. custom. pil
in the Real-Time - -
Workshop Embedded Coder rtwdemo_rtiostream
COERREN e See the list of supported
“Embedded IDE Link CC” hardware for the Real-Time
documentation Workshop Embedded Coder

product on MathWorks Web
site, and then find a demo for
the related product of interest

Embedded IDE Link MU
documentation

“Embedded IDE Link TS”
documentation

“Embedded IDE Link VS”
documentation
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Integrating and Calibrating System Components

Integrating and Calibrating System Components

In this section...

“Verifying System Integration” on page 1-67
“Calibrating the ECU” on page 1-70

Verifying System Integration

The next step of the development process is to verify your system integration.
During system integration, you integrate the software and its microprocessor
with power electronics, signal conditioning, and other aspects of the hardware
environment for the final embedded system product.

A critical step of system integration is verification. Hardware-in-the-loop
(HIL) testing is a technique for testing and verifying an embedded
system (or ECU) by using a real-time target environment. It adds the
complexity of the environment (or plant) under control to the test platform
by adding a mathematical representation of all related dynamic systems.
The mathematical representations are referred to as the simulated plant
executing in real time.

For example, a HIL simulation platform for the development of automotive
anti-lock braking systems might have a mathematical representation for
different aspects of the controller under test.

® Vehicle dynamics such as suspension, wheels, tires, roll, pitch, and yaw

¢ Road and environment characteristics

¢ Dynamics of the brake system’s hydraulic components
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Prerequisites and Goals

Prerequisites

Goals

Production quality source code generated or
written for all system components

All software components have been integrated
Software integration complete

ECU and all other required hardware is
available

Integrate the software and its microprocessor
with the hardware environment for the final
embedded system product

Add the complexity of the environment (or
plant) under control to the test platform

Test and verify the embedded system (or ECU)
by using a real-time target environment

Approaches for Applying Real-Time Workshop Technology

Real-Time Workshop technology supports HIL. You use Simulink software to
develop and validate the environment model. Then, you use the Real-Time
Workshop product to generate, build, and download the executable for the
environment model to the HIL testing platform to validate an ECU in real
time. The code that you build for the simulator might include VxWorks from
Wind River or another real-time operating system (RTOS).

The following figure shows a typical HIL .

Simulink

Algorithm model

Environment model

Embedded
system

Real-time
simulator

The HIL platform available from The MathWorks is the xPC Target product.
Several third-party products are also available for use as HIL platforms. The
xPC Target product offers hard real-time performance for any PC with Intel®


http://www.mathworks.com/products/xpctarget/

Integrating and Calibrating System Components

or AMD® 32-bit processors functioning as your real-time target. It enables
you to add I/0 interface blocks to your models and automatically generate
code with Real-Time Workshop technology and download the code to a second
PC running the xPC Target real-time kernel. System integrator solutions
based on xPC Target are also available.

Mapping of Engineering Tasks to Related Product Information

Engineering Tasks

Related Product Information

Demos

Generate source code for HIL
testing

Chapter 3, “Generated Code
Formats” in the Real-Time
Workshop documentation

Real-Time Workshop
Embedded Coder

“Data Structures, Code
Modules, and Program
Execution” in the Real-Time
Workshop Embedded Coder
documentation

Chapter 13, “Targeting the
Wind River Systems Tornado
Environment for Real-Time
Applications” in the Real-Time
Workshop documentation

“Generating Code That
Complies with AUTOSAR
Standards” in the Real-Time
Workshop Embedded Coder
documentation

rtwdemo_f14

Conduct hard real-time HIL
testing using PCs

xPC Target

xPC Target documentation

help xpcdemos
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Calibrating the ECU

As part of system integration, you might need to calibrate the ECU to ensure
it is properly tuned for its intended use. Many automotive calibration systems
read calibration data from ASAP2 description files. You can use the Real-Time
Workshop product to produce ASAP2 files during the code generation process.
For more information about exporting an ASAP2 file, see Appendix B,
“Generating ASAP2 Files” in the Real-Time Workshop documentation.

If you are developing your own calibration system, the Real-Time Workshop

C API interface provides an alternative for interfacing with the generated
code’s data.

Prerequisites and Goals

Prerequisites Goals
System is integrated Ensure ECU is properly tuned for its intended
use

Mapping of Engineering Tasks to Related Production
Information

Engineering Tasks Related Product Information | Demos

Generate ASAP2 data files Appendix B, “Generating ASAP2 | rtwdemo_asap2
Files” in the Real-Time Workshop

documentation
Generate C API data Chapter 17, “Data Exchange rtwdemo_capi
interface files APIs” in the Real-Time Workshop

documentation




Code Generation and the
Build Process

This chapter provides an overview of the Real-Time Workshop features
that you can control with the Configuration Parameters dialog box and
Model Explorer. The following sections step you through the Configuration
Parameters dialog panes and discuss more options for controlling code
generation and compiling it for specific environments.

“Choosing and Configuring Your Target” on page 2-2
“Choosing and Configuring a Compiler” on page 2-18

“Adjusting Simulation Configuration Parameters for Code Generation”
on page 2-27

“Configuring Real-Time Workshop Code Generation Parameters” on page
2-58

“Build Process” on page 2-87

“Configuring Generated Code with TLC” on page 2-100
“Interacting with the Build Process” on page 2-104
“Customizing the Build Process” on page 2-130
“Validating Generated Code” on page 2-145
“Integrating Legacy and Custom Code” on page 2-150

“Relocating Code to Another Development Environment” on page 2-155
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Choosing and Configuring Your Target

In this section...

“Introduction” on page 2-2

“Selecting a System Target File” on page 2-3

“Selecting a System Target File Programmatically” on page 2-4
“Available Targets” on page 2-5

“Creating Custom Targets” on page 2-10

“Template Makefiles and Make Options” on page 2-10

Introduction

The first step to configuring a model for Real-Time Workshop code generation
1s to choose and configure a code generation target. When you select a target,
other model configuration parameters change automatically to best serve
requirements of the target. For example:

® Code interface parameters
® Build process parameters, such as the template make file

e Target hardware parameters, such as word size and byte ordering

You can specify this configuration information for a specific type of target
in one step by invoking the System Target File Browser, as explained in
“Selecting a System Target File” on page 2-3. The browser lists a variety of
ready-to-run configurations.

After selecting a system target, you can modify model configuration parameter
settings, if necessary

If you want to switch between different targets in a single workflow for
different code generation purposes (for example, rapid prototyping versus
product code deployment), set up different configuration sets for the same
model and switch the active configuration set for the current operation. For
more information on how to set up configuration sets and change the active
configuration set, see “Configuration Sets” in the Simulinkdocumentation.
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Selecting a System Target File

To select a target configuration using the System Target File Browser,

1 Click Real-Time Workshop on the Configuration Parameters dialog box.
The Real-Time Workshop pane appears.

2 Click the Browse button next to the System target file field. This opens
the System Target File Browser. The browser displays a list of all currently
available target configurations, including customizations. When you select
a target configuration, the Real-Time Workshop software automatically
chooses the appropriate system target file, template makefile, and make
command.

“Selecting a System Target File” on page 2-3 shows the System Target File
Browser with the generic real-time target selected.

3 Click the desired entry in the list of available configurations. The
background of the list box turns yellow to indicate an unapplied choice has
been made. To apply it, click Apply or OK.

x
Swztem target file: Description:
ert.tlc Feal-Timne Workshop Embedded Coder (no au;l
ert.tlc Feal-Time Workshop Embedded Coder {auto
ert.tlc Feal-Time Workshop Embedded Coder {auto
ert.tlc ¥isual C-C++ Project Makefile only for t
ert_shrlib tlc Feal-Time Workshop Embedded Coder (host-—
Generic Real-Time Target
grt.tlc ¥Wizual C-C++ Project Makefile only for t
grt_malloc. tlc Generic Real-Time Target with dyvnamic me
th_malch.tlc Wi=ual C/C++I Project Makefile only fcnr_tlj
4 3
Full name: E:“matlabhrbtchgrth gt e

Template make file: grt_default_tmf
Make command:  make_rhw

aK I Cancel Help | Apply |

System Target File Browser

When you choose a target configuration, the Real-Time Workshop software
automatically chooses the appropriate system target file, template makefile,
and make command for the selected target, and displays them in the
System target file field. The description of the target file from the browser
is placed below its name in the general Real-Time Workshop pane.

2-3
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Selecting a System Target File Programmatically

Simulink models store model-wide parameters and target-specific data in
configuration sets. Every configuration set contains a component that defines
the structure of a particular target and the current values of target options.
Some of this information is loaded from a system target file when you select a
target using the System Target File Browser. You can configure models to
generate alternative target code by copying and modifying old or adding new
configuration sets and browsing to select a new target. Subsequently, you can
interactively select an active configuration from among these sets (only one
configuration set can be active at a given time).

Scripts that automate target selection need to emulate this process.
To program target selection

1 Obtain a handle to the active configuration set with a call to the
getActiveConfigSet function.

2 Define string variables that correspond to the required Real-Time
Workshop system target file, template makefile, and make command
settings. For example, for the ERT target, you would define variables for
the strings 'ert.tlc', 'ert_default_tmf', and 'make_rtw'.

3 Select the system target file with a call to the switchTarget function. In
the function call, specify the handle for the active configuration set and
the system target file.

4 Set the TemplateMakefile and MakeCommand configuration parameters to
the corresponding variables created in step 2.

For example:

cs = getActiveConfigSet(model);

stf = 'ert.tlc';
tmf = 'ert_default_tmf';
mc = 'make_rtw';

switchTarget(cs,stf,[]);
set_param(cs, 'TemplateMakefile',tmf);
set_param(cs, 'MakeCommand',mc) ;
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Available Targets

The following table lists supported system target files and their associated
code formats. The table also gives references to relevant manuals or chapters
in this book. All of these targets are built using the make rtw make command.

Note You can select any target of interest using the System Target File
Browser. This allows you to experiment with configuration options and save
your model with different configurations. However, you cannot build or
generate code for non-GRT targets unless you have the appropriate license
on your system (Real-Time Workshop Embedded Coder license for ERT,
Real-Time Windows Target license for RTWIN, and so on).

Each system target file invokes one or more template makefiles. The template
makefile that is invoked activates a particular compiler (for example, Lcc,
gee, or Watcom compilers). This is specified for you by MEXOPTS, which is
determined when you run mex -setup to select a compiler for mex. One
exception is the Microsoft® Visual C++® project target, which has separate
System Target File Browser entries.

Targets Available from the System Target File Browser

Target/Code System Target | Template Makefile

Format File and Comments Reference
Real-Time ert.tlc ert_default tmf Real-Time Workshop
Workshop ert_shrlib.tlc Use mex -setup to Embedded Coder
Embedded Coder P documentation

(for PC or UNIX*
platforms)

configure for Lce,
Watcom, ve, gee, and
other compilers

4. UNIX® is a registered trademark of The Open Group in the United States and other
countries.
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Targets Available from the System Target File Browser (Continued)

Target/Code System Target | Template Makefile
Format File and Comments Reference
Real-Time ert.tlc ert_msvc.tmf Real-Time Workshop
Workshop Creates a makefile which i peclé el (_joder
Embedded Coder ] documentation

. 5 can be loaded into the
L Visual C++ IDE
Project Makefile
Real-Time ert.tlc ert_tornado.tmf Real-Time Workshop
Workshop Embedded Coder

Embedded Coder
for Tornado®

documentation

(VxWorks)®
Real-Time autosar.tlc ert_default tmf Real-Time Workshop
Workshop Embedded Coder
Embedded Coder documentation
for AUTOSAR
Generic Real-Time grt.tlc grt_default tmf Chapter 3, “Generated
for PC or UNIX Code Formats”
latf Use mex -setup to
platiorms configure for Lce,
Watcom, ve, gee, and
other compilers
Generic Real-Time grt.tlc grt_msvc.tmf Chapter 3, “Generated

for Visual C++
Project Makefile

Code Formats”

5. Visual C++® is a registered trademark of Microsoft® Corporation.

6. Tornado® and VxWorks® are registered trademarks of Wind River® Systems, Inc.
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Targets Available from the System Target File Browser (Continued)

Target/Code
Format

System Target
File

Template Makefile
and Comments

Reference

Generic Real-Time
(dynamic) for PC or
UNIX platforms

grt_malloc.tlc

grt_malloc_default_

tmf

Use mex -setup to
configure for Lce,
Watcom, ve, gee, and
other compilers

Does not support
SimStruct.

Chapter 3, “Generated
Code Formats”

Generic Real-Time
(dynamic) for
Visual C++ Project
Makefile

grt_malloc.tlc

grt_malloc_msvc.tmf

Does not support
SimStruct.

Chapter 3, “Generated
Code Formats”

Rapid Simulation rsim.tlc rsim_default tmf Chapter 12, “Running
Target (default Rapid Simulations”

Use mex -setup t
for PC or UNIX Coieﬁgu;‘e S
platforms)
Rapid Simulation rsim.tlc rsim_lcc.tmf Chapter 12, “Running
Target for LCC Rapid Simulations”
compiler
Rapid Simulation rsim.tlc rsim_unix.tmf Chapter 12, “Running
Target for UNIX Rapid Simulations”
platforms
Rapid Simulation rsim.tlc rsim_vc.tmf Chapter 12, “Running
Target for Visual Rapid Simulations”
C++ compiler
Rapid Simulation rsim.tlc rsim_watc.tmf Chapter 12, “Running

Target for Watcom
compiler

Rapid Simulations”
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Targets Available from the System Target File Browser (Continued)

Target/Code System Target Template Makefile
Format File and Comments Reference
S-Function Target rtwsfcn.tlc rtwsfcn_default tmf Chapter 11, “S-Function
for PC or UNIX Target”
Use mex -setup to
platforms
configure
S-Function Target rtwsfcn.tlc rtwsfcn_lcc.tmf Chapter 11, “S-Function
for LCC Target”
S-Function Target rtwsfcn.tlc rtwsfcn_unix.tmf Chapter 11, “S-Function
for UNIX platforms Target”
S-Function Target rtwsfcn.tlc rtwsfcn_vc.tmf Chapter 11, “S-Function
for Visual C++ Target”
compiler
S-Function Target rtwsfcn.tlc rtwsfcn_watc.tmf Chapter 11, “S-Function
for Watcom Target”
Tornado (VxWorks) | tornado.tlc tornado.tmf Chapter 13, “Targeting
Real-Time Target the Wind River Systems
Tornado Environment for
Real-Time Applications”
ASAM-ASAP2 Data | asap2.tlc asap2_default tmf Appendix A, “Limitations
Definition Target on the Use of Absolute
Time”
Real-Time Windows | rtwin.tlc rtwin.tmf Real-Time Windows

Target for Open
Watcom

rtwinert.tlc

rtwinert.tmf

Target documentation

xPC Target for
Visual C++ or
Watcom C/C++
compilers

xpctarget.tlc
xpctargetert.tlc

xpc_default_tmf
xpc_ert_tmf
xpc_vc.tmf
xpc_watc.tmf

xPC Target
documentation
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Targets Available from the System Target File Browser (Continued)

Target/Code
Format

System Target
File

Template Makefile
and Comments

Reference

Target Support
Package FM5

mpc555exp.tlc
mpc555pil.tlc
mpc555rt. tlc
mpc555rt_grt.tlc

mpc555exp. tmf
mpc555exp_diab. tmf
mpc555pil. tmf
mpc555pil_diab.tmf
mpc555rt. tmf
mpc555rt_grt.tmf

Target Support Package
FM5 documentation

Target Support c166.tlc c166.tmf Target Support Package
Package IC1 c166_grt.tlc c166_grt.tmf IC1 documentation
Target Support ccslink grt.tlc | N/A Target Support Package
Package TC2 ccslink ert.tlc |8 TC2 documentation
7
Target Support ccslink grt.tlc | N/A Target Support Package
10

Package TC6

(GRT)

ccslink_ert.tlc
9

TC6 documentation

Targets Supporting Nonzero Start Time
When you try to build models with a nonzero start time, if the selected target

does not support a nonzero start time, the Real-Time Workshop software

does not generate code and displays an error message. The Rapid Simulation

(RSim) target supports a nonzero start time when the Configuration
Parameters > RSim Target > Solver selection parameter is set to Use
Simulink solver module. All other targets do not support a nonzero start

time.

7. ti_c2000_grt.tlc (GRT) and ti_c2000_ert.tlc are provided for backward compatibility
8. ti c2000 _grt.tmf (GRT)and ti_c2000_ert.tmf are provided for backward compatibility

9. ti_c6000.tlc (GRT) and ti_c6000_ert.tlc are provided for backward compatibility

10. ti_c6000.tmf (GRT) and ti_c6000_ert.tmf are provided for backward compatibility

2-9
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Creating Custom Targets

You can create your own system target files to build custom targets that
interface with external code or operating environments. If you have in the
past created system target files, note that the form of callbacks has changed
between Versions 5 and 6 of the Real-Time Workshop product. See the
Real-Time Workshop Embedded Coder documentation for details, including
how to make your custom targets appear in the System Target File Browser
and display appropriate controls in panes of the Configuration Parameters

dialog box.

Template Makefiles and Make Options

The Real-Time Workshop product includes a set of built-in template makefiles
that are designed to build programs for specific targets.

There are two types of template makefiles:

Compiler-specific template makefiles are designed for use with a particular
compiler or development system.

By convention, compiler-specific template makefiles are named according to
the target and compiler (or development system). For example, grt_vc.tmf
is the template makefile for building a generic real-time program under the
Visual C++ compiler; ert_lcc.tmf is the template makefile for building a
Real-Time Workshop Embedded Coder program under the Lcc compiler.

Default template makefiles make your model designs more portable, by
choosing the correct compiler-specific makefile and compiler for your
installation. “Choosing and Configuring a Compiler” on page 2-18 describes
the operation of default template makefiles in detail.

Default template makefiles are named target_default tmf. They

are M-files that, when run, select the appropriate TMF. For example,
grt_default_tmf is the default template makefile for building a generic
real-time program; ert_default_tmf is the default template makefile for
building a Real-Time Workshop Embedded Coder program.

You can supply options to makefiles by using arguments to the Make
command field in the general Real-Time Workshop pane of the
Configuration Parameters dialog box. Append the arguments after make rtw
(or make_xpc or other make command), as in the following example:



Choosing and Configuring Your Target

make_rtw OPTS="-DMYDEFINE=1"
The syntax for make command options differs slightly for different compilers.

Complete details on the structure of template makefiles are provided in the
Real-Time Workshop Embedded Coder documentation. This information is
provided for those who want to customize template makefiles. This section
describes compiler-specific template makefiles and common options you can
use with each.

Note To control compiler optimizations for your Real-Time Workshop
makefile build at the Simulink GUI level, use the Compiler optimization
level option on the Real-Time Workshop pane of the Configuration
Parameters dialog box. The Compiler optimization level option provides

® Target-independent values Optimizations on (faster runs) and
Optimizations off (faster builds), which allow you to easily toggle
compiler optimizations on and off during code development

® The value Custom for entering custom compiler optimization flags at
Simulink GUI level (rather than at other levels of the build process)

If you specify compiler options for your Real-Time Workshop makefile build
using OPT_OPTS, MEX_OPTS (except MEX_OPTS="-v"), or MEX_OPT_FILE, the
value of Compiler optimization level is ignored and a warning is issued
about the ignored parameter.

Template Makefiles for UNIX Platforms

The template makefiles for UNIX platforms are designed to be used with
the Free Software Foundation’s GNU® Make. These makefile are set up to

conform to the guidelines specified in the IEEE®!'! Std 1003.2-1992 (POSIX)
standard.

® ert_unix.tmf

® grt_malloc_unix.tmf

11. TEEE® is a registered trademark of The Institute of Electrical and Electronics Engineers,
Inc.
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® grt_unix.tmf
® rsim_unix.tmf

®* rtwsfcn_unix.tmf
You can supply options by using arguments to the make command.

® OPTS — User-specific options, for example,

make_rtw OPTS="-DMYDEFINE=1"

® OPT_OPTS— Optimization options. Default is -0. To enable debugging
specify as OPT_OPTS=-g. Because of optimization problems in IBM_RS, the
default is no optimization.

® CPP_OPTS — C++ compiler options.
® USER_SRCS — Additional user sources, such as files needed by S-functions.
® USER_INCLUDES — Additional include paths, for example,

USER_INCLUDES="-Iwhere-ever -Iwhere-ever2"

These options are also documented in the comments at the head of the
respective template makefiles.

Template Makefiles for the Microsoft Visual C++ Compiler

The Real-Time Workshop product offers two sets of template makefiles
designed for use with the Visual C++ compiler.

To build an executable within the Real-Time Workshop build process, use one
of the target_vc.tmf template makefiles:

* ert_vc.tmf

® grt_malloc_vc.tmf

* grt_vc.tmf

® rsim_vc.tmf

* rtwsfcn_vc.tmf
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You can supply options by using arguments to the make command.

® OPT_OPTS — Optimization option. Default is -02. To enable debugging
specify as OPT_OPTS=-2Zd.

® OPTS — User-specific options.

® CPP_OPTS — C++ compiler options.

® USER_SRCS — Additional user sources, such as files needed by S-functions.
® USER_INCLUDES — Additional include paths, for example,

USER_INCLUDES="-Iwhere-ever -Iwhere-ever2"

These options are also documented in the comments at the head of the
respective template makefiles.

Visual C++ Code Generation Only. To create a Visual C++ project
makefile (model.mak) without building an executable, use one of the
target_msvc.tmf template makefiles:

® ert_msvc.tmf
® grt_malloc_msvc.tmf

® grt_msvc.tmf

These template makefiles are designed to be used with nmake, which 1s
bundled with the Visual C++ compiler.

You can supply the following options by using arguments to the nmake
command:

® OPTS — User-specific options, for example,

make_rtw OPTS="/D MYDEFINE=1"

® USER_SRCS — Additional user sources, such as files needed by S-functions.
® USER_INCLUDES — Additional include paths, for example,

USER_INCLUDES="-Iwhere-ever -Iwhere-ever2"

2-13
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These options are also documented in the comments at the head of the
respective template makefiles.

Template Makefiles for the Watcom C/C++ Compiler

The Real-Time Workshop product provides template makefiles to create an
executable for the Microsoft Windows platform using Watcom C/C++. These
template makefiles are designed to be used with wmake, which is bundled
with Watcom C/C++.

Note The Watcom C compiler is no longer available from the manufacturer.
However, the Real-Time Workshop product continues to ship with
Watcom-related template makefiles.

* ert_watc.tmf

grt_malloc_watc.tmf

* grt_watc.tmf

* rsim_watc.tmf

* rtwsfcn_watc.tmf

You can supply options by using arguments to the make command. Note that

the location of the quotes is different from the other compilers and make
utilities discussed in this chapter.

® OPTS — User-specific options, for example,

make_rtw "OPTS=-DMYDEFINE=1"

® OPT_OPTS — Optimization options. The default optimization option is
-oxat. To turn off optimization and add debugging symbols, specify the
-d2 compiler switch in the make command, for example,

make_rtw "OPT_OPTS=-d2"

® CPP_OPTS — C++ compiler options.
® USER_0OBJS — Additional user objects, such as files needed by S-functions.
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® USER_PATH — The directory path to the source (.c or .cpp) files that are
used to create any .obj files specified in USER_OBJS. Multiple paths must
be separated with a semicolon. For example,

USER_PATH="path1;path2"

® USER_INCLUDES — Additional include paths, for example,

USER_INCLUDES="-Iinclude-path1 -Iinclude-path2"

These options are also documented in the comments at the head of the
respective template makefiles.

Template Makefiles for the LCC Compiler

The Real-Time Workshop product provides template makefiles to create an

executable for the Windows platform using Lec compiler Version 2.4 and
GNU Make (gmake).

® ert_lcc.tmf

® grt_lcc.tmf

® grt_malloc_lcc.tmf
® rsim_lcc.tmf

®* rtwsfcn_lcc.tmf
You can supply options by using arguments to the make command.:
® OPTS — User-specific options, for example,

make_rtw OPTS="-DMYDEFINE=1"

® OPT_OPTS — Optimization options. Default is none. To enable debugging,
specify -g4 in the make command:

make_rtw OPT_OPTS="-g4"

® CPP_OPTS — C++ compiler options.
® USER_SRCS — Additional user sources, such as files needed by S-functions.
® USER_INCLUDES — Additional include paths, for example,

2-15
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USER_INCLUDES="-Iwhere-ever -Iwhere-ever2"

For Lce, have a / as file separator before the filename instead of a \, for

example, d:\work\proj1/myfile.c.

These options are also documented in the comments at the head of the
respective template makefiles.

Enabling the Real-Time Workshop Software to Build When
Path Names Contain Spaces

The Real-Time Workshop software is able to handle path names that include

spaces. Spaces might appear in the path from several sources:

* Your MATLAB installation directory
® The current MATLAB directory in which you initiate a build

® A compiler you are using for a Real-Time Workshop build

If your work environment includes one or more of the preceding scenarios, use

the following support mechanisms, as necessary and appropriate:

® Add the following code to your template makefile (. tmf):

ALT_MATLAB_ROOT | >ALT_MATLAB_ROOT< |

ALT_MATLAB_BIN = |>ALT_MATLAB BIN<|
'if "$(MATLAB_ROOT)" != "$(ALT_MATLAB_ROOT)"
MATLAB_ROOT = $(ALT_MATLAB_ROOT)

lendif

'if "$(MATLAB_BIN)" != "$(ALT_MATLAB_BIN)"
MATLAB_BIN = $(ALT_MATLAB_BIN)

lendif

This code replaces MATLAB_ROOT with ALT_MATLAB_ROOT when the values

of the two tokens are not equal, indicating the path for your MATLAB

installation directory includes spaces. Likewise, ALT_MATLAB_BIN replaces

MATLAB_BIN.

Note the preceding code is specific to nmake. See the supplied Real-Time

Workshop template make files for platform-specific examples.
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e Use the MATLAB command rtw_alt pathname to translate fully qualified
path into standard DOS 8.3 style names. Specify the command with the
path you want to translate.

For example, to translate the path D:\Applications\Common Files,
specify the following:

rtw_alt_pathname('D:\Applications\Common Files')
ans =
D:\APPLIC~1\COMMON~1

® When using operating system commands, such as system or dos, enclose
path that specify executables or command parameters in double quotes
(" "). For example,

system('dir "D:\Applications\Common Files"')

2-17
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Choosing and Configuring a Compiler

In this section...

“Compilers and the Build Process” on page 2-18

“The Real-Time Workshop Product and ANSI?* C/C++ Compliance” on page
2-19

“Support for C and C++ Code Generation” on page 2-20
“Support for International (Non-US-ASCII) Characters” on page 2-21
“C++ Target Language Considerations” on page 2-24

“Choosing and Configuring Your Compiler on a Microsoft Windows
Platform” on page 2-24

“Choosing and Configuring Your Compiler on The Open Group UNIX
Platforms” on page 2-25

“Including S-Function Source Code” on page 2-25

Compilers and the Build Process

The Real-Time Workshop build process depends upon the correct installation
of one or more supported compilers. Compiler, in this context, refers to a
development environment containing a linker and make utility, in addition to
a high-level language compiler. For details on supported compiler versions,
see

http://www.mathworks.com/support/compilers/current_release

Most Real-Time Workshop targets create an executable that runs on your
workstation. When creating the executable, the Real-Time Workshop build
process must be able to access an appropriate compiler. The build process can
automatically find a compiler to use based on your default MEX compiler.

The build process also requires the selection of a template makefile. The
template makefile determines which compiler runs, during the make phase of
the build, to compile the generated code.

24. ANSI® is a registered trademark of the American National Standards Institute, Inc.
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To determine which template makefiles are appropriate for your compiler
and target, see Targets Available from the System Target File Browser on
page 2-5.

For both Real-Time Workshop generated files and user-supplied files, the file
extension, .c or .cpp, determines whether a C or a C++ compiler will be
used in the Real-Time Workshop build process. If the file extension is .c, a C
compiler will be used to compile the file, and the symbols will use the C linkage
convention. If the file extension is .cpp, a C++ compiler will be used to compile
the file, and the symbols by default will use the C++ linkage specification.

The Real-Time Workshop Product and ANSI> C/C++
Compliance

The Real-Time Workshop software generates code that is compliant with the
following standards:

Language  Supported Standard
C ISO/IEC 9899:1990, also known as C89/C90
C++ ISO/IEC 14882:2003

Code generated by the Real-Time Workshop software from the following
sources is ANSI C/C++ compliant:
® Simulink built-in block algorithmic code

¢ Real-Time Workshop and Real-Time Workshop Embedded Coder system
level code (task ID [TID] checks, management, functions, and so on)

¢ Code from other blocksets, including the Simulink Fixed Point product, the
Communications Blockset product, and so on

¢ Code from other code generators, such as the Stateflow Coder product and
Embedded MATLAB functions

Additionally, the Real-Time Workshop software can incorporate code from

¢ Embedded targets (for example, startup code, device driver blocks)

12. ANSI is a registered trademark of the American National Standards Institute, Inc.
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e User-written S-functions or TLC files

Note Coding standards for these two sources are beyond the control of the
Real-Time Workshop software, and can be a source for compliance problems,
such as code that uses C99 features not supported in the ANSI C, C89/C90
subset.

Support for C and C++ Code Generation

Real-Time Workshop supports C and C++ code generation. The primary
motivation for C++ support is to facilitate integration of generated code with
legacy or custom user code written in C++. Consider the following as you
choose a language for your generated code:

Whether you need to configure Real-Time Workshop to use a specific
compiler. This is required to generate C++ code on Windows. See “Choosing
and Configuring a Compiler” on page 2-18.

The language configuration setting for the model. See “Configuring the
Target Language for Generated Code” on page 2-61.

Whether you need to integrate legacy or custom code with generated code.
For a summary of integration options, see “Integrating Legacy and Custom
Code” on page 2-150.

Whether you need to integrate C and C++ code. If so, see “Integrating C
and C++ Code” on page 10-90.

Note You can mix C and C++ code when integrating Real-Time Workshop
generated code with custom code. However, you must be aware of the
differences between C and default C++ linkage conventions, and add the
extern "C" linkage specifier wherever it is appropriate. For the details
of the differing linkage conventions and how to apply extern "C", refer

to a C++ programming language reference book.

“C++ Target Language Limitations” on page 2-21.
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For a demo, enter sfcndemo_cppcount in the MATLAB Command Window.
For a Stateflow example, enter sf_cpp.

C++ Target Language Limitations

¢ Real-Time Workshop provides Beta support for C++ code generation for all
blockset products. C++ code generation for other blockset products has
not yet been fully evaluated.

¢ Real-Time Workshop does not support C++ code generation for the
following:

SimDriveline

SimMechanics
SimPowerSystems

Target Support Package FM5
Target Support Package IC1
Target Support Package TC2
Target Support Package TC6
xPC Target

¢ When using the model reference feature, the language of the code generated
for the top model and any referenced models must match. For example,
if you generate C++ code for the top model, the generated code for all
referenced models must also be C++ code.

¢ The following Real-Time Workshop Embedded Coder dialog box fields
currently do not accept the .cpp extension. However, a .cpp file will be
generated if you specify a filename without an extension in these fields,
with C++ selected as the target language for your generated code.

= Data definition filename field on the Data Placement pane of the
Configuration Parameters dialog box

= Definition file field for an mpt data object in the Model Explorer

These restrictions on specifying .cpp will be removed in a future release.

Support for International (Non-US-ASCIl) Characters

Real-Time Workshop does not include non-US-ASCII characters in compilable
portions of source code. However, Simulink, Stateflow, Real-Time Workshop,
and Real-Time Workshop Embedded Coder do support non-US-ASCII
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characters in certain ways. When non-US-ASCII characters are encountered
during code generation, they either become comments in the generated code
or do not propagate into the generated source files. Sources of non-US-ASCII
characters are described below:

Simulink Block Names: The name of Simulink blocks are permitted to
use non-US-ASCII character sets. The block name can be output in a
comment above the generated code for that block when the Simulink
block / Stateflow object comments check box is selected. If Real-Time
Workshop also uses the block name in the generated code as an identifier,
the identifier’s name will be changed to ensure only US-ASCII characters
are present.

One exception to using non-US-ASCII characters in block names is for
nonvirtual subsystems configured to use the subsystem name as either the
function name or the filename. In this case, only US-ASCII characters
can be used to name the subsystem.

User comments on Stateflow diagrams: These comments can contain
non-US-ASCII characters. They are written to the generated code when
the Include comments check box is selected.

Custom TLC files (.tlc): User-created Target Language Compiler files
can have non-US-ASCII characters inside both TLC comments and in any
code comments which are output. The Target Language Compiler does not
support non-US-ASCII characters in TLC variable or function names.

Additional Support with Real-Time Workshop Embedded Coder

Users of Real-Time Workshop Embedded Coder have additional international
character support:

Simulink Block Description: Real-Time Workshop Embedded Coder
propagates block descriptions entered from Simulink Block Parameter
dialog boxes into the generated code as comments when the Simulink
block descriptions check box on the Real-Time Workshop/Comments
pane of the Configuration Parameters dialog box is selected. Non-US-ASCII
characters are supported for these descriptions.

Real-Time Workshop Embedded Coder code template file: Code Generation
Template (.cgt) files provide customization capability for the generated
code. Any output lines in the .cgt file which are C or C++ comments can
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contain non-US-ASCII characters, for example the file banner and file
trailer sections; these comments are propagated to the generated code.
However, although TLC comments in .cgt files can contain non-US-ASCII
characters, these TLC comments are not propagated to the generated code.

e Stateflow object descriptions: Stateflow object descriptions can contain
non-US-ASCII characters. The description will appear as a comment above
the generated code for that chart when the Stateflow object descriptions
check box is selected.

e Simulink Parameter Object Description: Simulink Parameter Object
descriptions can contain non-US-ASCII characters. The description will
appear as a comment above the generated code when the Simulink data
object descriptions check box is selected.

e MPT Signal Object Description: MPT object descriptions can contain
non-US-ASCII characters. The description will appear as a comment above
the generated code when the Simulink data object descriptions check box
is selected.

Character Set Limitation

You can encounter problems with models containing characters of a specific
character set, such as Shift JIS, on a host system for which that character
set is not configured as the default.

When models containing characters of a given character set are used on a host
system that is not configured with that character set as the default, Simulink
can incorrectly interpret characters during model loading and saving. This
can lead to corrupted characters being displayed in the model and possibly
the model failing to load. It can also lead to corrupted characters in the model
file (.md1) if you save it.

This limitation does not exist when the characters used in the model are in
the default character set for the host system. For example, you can use Shift
JIS characters with no issues if the host system is configured to use Japanese
Windows.

Additionally, during code generation, the Target Language Compiler can
have similar problems reading characters from either the model . rtw or user
written .tlc files. This can result in corrupt characters in generated source
file comments or a Target Language Compiler error.
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For an example of international character set support for code generation, run
the demo model rtwdemo_international. This demo model is set up to work
around the character limitations described above. If you run this demo from
a non-Japanese MATLAB host machine, you must set up an international
character set for Simulink. For example, type

bdclose all; set_param(0, 'CharacterEncoding', 'Shift_JIS')
rtwdemo_international

Other uses of non-US-ASCII characters in models or in files used during the
build process are not supported; you should not depend on any incidental
functionality that may exist.

For additional information, see the description of slCharacterEncoding in
“Model Construction” in the Simulink documentation.

C++ Target Language Considerations

To use the C++ target language support, you might need to configure the
Real-Time Workshop software to use the appropriate compiler. For example,
on a Microsoft Windows platform the default compiler is the Lcc C compiler
shipped with the MATLAB product, which does not support C++. If you do not
configure the Real-Time Workshop software to use a C++ compiler before you
specify C++ for code generation, the following build error message appears:

The specified Real-Time Workshop target is configured to generate
C++, but the C-only compiler, LCC, is the default compiler. To
specify a C++ compiler, enter 'mex -setup' at the command prompt.
To generate C code, click (Open) to open the Configuration
Parameters dialog and set the target language to C.

Choosing and Configuring Your Compiler on a
Microsoft Windows Platform
On Windows platforms, you can use the Lee C compiler shipped with the

MATLAB product, or you can install and use one of the supported Windows
compilers.

The Real-Time Workshop code generator will choose a compiler based on
the template makefile (TMF) name specified on the Real-Time Workshop
pane of the Configuration Parameters dialog box. The simplest approach is
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to let the code generator pick a compiler based on your default compiler, as
set up using the mex -setup function. When you use this approach, you do
not need to define compiler-specific environment variables, and the Real-Time
Workshop code generator determines the location of the compiler using
information from the mexopts.bat file located in the preferences directory
(use the prefdir command to verify this location).

To use this approach, the TMF filename specified must be an M-file that
returns default compiler information by using the mexopts.bat file. Most
targets provided by the Real-Time Workshop product use this approach, as
when grt_default tmf or ert_default tmf is specified as the TMF name.

Alternatively, the name provided for the TMF can be a compiler-specific
template makefile, for example grt_vc.tmf, which designates the Microsoft
Visual C++ compiler. When you provide a compiler-specific TMF filename,
the Real-Time Workshop code generator uses the default mexopts.bat
information to locate the compiler if mex has been set up for the same compiler
as the specified TMF. If mex 1s not set up with a default compiler, or if it does
not match the compiler specified by the TMF, then an environment variable
must exist for the compiler specified by the TMF. The environment variable
required depends on the compiler.

Choosing and Configuring Your Compiler on The
Open Group UNIX Platforms

On a UNIX platform, the Real-Time Workshop build process uses the default
compiler. For all operating systems except the Sun™ operating system, cc is
the default compiler. On a Sun operating system, the default is gcc.

You should choose the UNIX template makefile that is appropriate to your
target. For example, grt_unix.tmf is the correct template makefile to build
a generic real-time program on a UNIX platform.

Including S-Function Source Code

When the Real-Time Workshop code generator builds models with S-functions,
source code for the S-functions can be either in the current directory or in the
same directory as their MEX-file. The code generator adds an include path

to the generated makefiles whenever it finds a file named sfncname.h in the
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same directory that the S-function MEX-file is in. This directory must be
on the MATLAB path.

Similarly, the Real-Time Workshop code generator adds a rule for the

directory when it finds a file sfncname.c (or .cpp) in the same directory as
the S-function MEX-file is in.
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Adjusting Simulation Configuration Parameters for Code

Generation

In this section...

“Introduction” on page 2-27

“Configuring the Solver” on page 2-28

“Configuring a Model for Data Logging” on page 2-29
“Configuring Optimizations” on page 2-32
“Configuring Diagnostics” on page 2-33

“Describing Hardware Properties” on page 2-35
“Configuring Referenced Models” on page 2-48

“Interactions of the Simulink and Real-Time Workshop Products to

Consider” on page 2-49

Introduction

When you are ready to generate code for a model, consider adjusting the
model’s simulation configuration parameters. One way of adjusting the
parameters is to modify option settings in the Configuration Parameters
dialog box. Alternatively, you can use the set_param function. The user
interface options and associated parameters related to the Real-Time
Workshop and Real-Time Workshop Embedded Coder products are described
in “Configuration Parameters” in the Real-Time Workshop reference. This
section describes simulation parameter adjustments to consider for code
generation.

Note When you change a check box, menu selection, or edit field in any
Configuration Parameters dialog box, the white background of the element
you altered turns to light yellow to indicate that an unsaved change has been

made. When you click OK, Cancel, or Apply, the background resets to white.
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Configuring the Solver

e “Configuring Start and Stop Times” on page 2-28
¢ “Configuring the Solver Type” on page 2-29
® “Configuring the Tasking Mode” on page 2-29

For details about solver options, see “Solver Pane” in the Simulink reference
documentation.

Configuring Start and Stop Times

The stop time must be greater than or equal to the start time. If the stop time
is zero, or if the total simulation time (Stop minus Start) is less than zero,
the generated program runs for one step. If the stop time is set to inf, the
generated program runs indefinitely.

When using the GRT or Wind River Systems Tornado targets, you can
override the stop time when running a generated program from the Microsoft
Windows command prompt or UNIX'® command line. To override the stop
time that was set during code generation, use the -tf switch.

model -tf n

The program runs for n seconds. If n = inf, the program runs indefinitely.
See Getting Started in the Real-Time Workshop documentation for an
example of the use of this option.

Certain blocks have a dependency on absolute time. If you are designing
a program that is intended to run indefinitely (Stop time = inf), and
your generated code does not use the rtModel data structure (that is, it
uses simstructs instead), you must not use these blocks. See Appendix
A, “Limitations on the Use of Absolute Time” for a list of blocks that can
potentially overflow timers.

If you know how long an application that depends on absolute time needs to
run, you can ensure that timers do not overflow and that they use optimal
word sizes by specifying the Application lifespan (days) parameter on the

13. UNIX® is a registered trademark of The Open Group in the United States and other
countries.
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Optimization pane. See “Controlling Memory Allocation for Time Counters”
on page 9-53 for details.

Configuring the Solver Type

For code generation, you must configure a model to use a fixed-step solver for
all targets except the S-function and RSim targets. You can configure the
S-function and RSim targets with a fixed-step or variable-step solver.

Configuring the Tasking Mode

The Real-Time Workshop product supports both single-tasking and
multitasking modes for periodic sample times. See Chapter 8, “Models with
Multiple Sample Rates” for details.

Configuring a Model for Data Logging

This section describes techniques by which a program generated by the
Real-Time Workshop software can save data to a MAT-file for analysis. See
also “Data Logging” in Getting Started for a tutorial on data logging features.

Note Data logging is available only for targets that have access to a file
system. In addition, only the RSim target executables are capable of accessing
MATLAB workspace data.

e “Configuring a Model to Log States, Time, and Output” on page 2-29

® “Logging Data with Scope and To Workspace Blocks” on page 2-31

® “Logging Data with To File Blocks” on page 2-31

e “Data Logging Differences in Single- and Multitasking Models” on page 2-32

Configuring a Model to Log States, Time, and Output
The Data Import/Export pane enables a generated program to save system

states, outputs, and simulation time at each model execution time step. The
data is written to a MAT-file, named (by default) model.mat.
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Before using this data logging feature, you should learn how to configure
a Simulink model to return output to the MATLAB workspace. This is
discussed in “Exporting Data to the MATLAB Workspace” in the Simulink
documentation.

For each workspace return variable that you define and enable, the Real-Time

Workshop code generator defines a MAT-file variable. For example, if your

model saves simulation time to the workspace variable tout, your generated

program logs the same data to a variable named (by default) rt_tout.

The code generated by the Real-Time Workshop code generator logs the
following data:

All root Outport blocks
The default MAT-file variable name for system outputs is rt_yout.

The sort order of the rt_yout array is based on the port number of the
Outport block, starting with 1.

All continuous and discrete states in the model
The default MAT-file variable name for system states is rt_xout.
Simulation time

The default MAT-file variable name for simulation time is rt_tout.

“Overriding the Default MAT-File Name” on page 2-30
“Overriding the Default MAT-File Variable Names” on page 2-31

Overriding the Default MAT-File Name. The MAT-file name defaults to
model .mat. To specify a different filename,

1 Choose Configuration Parameters from the Simulation menu. The

dialog box opens. Click Real-Time Workshop.

2 Append the following option to the existing text in the Make command

field.

OPTS="-DSAVEFILE=filename"
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Overriding the Default MAT-File Variable Names. By default, the
Real-Time Workshop code generation software prefixes the string rt_ to
the variable names for system outputs, states, and simulation time to form
MAT-file variable names. To change this prefix,

1 Choose Configuration Parameters from the Simulation menu. The
dialog box opens. Click Real-Time Workshop.

2 In the System target file field, select grt.tlc.
3 Under Real-Time Workshop, select the Interface subpane.

4 Select a prefix (rt_) or suffix (_rt) from the MAT-file variable name
modifier field, or choose none for no prefix (other targets may or may not
have this option).

Logging Data with Scope and To Workspace Blocks

The code generated by the Real-Time Workshop code generator also logs data
from these sources:

e All Scope blocks that have the Save data to workspace option enabled

You must specify the variable name and data format in each Scope block’s
dialog box.

e All To Workspace blocks in the model

You must specify the variable name and data format in each To Workspace
block’s dialog box.

The variables are written to model.mat, along with any variables logged from
the Workspace I/0 pane.

Logging Data with To File Blocks

You can also log data to a To File block. The generated program creates a
separate MAT-file (distinct from model .mat) for each To File block in the
model. The file contains the block’s time and input variable(s). You must

specify the filename, variable names, decimation, and sample time in the To
File block’s dialog box.

2-31



2 Code Generation and the Build Process

2-32

Note Models referenced by Model blocks do not perform data logging in that
context except for states, which you can include in the state logged for top
models. Code generated by the Real-Time Workshop software for referenced
models does not perform data logging to MAT-files.

Data Logging Differences in Single- and Multitasking Models

When logging data in single-tasking and multitasking systems, you will notice
differences in the logging of

¢ Noncontinuous root Outport blocks

® Discrete states

In multitasking mode, the logging of states and outputs is done after the first
task execution (and not at the end of the first time step). In single-tasking
mode, the code generated by the Real-Time Workshop software logs states
and outputs after the first time step.

See “Data Logging in Single-Tasking and Multitasking Model Execution”
on page 7-15 for more details on the differences between single-tasking and
multitasking data logging.

Note The rapid simulation target (RSim) provides enhanced logging options.
See Chapter 12, “Running Rapid Simulations” for more information.

Configuring Optimizations

For information on configuring optimizations, see the following sections:

¢ Chapter 9, “Optimizing a Model for Code Generation”

® “Optimization Dependencies” on page 9-56

If you are licensed to use the Real-Time Workshop Embedded Coder product,

see also “Configuring Optimizations” and “Tips for Optimizing the Generated
Code” in the Real-Time Workshop Embedded Coder documentation.
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Configuring Diagnostics
Diagnostic parameters that pertain to code generation include the following
Data Validity parameters:

* Detect loss of tunability in the Parameters section

® Model Verification block enabling in the Debugging section

Detecting Loss of Tunability

If a tunable workspace variable is modified by Mask Initialization code, or is
used in an arithmetic expression with unsupported operators or functions, the
expression is reduced to a numeric expression and therefore cannot be tuned.
You can use the Detect loss of tunability diagnostic to report such loss of
tunability. The possible values are:

® none — Loss of tunability can occur without notification.
e warning — Loss of tunability generates a warning (default).

® error — Loss of tunability generates an error.

For a list of supported operators and functions, see “T'unable Expression
Limitations” on page 5-16.

Enabling Model Verification Blocks

A specific use of the diagnostics options for code generation is to control the
behavior of model verification (assertion) blocks. The Model Verification
block enabling menu in the Data Validity subpane specifies whether model
verification blocks such as Assert, Check Static Gap, and related range check
blocks are included, excluded, or default to their local settings. The diagnostic
has the same effect on code generated by the Real-Time Workshop software as
it does on simulation behavior.

Note Simulation and code generation ignore the Model Verification block
enabling parameter when model verification blocks are inside a S-function.

Settings are
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® Use local settings
® Enable All
® Disable All

For Assertion blocks that are not disabled, the generated code for a model
includes one of the following statements, at appropriate locations, depending
on the block’s input signal type (Boolean, real, or integer, respectively).

utAssert (input_signal);
utAssert (input_signal != 0.0);
utAssert (input_signal != 0);

By default, utAssert has no effect in generated code. For assertions to abort
execution, you must enable them by including a parameter in the make_rtw
command. Specify the Make command field on the Real-Time Workshop
pane as follows:

make_rtw OPTS='-DDOASSERTS'

If you want triggered assertions not to abort execution and instead to print
the assertion statement, use the following make rtw variant:

make_rtw OPTS='-DDOASSERTS -DPRINT_ASSERTS'

utAssert is defined as

#define utAssert(exp) assert(exp)

If you want to customize the assertion behavior in generated code, you can
provide your own definition of utAssert in a hand-coded header file that
overrides the default implementation generated in utAssert.h. For details on
how to include a customized header file in the generated code, see “Configuring
Custom Code” on page 2-70 in the Real-Time Workshop documentation.

Finally, when running a model in accelerator mode, the Simulink engine calls

back to itself to execute assertion blocks instead of using generated code.
Thus, user-defined callbacks are still called when assertions fail.
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Describing Hardware Properties

When you use Simulink software to create and execute a model, and
Real-Time Workshop software to generate code, you may need to consider up
to three platforms, often called hardware targets:

e MATLAB Host — The platform that runs MathWorks software during
application development

¢ Embedded Target — The platform on which an application will be deployed
when it is put into production

¢ Emulation Target — The platform on which an application under
development is tested before deployment

The same platform might serve in two or possibly all three capacities, but they
remain conceptually distinct. Often the MATLAB host and the emulation
target are the same. The embedded target is usually different from, and less
powerful than, the MATLAB host or the emulation target; often it can do little
more than run a downloaded executable file.

When you use Simulink software to execute a model for which you will later
generate code, or use Real-Time Workshop software to generate code for
deployment on an embedded target, you must provide information about the
embedded target hardware and the compiler that you will use with it. The
Simulink software uses this information to guarantee bit-true agreement for
the results of integer and fixed-point operations performed in simulation and
in code generated for the embedded target. The Real-Time Workshop code
generator uses the information to create code that executes with maximum
efficiency.

When you generate code for testing on an emulation target, you must
additionally provide information about the emulation target hardware

and the compiler that you will use with it. The code generator uses this
information to create code that provides bit-true agreement for the results of
integer and fixed-point operations performed in simulation, in code generated
for the embedded target, and in code generated for the emulation target. The
agreement is guaranteed even though the embedded target and emulation
target may use very different hardware, and the compilers for the two targets
may use different defaults where the C standard does not completely define
behavior.
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Describing the Emulation and Embedded Targets

The Configuration Parameters dialog Hardware Implementation pane
provides options that you can use to describe hardware properties, such as
data size and byte ordering, and compiler behavior details that may vary with
the compiler, such as integer rounding. The Hardware Implementation
pane contains two subpanes:

¢ Embedded Hardware — Describes the embedded target hardware
and the compiler that you will use with it. This information affects both
simulation and code generation.

¢ Emulation Hardware — Describes the emulation target hardware and
the compiler that you will use with it. This information affects only code
generation.

The two subpanes provide identical options and value choices. By default, the
Hardware Implementation subpane initially look like this:

Device vendaor: IGeneric v|

Device type: I Unzpecified [azzume 32-bit Generic) LI

Mumber of bits: char: IB— shart: |1E€— int; |32—
long: |32— native word size: |32—

Byte ardering: |Unspecified ;I

Signed integer division rounds to: IUndefined ;I

¥ St right on a signed integer as arithmetic shift

The default assumption is that the embedded target and emulation target are
the same, so the Emulation Hardware subpane by default does not need

to specify anything and contains only a checked option labeled None. Code
generated under this configuration will be suitable for production use, or for
testing in an environment identical to the production environment.

If you clear the check box, the Emulation Hardware subpane appears,
initially showing the same values as the Emulation Hardware subpane. If
you change any of these values, then generate code, the code will be able to
execute in the environment specified by the Emulation Hardware subpane,
but will behave as if it were executing in the environment specified by the
Embedded Hardware subpane. See “Describing Emulation Hardware
Characteristics” on page 2-45 for details.
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If you have used the Real-Time Workshop pane General tab to specify a
System target file, and the target file specifies a default microprocessor and
its hardware properties, the default and properties appear as initial values in
the Hardware Implementation pane.

Options with only one possible value cannot be changed. Any option that has
more than one possible value provides a list of legal values. If you specify
any hardware properties manually, check carefully that their values are
consistent with the system target file. Otherwise, the generated code may fail
to compile or execute, or may execute but give incorrect results.

Note Hardware Implementation pane options do not control hardware or
compiler behavior in any way. Their purpose is solely to describe hardware
and compiler properties to MATLAB software, which uses the information to
generate code that is correct for the platform, runs as efficiently as possible,
and gives bit-true agreement for the results of integer and fixed-point
operations in simulation, production code, and test code.

The rest of this section describes the options in the Embedded Hardware
and Emulation Hardware subpanes. Subsequent sections describe
considerations that apply only to one or the other subpane. For more about
Hardware Implementation options, see “Hardware Implementation Pane”.
To see an example of Hardware Implementation pane capabilities, run
the rtwdemo_targetsettings demo.

Describing the Device Vendor. The Device vendor option gives the name
of the device vendor. To set the option, select a vendor name from the Device
vendor menu. Your selection of vendor will determine the available device
values in the Device type list. If the desired vendor name does not appear
in the menu, select Generic and then use the Device type option to further
specify the device.
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Note

® For complete lists of Device vendor and Device type values, see “Device
vendor” and “Device type” in the Simulink reference documentation.

® To add Device vendor and Device type values to the default set that
1s displayed on the Hardware Implementation pane, see “Registering
Additional Device Vendor and Device Type Values” on page 2-38.

Describing the Device Type. The Device type option selects a hardware
device among the supported devices listed for your Device vendor selection.
To set the option, select a microprocessor name from the Device type menu.
If the desired microprocessor does not appear in the menu, change the Device
vendor to Generic.

If you specified the Device vendor as Generic, examine the listed device
descriptions and select the device type that matches your hardware. If no
available device type is appropriate, select Custom.

If you select a device type for which the target file specifies default hardware
properties, the properties appear as initial values in the subpane. Options
with only one possible value cannot be changed. Any option that has

more than one possible value provides a list of legal values. Select values
appropriate to your hardware. If the device type is Custom, all options can be
set, and each option has a list of all possible values.

Registering Additional Device Vendor and Device Type Values. To add
Device vendor and Device type values to the default set that is displayed
on the Hardware Implementation pane, you can use a hardware device
registration API provided by the Real-Time Workshop software.

To use this API, you create an s1_customization.m file, located in your
MATLAB path, that invokes the registerTargetInfo function and fills
in a hardware device registry entry with device information. The device
information will be registered with Simulink software for each subsequent
Simulink session. (To register your device information without restarting
MATLAB, issue the MATLAB command s1_refresh_customizations.)
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For example, the following s1 _customization.m file adds device vendor
MyDevVendor and device type MyDevType to the Simulink device lists.

function sl_customization(cm)
cm.registerTargetInfo(@loc_register_device);
end

function thisDev = loc_register_device
thisDev = RTW.HWDeviceRegistry;
thisDev.Vendor = 'MyDevVendor';
thisDev.Type = 'MyDevType';
thisDev.Alias = {};
thisDev.Platform = {'Prod', 'Target'};
thisDev.setWordSizes([8 16 32 32 32]);
thisDev.Endianess = 'Unspecified';
thisDev.IntDivRoundTo = 'Undefined’;
thisDev.ShiftRightIntArith = true;
thisDev.setEnabled({'IntDivRoundTo'});

end

If you subsequently select the device in the Hardware Implementation
pane, it is displayed as follows:

—Embedded hardware (simulation and code generation)

Device vendor: | MRlSicnes

Device type: IMyDevape LI
Mumber of bits: char: IS— short: Ilo— int: |32—

long: 32 native word size: |32—
Byte ordering: |Unspe-:iﬁed ;l
Signed integer division rounds to: |Undeﬁned ;l

[V Shift right on 2 signed integer as arithmetic shift

To register multiple devices, you can specify an array of
RTW.HWDeviceRegistry objects in your s1_customization.m file. For
example,

function sl_customization(cm)
cm.registerTargetInfo(@loc_register_device);
end
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function thisDev = loc_register_device

thisDev(1) = RTW.HWDeviceRegistry;
thisDev(1).Vendor = 'MyDevVendor';
thisDev(1).Type = 'MyDevTypel';

thisDev(4) = RTW.HWDeviceRegistry;
thisDev(4).Vendor = 'MyDevVendor';
thisDev(4).Type = 'MyDevType4d';

end

The following table lists the RTW.HWDeviceRegistry properties that you can
specify in the registerTargetInfo function call in your s1_customization.m
file.

Property Description

Vendor String specifying the Device vendor value for your
hardware device.

Type String specifying the Device type value for your
hardware device.

Alias Cell array of strings specifying any aliases or
legacy names that users might specify that should
resolve to this device. Specify each alias or legacy
name in the format 'Vendor->Type'. (Real-Time
Workshop Embedded Coder software provides

the utility functions RTW. isHWDeviceTypeEq and
RTW.resolveHWDeviceType for detecting and
resolving alias values or legacy values when testing
user-specified values for the target device type.)

Platform Cell array of enumerated string values specifying
whether this device should be listed in the
Embedded hardware subpane ({'Prod'}), the
Emulation hardware subpane ({'Target'}), or
both ({'Prod', 'Target'}).
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Property

Description

setWordSizes

Array of integer sizes to associate with the Number
of bits parameters char, short, int, long, and
native word size, respectively.

Endianess

String specifying an enumerated value for the Byte
ordering parameter: 'Unspecified', 'Little' for
little Endian, or 'Big' for big Endian.

IntDivRoundTo

String specifying an enumerated value for the
Signed integer division rounds to parameter:
‘Zero', 'Floor', or 'Undefined’.

ShiftRightIntArith

Boolean value specifying whether your compiler
implements a signed integer right shift as an
arithmetic right shift (true) or not (false).

setEnabled

Cell array of strings specifying which device
properties should be enabled (modifiable) in

the Hardware Implementation pane when

this device type is selected. In addition to

the 'Endianess', 'IntDivRoundTo', and
'ShiftRightIntArith' properties listed above, you
can enable individual Number of bits parameters
using the property names 'BitPerChar’,
'BitPerShort', 'BitPerInt', 'BitPerLong', and
‘NativeWordSize'.

Describing the Number of Bits. The Number of bits options describe the
native word size of the microprocessor, and the bit lengths of char, short,
int, and long data. For code generation to succeed:

¢ The bit lengths must be such that char <= short <= int <= long.

e All bit lengths must be multiples of 8, with a maximum of 32.

¢ The bit length for long data must not be less than 32.

Real-Time Workshop integer type names are defined in the file rtwtypes.h.
The values that you provide must be consistent with the word sizes as defined
in the compiler’s 1imits.h header file. The following table lists the standard
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Real-Time Workshop integer type names and maps them to the corresponding
Simulink names.

Real-Time Workshop Simulink Integer Type
Integer Type

boolean_T boolean

int8 T int8

uint8_T uints8

int16_T int16

uint16_T uint16

int32_T int32

uint32_T uint32

If no ANSI C type with a matching word size is available, but a larger ANSI C
type is available, the Real-Time Workshop code generator uses the larger type
for int8_T, uint8_T, int16_T, uint16_T, int32_T, and uint32_T.

An application can use integer data of any length from 1 (unsigned) or 2
(signed) bits up 32 bits. If the integer length matches the length of an
available type, the Real-Time Workshop code generator uses that type. If no
matching type is available, the code generator uses the smallest available
type that can hold the data, generating code that never uses unnecessary
higher-order bits. For example, on a target that provided 8-bit, 16-bit, and
32-bit integers, a signal specified as 24 bits would be implemented as an
int32_T or uint32_T.

Code that uses emulated integer data is not maximally efficient, but can be
useful during application development for emulating integer lengths that are
available only on production hardware. The use of emulation does not affect
the results of execution.

Describing the Byte Ordering. The Byte ordering option specifies
whether the target hardware uses Big Endian (most significant byte
first) or Little Endian (least significant byte first) byte ordering. If left
as Unspecified, the Real-Time Workshop software generates code that
determines the endianness of the target; this is the least efficient option.
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Describing Quotient Rounding for Signed Integer Division. ANSI C
does not completely define the rounding technique to be used when dividing
one signed integer by another, so the behavior is implementation-dependent.
If both integers are positive, or both are negative, the quotient must round
down. If either integer is positive and the other is negative, the quotient
can round up or down.

The Signed integer division rounds to parameter tells the Real-Time
Workshop code generator how the compiler rounds the result of signed
integer division. Providing this information does not affect the operation of
the compiler, it only describes that behavior to the code generator, which
uses the information to optimize code generated for signed integer division.
The parameter options are:

e Zero — If the quotient is between two integers, the compiler chooses the
integer that is closer to zero as the result.

® Floor — If the quotient is between two integers, the compiler chooses the
integer that is closer to negative infinity.

¢ Undefined — Choose this option if neither Zero nor Floor describes the

compiler’s behavior, or if that behavior is unknown.

The following table illustrates the compiler behavior that corresponds to each
of these three options:

Ideal
N D N/D Zero Floor Undefined
33 4 8.25 8 8 8
-33 -8.25 -8 -9 -8 or -9
33 -4 -8.25 -8 -9 -8 or -9
-33 -4 8.25 8 8 8or9

Note Select Undefined only as a last resort. When the Real-Time Workshop
code generator does not know the signed integer division rounding behavior of
the compiler, it must generate fairly costly code in order to guarantee correct

results.
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The compiler’s implementation for signed integer division rounding can
be obtained from the compiler documentation, or by experiment if no
documentation is available.

Describing Arithmetic Right Shifts on Signed Integers. ANSI C does
not define the behavior of right shifts on negative integers, so the behavior

1s implementation-dependent. The Shift right on a signed integer as
arithmetic shift parameter tells the Real-Time Workshop code generator
how the compiler implements right shifts on negative integers. Providing this
information does not affect the operation of the compiler, it only describes that
behavior to the code generator, which uses the information to optimize the
code generated for arithmetic right shifts.

Select the option if the C compiler implements a signed integer right shift as
an arithmetic right shift, and clear the option otherwise. An arithmetic right
shift fills bits vacated by the right shift with the value of the most significant
bit, which indicates the sign of the number in twos complement notation.
The option is selected by default. If your compiler handles right shifts as
arithmetic shifts, this is the preferred setting.

e When the option is selected, the Real-Time Workshop software generates
simple efficient code whenever the Simulink model performs arithmetic
shifts on signed integers.

e When the option is cleared, the Real-Time Workshop software generates
fully portable but less efficient code to implement right arithmetic shifts.

The compiler’s implementation for arithmetic right shifts can be obtained
from the compiler documentation, or by experiment if no documentation is
available.

Describing Embedded Hardware Characteristics

“Describing the Emulation and Embedded Targets” on page 2-36 documents
the options available on the Hardware Implementation subpanes. This
section describes considerations that apply only to the Embedded Hardware
subpane. When you use this subpane, keep the following in mind:

¢ Code generation targets can have word sizes and other hardware
characteristics that differ from the MATLAB host. Furthermore, code can
be prototyped on hardware that is different from either the deployment
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target or the MATLAB host. The Real-Time Workshop code generator
takes these differences into account when generating code.

The Simulink product uses some of the information in the Embedded
Hardware subpane to ensure that simulation without code generation
gives the same results as executing generated code, including detecting
error conditions that could arise on the target hardware, such as hardware
overflow.

The Real-Time Workshop software generates code that guarantees bit-true
agreement with Simulink results for integer and fixed-point operations.
Generated code that emulates unavailable data lengths runs less efficiently
than it would without emulation, but the emulation does not affect bit-true
agreement with Simulink for integer and fixed-point results.

To ensure correctness and efficiency, if you change targets at any point
during application development you must reconfigure the hardware
implementation parameters for the new target before generating or
regenerating code. Bit-true agreement for the results of integer and
fixed-point operations in simulation, production code, and test code is not
guaranteed when code executes on hardware for which it was not generated.

Use the Round integer calculations toward parameter on your model’s
blocks to simulate the rounding behavior of the C compiler that you intend
to use to compile code generated from the model. This setting appears on
the Signal data type pane of the parameter dialog boxes of blocks that
can perform signed integer arithmetic, such as the Product and Lookup
Table blocks.

For most blocks, the value of Round integer calculations toward
completely defines rounding behavior. For blocks that support fixed-point
data and the Simplest rounding mode, the value of Signed integer
division rounds to also affects rounding. For details, see “Rounding” in
the Simulink Fixed Point User’s Guide.

When models contain Model blocks, all models that they reference must
be configured to use identical hardware settings.

Describing Emulation Hardware Characteristics

“Describing the Emulation and Embedded Targets” on page 2-36 documents
the options available on the Hardware Implementation subpanes. This
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section describes considerations that apply only to the Emulation Hardware
subpane.

Note (If the Emulation Hardware subpane contains a button labeled
Configure current execution hardware device, see “Updating from
Earlier Versions” on page 2-48, then continue from this point.)

The default assumption is that the embedded target and emulation target are
the same, so the Emulation Hardware subpane by default does not need to
specify anything and contains only a selected check box labeled None. Code
generated under this configuration will be suitable for production use, or for
testing in an environment identical to the production environment.

To generate code that runs on an emulation target for test purposes, but
behaves as if it were running on an embedded target in a production
application, you must specify the properties of both targets in the Hardware
Implementation pane. The Embedded Hardware subpane specifies
embedded target hardware properties, as described previously. To specify
emulation target properties:

1 Clear the None option in the Emulation Hardware subpane.

By default, the Hardware Implementation pane now looks like this:
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Hardware Implementation

r— Embedded hardware [zsimulation and code generation]
Device vendar: IGeneric LI
Device lype: IUnspecified [aszume 32-bit Generic) LI
Number of bits: char: IB— shrt: |18— int: |32—
long: |32— native word gize: |32—
Byte ardering: IUnspecified ;I
Signed integer divizion raunds to: IU ndefined ;I
V¥ kit right on a sighed integer as arithmetic shift
— Emulation hardware [code generation only)
[ Mone
Device vendor: IGeneric ;I
Device tpe: IUnspecified [azsumne 32-bit Generic) ;I
Murnber of bits: char. IB— short; |1E— int: |32—
long: |32— native word size: |32—
Byte ardering: |Unspecified ;I
Signed integer division raunds to: IU ndefined ;I
[¥ | Shift right o a signed integer as arithmetic shift

2 In the Emulation Hardware subpane, specify the properties of the
emulation target, using the instructions in “Describing the Emulation and
Embedded Targets” on page 2-36

If you have used the Real-Time Workshop pane General tab to specify a
System target file, and the target file specifies a default microprocessor and
its hardware properties, the default and properties appear as initial values in
both subpanes of the Hardware Implementation pane.

Options with only one possible value cannot be changed. Any option that has
more than one possible value provides a list of legal values. If you specify
any hardware properties manually, check carefully that their values are
consistent with the system target file. Otherwise, the generated code may fail
to compile or execute, or may execute but give incorrect results.

If you do not display the Emulation Hardware subpane, the Simulink

and Real-Time Workshop software defaults every Emulation Hardware
option to have the same value as the corresponding Embedded Hardware
option. If you hide the Emulation Hardware subpane after setting its
values, the values that you specified will be lost. The underlying configuration
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parameters immediately revert to the values that they had when you exposed
the subpane, and these values, rather than the values that you specified, will
appear if you re-expose the subpane.

Updating from Earlier Versions. If your model was created before Release
14 and has not been updated, by default the Hardware Implementation
pane initially looks like this:

Hardware Implementation

— Embedded hardware [zimulation and code generation)

Device vendor: IGeneric ;I
Device type: IU nzpecified [assume 32-bit Generic) LI
Humber of bits: char: IB— short: I‘IE— int: |32—

long: |32— native word size: |32—
Byte ordering: IU hzpecified

Signed integer divizion rounds to: IUndefined

¥ | Shift right o a signed integer as arithmetic. shift

— Erulation hardware [code generation anly)

Configure current execution hardware device |

Click Configure current execution hardware device. The Configure
current execution hardware device button disappears. The subpane then
appears as shown in the first figure in this section. Save your model at this
point to avoid redoing Configure current execution hardware device
next time you access the Hardware Implementation pane.

Configuring Referenced Models

Minimize occurrences of algebraic loops by selecting the Minimize algebraic
loop occurrences parameter on the Model Reference pane. The

setting of this option affects only generation of code from the model. See
“Describing Hardware Properties” on page 2-35 in the Real-Time Workshop
documentation for information on how this option affects code generation. For
more information, see “Model Blocks and Direct Feedthrough”.

Use the Round integer calculations toward parameter on your model’s
blocks to simulate the rounding behavior of the C compiler that you intend
to use to compile code generated from the model. This setting appears on



Adjusting Simulation Configuration Parameters for Code Generation

the Signal data type pane of the parameter dialog boxes of blocks that can
perform signed integer arithmetic, such as the Product and Lookup Table
blocks.

For most blocks, the value of Round integer calculations toward
completely defines rounding behavior. For blocks that support fixed-point
data and the Simplest rounding mode, the value of Signed integer division
rounds to also affects rounding. For details, see “Rounding” in the Simulink
Fixed Point User’s Guide.

When models contain Model blocks, all models that they reference must

be configured to use identical hardware settings. For information on the
Model Referencing pane options, see “Referencing a Model” in the Simulink
documentation.

Interactions of the Simulink and Real-Time Workshop
Products to Consider

The Simulink engine propagates data from one block to the next along signal
lines. The data propagated consists of

¢ Data type

® Line widths

e Sample times

The first stage of code generation is compilation of the block diagram. This
stage is analogous to that of a C or C++ program. The compiler carries out
type checking and preprocessing. Similarly, the Simulink engine verifies that
input/output data types of block ports are consistent, line widths between

blocks are of the correct thickness, and the sample times of connecting blocks
are consistent.

You can verify what data types any given Simulink block supports by typing

showblockdatatypetable

at the MATLAB prompt, or (from the Help browser) clicking the command
above.
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The Simulink engine typically derives signal attributes from a source block.

For example, the Inport block’s parameters dialog box specifies the signal
attributes for the block.

E! Source Block Parameters: Inl
Inport

x|

Frovide an input part for a subsystern or model.

Far Triggered Subsystems, ‘Latch input by delaying outside signal' produces the
walue of the subsyzstem input at the previous time step.

For Function-call Subsystems, 'Latch input by copying inside signal' copies the |nport
block's output to a buffer before the contents of the subsystem are executed.

The ather parameters can be used ta explicitly specify the input zsignal attributes.

ain | Signal 5 pecification
I~ Specify properties via bus object

Buz object for validating input bus:
IB uzObject

T Output as noteirtual bus
Port dimensions [-1 far inherited]:
]
Sample time [-1 for inherited):
.01

Data t_l,lpe:l double

Signal type: I complex

Lol Lef Lo

Sampling mode: I auko

LCancel | Help |

In this example, the Inport block has a port width of 3, a sample time of .01
seconds, the data type is double, and the signal is complex.

This figure shows the propagation of the signal attributes associated with the
Inport block through a simple block diagram.
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[ j double (27 03) . 2 double (27030 >®
In Out

Za3in

In this example, the Gain and Outport blocks inherit the attributes specified
for the Inport block.

“Sample Time Propagation” on page 2-51

“Latches for Subsystem Blocks” on page 2-53

“Block Execution Order” on page 2-53

“Algebraic Loops” on page 2-55

Sample Time Propagation

Inherited sample times in source blocks (for example, a root inport) can
sometimes lead to unexpected and unintended sample time assignments.
Since a block may specify an inherited sample time, information available at
the outset is often insufficient to compile a block diagram completely.

In such cases, the Simulink engine propagates the known or assigned sample
times to those blocks that have inherited sample times but that have not

yet been assigned a sample time. Thus, the engine continues to fill in the
blanks (the unknown sample times) until sample times have been assigned to
as many blocks as possible.

Blocks that still do not have a sample time are assigned a default sample
time according to the following rules:

1 If the current system has at least one rate in it, the block is assigned the
fastest rate.
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2 If no rate exists and the model is configured for a variable-step solver,
the block is assigned a continuous sample time (but fixed in minor time
steps). The Real-Time Workshop product (with the exception of the rapid
simulation and S-function targets) does not currently support variable-step
solvers.

3 If no rate exists and the model is configured for a fixed-step solver, the
block is assigned a discrete sample time of (T; - T,)/50, where T, is the
simulation start time and T, is the simulation stop time. If T, is infinity,
the default sample time is set to 0.2.

To ensure a completely deterministic model (one where no sample times are
set using the above rules), you should explicitly specify the sample times of all
your source blocks. Source blocks include root inport blocks and any blocks
without input ports. You do not have to set subsystem input port sample
times. You might want to do so, however, when creating modular systems.

An unconnected input implicitly connects to ground. For ground blocks and

ground connections, the default sample time is derived from destination
blocks or the default rule.

O—>{ ; 20,
In Out

All blocks have an inherited sample time (T, = -1). They are all assigned
a sample time of (T, - T,)/50.

Constant Block Sample Times. You can specify a sample time for Constant
blocks. This has certain implications for code generation.

When a sample time of inf is selected for a Constant block,

e [f Inline parameters is on, the block takes on a constant sample time,
and propagates a constant sample time downstream.
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e [f Inline parameters is off, the Constant block inherits its sample time —
which 1s nonconstant — and propagates that sample time downstream.

Generated code for any block differs when it has a constant sample time; its
outputs are represented in the constant block outputs structure instead of in
the general block outputs structure. The generated code thus reflects that the
Constant block propagates a constant sample time downstream if a sample
time of inf is specified and Inline parameters is on.

Latches for Subsystem Blocks

When an Inport block is the signal source for a triggered or function-call
subsystem, you can use latch options to preserve input values while the
subsystem executes. The Inport block latch options include:

For... You Can Use...

Triggered Latch input by delaying outside signal
subsystems

Function-call Latch input by copying inside signal
subsystems

When you use Latch input by copying inside signal for a function-call
subsystem, the Real-Time Workshop code generator

® Preserves latches in generated code regardless of any optimizations that
might be set

¢ Places the code for latches at the start of a subsystem’s output/update
function

For more information on these options, see the description of the Inport block
in the Simulink documentation.

Block Execution Order

Once the Simulink engine compiles the block diagram, it creates a model.rtw
file (analogous to an object file generated from a C or C++ file). The model.rtw
file contains all the connection information of the model, as well as the
necessary signal attributes. Thus, the timing engine in can determine when
blocks with different rates should be executed.
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You cannot override this execution order by directly calling a block (in
hand-written code) in a model. For example, in the next figure the
disconnected_trigger model on the left has its trigger port connected to
ground, which can lead to all blocks inheriting a constant sample time.
Calling the trigger function, f (), directly from user code does not work
correctly and should never be done. Instead, you should use a function-call
generator to properly specify the rate at which f () should be executed, as
shown in the connected_trigger model on the right.

In1

N f0
Y . - Connected
: Disconnected Function-call Trigger
: Trigger Generator
\ 4 v
fo fO
outtf——(D Il outt
Out1 In1 Out1
Triggered Triggered
Subsystem Subsystem

Instead of the function-call generator, you could use any other block that can
drive the trigger port. Then, you should call the model’s main entry point to
execute the trigger function.

For multirate models, a common use of the Real-Time Workshop product is to
build individual models separately and then hand-code the I/0 between the
models. This approach places the burden of data consistency between models
on the developer of the models. Another approach is to let the Simulink and
Real-Time Workshop products ensure data consistency between rates and
generate multirate code for use in a multitasking environment. The Simulink
Rate Transition block is able to interface both periodic and asynchronous
signals. For a description of the Real-Time Workshop libraries, see Chapter
16, “Asynchronous Support”. For more information on multirate code
generation, see Chapter 8, “Models with Multiple Sample Rates”.
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Algebraic Loops

Algebraic loops are circular dependencies between variables. This prevents
the straightforward direct computation of their values. For example, in the
case of a system of equations

0xzy+2

[ ] y -X

the values of x and y cannot be directly computed.

To solve this, either repeatedly try potential solutions for x and y (in an
intelligent manner, for example, using gradient based search) or “solve” the
system of equations. In the previous example, solving the system into an
explicit form leads to

® 2x =2
oy = -x
* x =1
oy = -1

An algebraic loop exists whenever the output of a block having direct
feedthrough (such as Gain, Sum, Product, and Transfer Fcn) is fed back as an
input to the same block. The Simulink engine is often able to solve models
that contain algebraic loops, such as the next diagram.

&
W
Sine Wave
+
—
- Out1
3 Sum
Caonstant
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The Real-Time Workshop software does not produce code that solves algebraic
loops. This restriction includes models that use Algebraic Constraint blocks
in feedback paths. However, the Simulink engine can often eliminate all

or some algebraic loops that arise, by grouping equations in certain ways

in models that contain them. It does this by separating the update and
output functions to avoid circular dependencies. See “Algebraic Loops” in the
Simulink documentation for details.

Algebraic Loops in Triggered Subsystems. While the Simulink engine
can minimize algebraic loops involving atomic and enabled subsystems, a
special consideration applies to some triggered subsystems. An example for
which code can be generated is shown in the following model and triggered
subsystem.

+HH H+

P » ]
H H >

Fulze Soone
Genearator P

+
1 Ini ot
—— Outd
mnstan Triggered
Subsystem

The default Simulink behavior is to combine output and update methods for
the subsystem, which creates an apparent algebraic loop, even though the
Unit Delay block in the subsystem has no direct feedthrough.

You can allow the Simulink engine to solve the problem by splitting the
output and update methods of triggered and enabled-triggered subsystems
when necessary and feasible. If you want the Real-Time Workshop code
generator to take advantage of this feature, select the Minimize algebraic
loop occurrences check box in the Subsystem Parameters dialog box. Select
this option to avoid algebraic loop warnings in triggered subsystems involved
in loops.
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Note If you always check this box, the generated code for the subsystem
might contain split output and update methods, even if the subsystem is
not actually involved in a loop. Also, if a direct feedthrough block (such as a
Gain block) is connected to the inport in the above triggered subsystem, the
Simulink engine cannot solve the problem, and the Real-Time Workshop
software is unable to generate code.

A similar Minimize algebraic loop occurrences option appears on the
Model Referencing pane of the Configuration Parameters dialog box.
Selecting it enables the Real-Time Workshop software to generate code for
models containing Model blocks that are involved in algebraic loops.
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Configuring Real-Time Workshop Code Generation
Parameters

In this section...

“Introduction” on page 2-58

“Opening the Real-Time Workshop Pane” on page 2-59
“Selecting a Target Configuration” on page 2-60
“Configuring the Target Language for Generated Code” on page 2-61
“Configuring the Build Process” on page 2-61
“Configuring Report Generation” on page 2-64
“Configuring Code Comments” on page 2-65
“Configuring Generated Identifiers” on page 2-66
“Configuring Custom Code” on page 2-70
“Troubleshooting the Build Process” on page 2-72
“Configuring Model Interfaces” on page 2-73

“Selecting and Viewing Target Function Libraries” on page 2-78

Introduction

As discussed in “Adjusting Simulation Configuration Parameters for Code
Generation” on page 2-27, many model configuration parameters affect the
way that the Real-Time Workshop software generates code and builds an
executable from your model.

However, you initiate and directly control the code generation and build
process from the Real-Time Workshop pane and related tabs (also presented
as subnodes).

In addition to using the Configuration Parameters dialog box, you can
use get_param and set_param to individually access most configuration
parameters. The configuration parameters you can get and set are listed
in “Parameter Command-Line Information Summary” in the Real-Time
Workshop reference.
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You can use the Model Advisor to help configure any model to optimally
achieve your code generation objectives. See “Getting Advice About
Optimizing Models for Code Generation” on page 9-5 for more information.

Opening the Real-Time Workshop Pane

There are three ways to open the Real-Time Workshop pane of the
Configuration Parameters dialog box:

®* From the Simulation menu, choose Configuration Parameters.
When the Configuration Parameters dialog box opens, click Real-Time
Workshop in the Select (left) pane.

® Select Model Explorer from the View menu in the model window, or type
daexplr on the MATLAB command line and press Enter. In the Model
Explorer, expand the node for the current model in the left pane and click
Configuration (active). The configuration dialog elements are listed in
the middle pane. Clicking any of these brings up that dialog in the right
pane. Alternatively, right-clicking the Real-Time Workshop configuration
element in the middle pane and choosing Properties from the context
menu activates that dialog in a separate window.

® Select Options from the Real-Time Workshop submenu of the Tools
menu in the model window.

The general Real-Time Workshop pane, as it appears in the Model Explorer,
appears in the next figure.
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Real-Time Workshop

General | Repart I Comments Symbols Custom Code I Debug I InterFaceI
— Target selection

Swstem target: file: Igrt.tlc Browse. .. |

Language: IC ;I

— Build process

Compiler optimization level: |Optimizations of F (Faster builds) j
TLC options: I
IMakefile configuration

V' Generate makefile

Make command: |make_rtw

Template makefile: Igrt_deFauIt_tmf

[ Generate code anly Build |

J Reyvert Help | Apply |

Real-Time Workshop Pane

This pane allows you to specify most of the options for controlling the
Real-Time Workshop code generation and build process. The content of the
pane and its subpanes can change depending on the target you specify.
Thus, a model that has multiple configuration sets can invoke parameters in
one configuration that do not apply to another configuration. In addition,
some configuration options are available only with the Real-Time Workshop
Embedded Coder product.

For descriptions of Real-Time Workshop pane parameters, see “Real-Time
Workshop Pane: General” in the Real-Time Workshop reference.

Selecting a Target Configuration

Use the Browse button on the Real-Time Workshop pane to open the
System Target File Browser (See “Selecting a System Target File” on page
2-3). The browser lets you select a preset target configuration consisting of a
system target file, template makefile, and make command.
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If you select a target configuration by using the System Target File Browser,
your selection appears in the System target file field (target.tlc).

If you are using a target configuration that does not appear in the System
Target File Browser, enter the name of your system target file in the System
target file field. Click Apply or OK to configure for that target.

“Choosing and Configuring Your Target” on page 2-2 describes the use of the
browser and includes a complete list of available target configurations.

Configuring the Target Language for Generated Code

Use the Language menu in the Target selection section of the Real-Time
Workshop pane to select the target language for the code generated by the
Real-Time Workshop code generator. You can select C or C++. The Real-Time
Workshop software generates .c or .cpp files, depending on your selection,
and places the files in your build directory.

Note If you select C++, you might need to configure the Real-Time Workshop
software to use the appropriate compiler before you build a system. For
details, see “Choosing and Configuring a Compiler” on page 2-18.

Configuring the Build Process

Controlling Compiler Optimization Level and Specifying
Custom Optimization Settings

To control compiler optimizations for your Real-Time Workshop makefile build
at Simulink GUI level, use the Compiler optimization level parameter.
The Compiler optimization level parameter provides

e Target-independent values Optimizations on (faster runs) and
Optimizations off (faster builds), which allow you to easily toggle
compiler optimizations on and off during code development

® The value Custom for entering custom compiler optimization flags at
Simulink GUI level, rather than editing compiler flags into template
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makefiles (TMFs) or supplying compiler flags to Real-Time Workshop
make commands

The default setting is Optimizations off (faster builds). Selecting the
value Custom enables the Custom compiler optimization flags field, in
which you can enter custom compiler optimization flags (for example, -02).

Note If you specify compiler options for your Real-Time Workshop makefile
build using OPT_OPTS, MEX_OPTS (except MEX_OPTS="-v"), or MEX_OPT_FILE,
the value of Compiler optimization level is ignored and a warning is issued
about the ignored parameter.

For more information about the Compiler optimization level parameter
and its values, see “Compiler optimization level” and “Custom compiler
optimization flags” in the Real-Time Workshop reference.

Specifying TLC Options
You can enter Target Language Compiler (TLC) command line options in the
TLC options edit field, for example

® -aVarName=1 to declare a TLC variable and/or assign a value to it
® -IC:\Work to specify an include path
® -v to obtain verbose output from TLC processing (for example, when

debugging)

Specifying TLC options does not add any flags to the Make command field,
as do some of the targets available in the System Target File Browser.

For additional information, see “Setting Target Language Compiler Options”
on page 2-102 for details, as well as the Target Language Compiler
documentation.

Specifying Whether To Generate a Makefile

The Generate makefile option specifies whether the Real-Time Workshop
build process is to generate a makefile for a model. By default, the Real-Time
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Workshop build process generates a makefile. You can suppress the
generation of a makefile, for example in support of custom build processing
that is not based on makefiles, by clearing Generate makefile . When you
clear this option,

® The Make command and Template makefile options are unavailable.

®* You must set up any post code generation build processing, using a
user-defined command, as explained in “Customizing Post Code Generation
Build Processing” on page 2-139.

Specifying a Make Command

A high-level M-file command, invoked when a build is initiated, controls the
Real-Time Workshop build process. Each target has an associated make
command. The Make command field displays this command.

Almost all targets use the default command, make rtw. Third-party targets
might supply another make command. See the vendor’s documentation.

In addition to the name of the make command, you can supply arguments
in the Make command field. These arguments include compiler-specific
options, include paths, and other parameters. When the build process invokes
the make utility, these arguments are passed along in the make command line.

“Template Makefiles and Make Options” on page 2-10 lists the Make
command arguments you can use with each supported compiler.

Specifying the Template Makefile
The Template makefile field has these functions:

¢ If you have selected a target configuration using the System Target
File Browser, this field displays the name of an M-file that selects an
appropriate template makefile for your development environment. For
example, in “Real-Time Workshop Pane: General”’, the Template makefile
field displays grt_default tmf, indicating that the build process invokes
grt_default_tmf.m.
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“Template Makefiles and Make Options” on page 2-10 gives a detailed
description of the logic by which the Real-Time Workshop build process
selects a template makefile.

® Alternatively, you can explicitly enter the name of a specific template
makefile (including the extension) or an M-file that returns a template
make file in this field. You must do this if you are using a target
configuration that does not appear in the System Target File Browser. For
example, this is necessary if you have written your own template makefile
for a custom target environment or you.

If you specify your own template makefile, be sure to include the filename
extension. If you omit the extension, the Real-Time Workshop build process
attempts to find and execute a file with the extension .m (that is, an M-file).
The template make file (or an M-file that returns a template make file) must
be on the MATLAB path. To determine whether the file is on the MATLAB
path, enter the following command in the MATLAB Command Window:

which tmf_filename

Generating Code Only

To configure the model for code generation only, rather than a complete build
(make command does not execute), select the Generate code only parameter.
The code is not compiled and an executable is not built.

When you select this option, the label of the Build button changes to
Generate code.

Configuring Report Generation

To generate an navigable summary of source files when the model is built,
select the Create code generation report parameter on the Report pane.
Selecting this parameter causes the Real-Time Workshop software to produce
an HTML file for each generated source file, plus a summary and an index file,
in a directory named html within the build directory. If you also select the
Launch report automatically option (which is enabled by selecting Create
code generation report) , the HTML summary and index are automatically
displayed. If you do not want to see the report at that time, clear this second
check box. In either case, you can refer to HTML reports at any time. To
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review an existing HTML report, use any HTML browser to open the file
html/model codgen rpt.html within your build directory.

For more detail on report content, see “Viewing Generated Code in Generated
HTML Reports” on page 2-145.

Configuring Code Comments

Configure how the Real-Time Workshop code generator inserts comments into
generated code, by modifying parameters on the Comments pane.

Note Comments can include international (non-US-ASCII) characters
encountered during code generation when found in Simulink block names and
block descriptions, user comments on Stateflow diagrams, Stateflow object
descriptions, custom TLC files, and code generation template files.

To... Select...

Include comments in | Include comments. Selecting this parameter allows you to select one
generated code or more comment types to be placed in the code.

Automatically insert | Simulink block / Stateflow object comments.
comments that
describe a block’s
code before the code
in the generated file
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To...

Select...

Include comments
for blocks that
were eliminated
as the result

of optimizations
(such as parameter
inlining)

Show eliminated blocks.

Include comments for | Verbose comments for SimulinkGlobal storage class. If you do not

parameter variable
names and names
of source blocks in

select this parameter, parameter comments are generated if less than
1000 parameters are declared. This reduces the size of the generated file
for models with a large number of parameters. When you select the

the model parameter | parameter, parameter comments are generated regardless of the number
structure declaration | of parameters.

in model prm.h

For descriptions of Comments pane parameters, see “Real-Time Workshop
Pane: Comments” in the Real-Time Workshop reference documentation.

Configuring Generated Identifiers

Configure how the Real-Time Workshop code generator uses symbols to name
identifiers and objects by setting parameters on the Symbols pane.

Two options are available for GRT targets: Maximum identifier length and
Reserved names. These are the only symbols options for GRT targets.

The Maximum identifier length field allows you to limit the number of
characters in function, type definition, and variable names. The default is 31
characters. This is also the minimum length you can specify; the maximum
1s 256 characters. Consider increasing identifier length for models having

a deep hierarchical structure, and when exercising some of the mnemonic
identifier options described below.

Within a model containing Model blocks, no collisions of constituent model
names can exist. When generating code from a model that uses model
referencing, the Maximum identifier length must be large enough to
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accommodate the root model name and the name mangling string (if any). A
code generation error occurs if Maximum identifier length is too small.

When a name conflict occurs between a symbol within the scope of a higher
level model and a symbol within the scope of a referenced model, the symbol
from the referenced model is preserved. Name mangling is performed on the
symbol from the higher level model.

The Reserved names field allows you to specify the set of keywords that the
Real-Time Workshop code generation process should not use, facilitating
code integration where functions and variables from external environments
are unknown in the Simulink model. For a list of rules for specifying
reserved names, see “Reserved names” in the Real-Time Workshop reference
documentation.

If your model contains Embedded MATLAB Function or Stateflow blocks, the
Real-Time Workshop code generation process can use the reserved names
specified for those blocks if you select Use the same reserved names as
Simulation Target.

If the Real-Time Workshop Embedded Coder product is installed on your
system, the Symbols pane expands to include options for controlling identifier
formats, mangle length, scalar inlined parameters, and Simulink data object
naming rules. For details, see “Customizing Generated Identifiers” in the
Real-Time Workshop Embedded Coder documentation.

For descriptions of Symbols pane parameters, see “Real-Time Workshop Pane:
Symbols” in the Real-Time Workshop reference documentation.

Reserved Keywords

Real-Time Workshop software reserves certain words for its own use as
keywords of the generated code language. Real-Time Workshop keywords are
reserved for use internal to Real-Time Workshop software or C programming,
and should not be used in Simulink models as identifiers or function names.
If your model contains any reserved keywords, the Real-Time Workshop build
does not complete and an error message is displayed. To address this error,
modify your model to use identifiers or names that are not reserved. The
following tables list Real-Time Workshop Language Keywords and Real-Time
Workshop Target Function Library Keywords.
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Note You can register additional reserved identifiers in the Simulink
environment. For more information, see “Reserved names” in the Real-Time
Workshop reference documentation.

Real-Time Workshop Language Keywords

abs continue FALSE NULL time_T
asm creal T float pointer_T true
auto creal32_T for real T TRUE
bool creal6é4_T fortran real32_ T typedef
boolean_T cuint8_T goto real6é4_T uint_T
break cuint16_T id_t register uint8_T
byte T cuint32_T if return uint16_T
case default int short uint32_T
char do int T signed uint6é4_T
char_T double int8_ T single union
cint8_T else int16_T sizeof unsigned
cint16_T enum int32_T static void
cint32_T extern int64_T struct volatile
const false long switch while
Real-Time Workshop Target Function Library Keywords

acos fmaxf muDoubleScalarRound | rt_UNSGN
acosf fmin muDoubleScalarSign rt_zCFcn
acosh fminf muDoubleScalarSin rtGetInf
acoshf fmod muDoubleScalarSinh rtGetInfF
asin fmodf muDoubleScalarSqrt rtGetMinusInf
asinf hypot muDoubleScalarTan rtGetMinusInfF
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Real-Time Workshop Target Function Library Keywords (Continued)

asinh hypotf muDoubleScalarTanh rtGetNaN
asinhf ldexp pow rtGetNaNF
atan log powf rtinf
atan2 log10 roundf rtInfF
atan2f logi0f rt_ABS rtIsinf
atanf logf rt_atan2 rtIsInfF
atanh memcmp rt_atan232 rtIsNaN
atanhf memcpy rt_DIVQUOT rtIsNaNF
ceil memset rt_DIVREM rtMinusInf
ceilf muDoubleScalarAbs RT_E rtMinusInfF
cos muDoubleScalarAcos | rt_FSGN rtNaN

cosf muDoubleScalarAcosh | rt_hypot rtNaNF
cosh muDoubleScalarAsin | rt_hypot32 sin

coshf muDoubleScalarAsinh | rt_I32ZCFcn sinf
DBL_EPSILON muDoubleScalarAtan | rt_In sinh
DBL_MAX muDoubleScalarAtan2 | rt_InitInfAndNaN sinhf
DBL_MIN muDoubleScalarAtanh | RT_LN_10 SLibSfcnHelperFcns
exp muDoubleScalarCeil | RT_LOG10E sqrt

exp10 muDoubleScalarCos rt_Lookup sqrtf
exp10f muDoubleScalarCosh | rt_Lookup2D_General | tan

expf muDoubleScalarExp rt_Lookup2D_Normal tanf

fabs muDoubleScalarFloor | rt_Lookup2D32_General] tanh

fabsf muDoubleScalarHypot | rt_Lookup2D32_Normal | tanhf
floor muDoubleScalarlLog rt_Lookup32 trunc
floorf muDoubleScalarLogi10 | rt_MAX truncf
FLT_EPSILON muDoubleScalarMax rt_MIN utAssert
FLT_MAX muDoubleScalarMin RT_PI
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Real-Time Workshop Target Function Library Keywords (Continued)

FLT_MIN

muDoubleScalarMod rt_SATURATE

fmax

muDoubleScalarPower | rt_SGN

Configuring Custom Code

Configure a model such that the Real-Time Workshop code generator includes
external code—headers, files and functions—in generated code by using the
Custom Code pane.

Use the Custom Code pane to insert code into the generated files and to
include additional files and paths in the build process.

To...

Select...

Insert custom code
near the top of the
generated model.c or
model . cpp file, outside
of any function

Source file and enter the custom code to insert.

Insert custom code near
the top of the generated
model . h file

Header file and enter the custom code to insert.

Insert custom code
inside the model’s

initialize function

in the model.c or

model .cpp file

Initialize function

Insert custom code
inside the model’s
terminate function
in the model.c or
model .cpp file.

Terminate function and enter the custom code to insert. Also select
the Terminate function required parameter on the Interface pane.
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To...

Select...

Add include directories,
which contain header
files, to the build
process

Include directories and enter the absolute or relative paths to the
directories. If you specify relative paths, the paths must be relative

to the directory containing your model files, not relative to the build
directory. The order in which you specify the directories is the order in
which they are searched for source and include files.

Add source files to be
compiled and linked

Source files and enter the full paths or just the filenames for the files.
A filename is sufficient if the file is in the current MATLAB directory
or in one of the include directories. For each additional source that
you specify, the Real-Time Workshop build process expands a generic
rule in the template makefile for the directory in which the source file
is found. For example, if a source file is found in directory inc, the
Real-Time Workshop build process adds a rule similar to the following:

%.0bj: buildir\inc\%.c

$(CC) -c -Fo$(@F) $(CFLAGS) $<

The Real-Time Workshop build process adds the rules in the order you
list the source files.

Add libraries to be
linked

Libraries and enter the full paths or just the filenames for the
libraries. A file name is sufficient if the library is located in the current
MATLAB directory or is listed as one of the Include directories.

Use the same custom
code settings as those
specified for simulation
of Embedded MATLAB
Function blocks,
Stateflow charts, and
Truth Table blocks

Use the same custom code settings as Simulation Target

Note This option refers to the Simulation Target pane in the
Configuration Parameters dialog box.

Enable a library model
to use custom code
settings unique from
the parent model to
which the library is
linked

Use local custom code settings (do not inherit from main model)

Note This option is available only for library models that contain
Embedded MATLAB Function blocks, Stateflow charts, or Truth Table
blocks. Select Tools > Open RTW Target in the Embedded MATLAB
Editor or Stateflow Editor for your library model.
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Note Custom code that you include in a configuration set is ignored when
building S-function targets, accelerated simulation targets, and model
reference simulation targets.

For descriptions of Custom Code pane parameters, see “Real-Time Workshop
Pane: Custom Code” in the Real-Time Workshop reference documentation.

Troubleshooting the Build Process

Use the Debug pane to configure a model such that generated code and the
build process are optimized for troubleshooting. You can set parameters that
apply to the model compilation phase, the target language code generation
phase, or both.

The debug parameters will be helpful if you are writing TLC code for
customizing targets, integrating legacy code, or developing new blocks. .

TO...

Select...

Display progress
information during
code generation in the
MATLAB Command
Window

Verbose build.Compiler output also displays.

Prevent the build

Retain .rtw file. This parameter is useful if you are modifying the

process from deleting target files, in which case you need to look at the model.rtw file.

the model . rtw file from
the build directory at the
end of the build

Instruct the TLC

Profile TLC. The report is in HTML format and can be read in your

profiler to analyze the Web browser.

performance of TLC code
executed during code
generation and generate
a report
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To...

Select...

Start the TLC debugger
during code generation

Start TLC debugger when generating code. Alternatively,
enter the argument -dc for the System Target File parameter on
the Real-Time Workshop pane. To start the debugger and run a
debugger script, enter -df filename for System Target File.

To generate a report
containing statistics
indicating how many
times the Real-Time
Workshop code generator
reads each line of

TLC code during code
generation

Start TLC coverage when generating code. Alternatively, enter
the argument -dg for the System Target File parameter on the
Real-Time Workshop pane.

Halt a build if any
user-supplied TLC file
contains an %assert
directive that evaluates
to FALSE

Enable TLC assertion. Alternatively, you can use MATLAB
commands to control TLC assertion handling. To set the flag on or
off, use the set_param command. The default is off.

set_param(model, 'TLCAssertion', 'on|off')

To check the current setting, use get_param.

get_param(model, 'TLCAssertion')

See the Target Language Compiler documentation for details. Also, consider
using the Model Advisor as a tool for troubleshooting model builds.

For descriptions of Debug pane parameters, see “Real-Time Workshop Pane:
Debug” in the Real-Time Workshop reference documentation.

Configuring Model Interfaces

Use the Interface pane to control which math library is used at run time,
whether to include one of three APIs in generated code, and certain other
interface options.
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To...

Select or Enter...

Specify the target-specific
math library to use when
generating code

Select C89/C90(ANSI), C99(IS0), or GNU99 (GNU) for Target
function library. (Additional values may be listed if you have
created and registered target function libraries with the Real-Time
Workshop Embedded Coder product, or if you have licensed any
Link or Target products.)

Selecting C89/C90 (ANSI) provides the ANSI™ C set of library
functions. For example, selecting C89/C90 (ANSI) would result

in generated code that calls sin() whether the input argument

is double precision or single precision. However, if you select
C99(IS0), the call instead is to the function sinf (), which is single
precision. If your compiler supports the ISO'® C math extensions,
selecting the ISO C library can result in more efficient code.

For more information about target function libraries, see “Selecting
and Viewing Target Function Libraries” on page 2-78.

Direct where the
Real-Time Workshop

code generator should
place fixed-point and other
utility code

Select Auto or Shared location for Utility function generation.
The shared location directs code for utilities to be placed within
the slprj directory in your working directory, which is used for
building model reference targets. If you select Auto,

¢ When the model contains Model blocks, utilities are placed
within the slprj/target/_sharedutils directory.

¢ When the model does not contain Model blocks, utilities
are placed in the build directory (generally, in model.c or
model.cpp).

14. ANSI® is a registered trademark of the American National Standards Institute, Inc.

15. ISO%®is a registered trademark of the International Organization for Standardization.
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To...

Select or Enter...

Specify a string to be
added to the variable
names used when logging
data to MAT-files, to
distinguish logging data
from Real-Time Workshop
and Simulink applications

Enter a prefix or suffix, such as rt_ or (_rt, for MAT-file variable
name modifier. The Real-Time Workshop code generator prefixes
or appends the string to the variable names for system outputs,
states, and simulation time specified in the Data Import/Export
pane. See “Configuring a Model for Data Logging” on page 2-29 for
information on MAT-file data logging.

Specify an API to be
included in generated code

Select C API, External mode, or ASAP2 for Interface. When
you select C API or External mode, other options appear. C API

and External mode are mutually exclusive. However, this is not
the case for C API and ASAP2. For more information on working
with these interfaces, see “C API for Interfacing with Signals and
Parameters” on page 17-2 and Chapter 6, “External Mode”.

Note Before setting Target function library, verify that your compiler
supports the library you want to use. If you select a parameter value that
your compiler does not support, compiler errors can occur. For example, if
you select C99(IS0) and your compiler does not support the ISO C math
extensions, compile-time errors likely will occur.

When the Real-Time Workshop Embedded Coder product is installed on your
system, the Interface pane expands to include several additional options.
For details, see “Configuring Model Interfaces” in the Real-Time Workshop
Embedded Coder documentation.

For a summary of option dependencies, see “Interface Dependencies” on
page 2-76. For details on using the external mode interface, see Chapter 6,
“External Mode”. For information on using C API and ASAP2 interfaces see
Chapter 17, “Data Exchange APIs”.

For descriptions of Interface pane parameters, see “Real-Time Workshop
Pane: Interface” in the Real-Time Workshop reference documentation.
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Interface Dependencies

Several parameters available on the Interface pane have dependencies
on settings of other parameters. The following table summarizes the

dependencies.
Parameter Dependencies? | Dependency Details
Target function library No
Utility function generation Yes
Support floating-point No

numbers (ERT targets only)

Support non-finite numbers Yes Enabled by Support floating-point
(ERT targets only) numbers
Support complex numbers No

(ERT targets only)

Support absolute time (ERT No
targets only)

Support continuous time (ERT | No
targets only)

Support non-inlined Yes Requires that you enable Support
S-functions (ERT targets floating-point numbers and
only) Support non-finite numbers

GRT compatible call interface | Yes Requires that you enable Support
(ERT targets only) floating-point numbers and disable
Single output/update function

Single output/update function | Yes Disable for GRT compatible call
(ERT targets only) interface

Terminate function required | Yes
(ERT targets only)

Generate reusable code (ERT | Yes
targets only)
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Parameter Dependencies? | Dependency Details

Reusable code error Yes Enabled by Generate reusable code

diagnostic (ERT targets only)

Pass root-level I/0O as (ERT Yes Enabled by Generate reusable code

targets only)

Create Simulink S-Function No

block (ERT targets only)

MAT-file logging Yes For ERT targets, requires that you
enable Support floating-point
numbers, Support non-finite
numbers, and Terminate function
required

MAT-file file variable name Yes Enabled by MAT-file logging

modifier (ERT targets only)

Suppress error status in No

real-time model data structure

(ERT targets only)

Interface No

Signals in C API Yes Set Interface to C API

Parameters in C API Yes Set Interface to C API

Transport layer Yes Set Interface to External mode

MEX-file arguments Yes Set Interface to External mode

Static memory allocation Yes Set Interface to External mode

Static memory buffer size Yes Enable Static memory allocation
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Selecting and Viewing Target Function Libraries

® “Selecting a Target-Specific Math Library for Your Model” on page 2-78
¢ “Function Replacement Table Overview” on page 2-79

¢ “Using the Target Function Library Viewer” on page 2-81

Selecting a Target-Specific Math Library for Your Model

A target function library (TFL) is a set of one or more function replacement
tables that define the target-specific implementations of math functions
and operators to be used in generating code for your Simulink model. The
Real-Time Workshop product provides three default TFLs, which you can
select from the Target function library drop-down list on the Interface
pane of the Configuration Parameters dialog box.

TFL Description Contains tables...
C89/C90 Generates calls to the ISO/IEC 9899:1990 ansi_tfl table tmw.mat
(ANSTI) C standard math library for floating-point
functions.
C99 (IS0) Generates calls to the ISO/IEC 9899:1999 C iso_tfl table tmw.mat
standard math library. ansi_ tfl table tmw.mat
GNU99 (GNU) Generates calls to the Free Software gnu_tfl table_ tmw.mat
Foundation’s GNU gcc math library, which iso_tfl table tmw.mat
provides C99 extensions as defined by compiler | ansi_tfl_table_tmw.mat
option -std=gnu99.

TFL tables provide the basis for replacing default math functions and
operators in your model code with target-specific code. If you select a library
and then hover over the selected library with the cursor, a tool tip is displayed
that describes the TFL and lists the function replacement tables it contains.
Tables are listed in the order in which they are searched for a function or
operator match.
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Real-Time Workshop
-ral Repart I Comments I Swmbols I Custom Code I Debug Interface |1|P

— Software environment
Target function library: IGNU99 et )] j
P
Utiliky function generation: I"' ro a2 j
Specifyutarget function library available to your target.
[T ——— GMUSS refers ko GRU extensions to C99,
Selected target Function library contains these tables:
i . - griu_EFI_table k. mat
MAT-File wariable name modif () (1] el B Z[
ansi_tfl_table_trows, mat —
—Data exchangs
Interface: INone ;I

[~ Generate code only Build |

J Revert | Help | apply |

The Real-Time Workshop product allows you to view the content of TFL
function replacement tables using the Target Function Library Viewer, as
described in “Using the Target Function Library Viewer” on page 2-81. If you
are licensed to use the Real-Time Workshop Embedded Coder product, you
additionally can create and register the function replacement tables that
make up a TFL.

Function Replacement Table Overview

Each TFL function replacement table contains one or more table entries,
with each table entry representing a potential replacement for a single math
function or an operator. Each table entry provides a mapping between a
conceptual view of the function or operator (similar to the Simulink block
view of the function or operator) and a target-specific implementation of that
function or operator.

The conceptual view of a function or operator is represented in a TFL table
entry by the following elements, which identify the function or operator entry
to the code generation process:
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e A function or operator key (a function name such as 'cos' or an operator
ID string such as 'RTW_OP_ADD"')

® A set of conceptual arguments that observe Simulink naming ('y1', 'ut’,

'u2', ...), along with their I/O types (output or input) and data types

® Other attributes, such as fixed-point saturation and rounding
characteristics for operators, as needed to identify the function or operator
to the code generation process as exactly as required for matching purposes

The target-specific implementation of a function or operator is represented in
a TFL table entry by the following elements:

® The name of an implementation function (such as 'cos_dbl' or
'u8 add u8 u8')

® A set of implementation arguments, along with their I/O types (output or
input) and data types

® Parameters providing the build information for the implementation
function, including header file and source file names and paths as necessary

Additionally, a TFL table entry includes a priority value (0-100, with 0 as the
highest priority), which defines the entry’s priority relative to other entries
in the table.

During code generation for your model, when the code generation process
encounters a call site for a math function or operator, it creates and partially
populates a TFL entry object, for the purpose of querying the TFL database
for a replacement function. The information provided for the TFL query
includes the function or operator key and the conceptual argument list. The
TFL entry object is then passed to the TFL and, if there is a matching table
entry in the TFL, a fully-populated TFL entry, including the implementation
function name, argument list, and build information, is returned to the call
site and used to generate code.

Within the TFL that is selected for your model, the tables that comprise the
TFL are searched in the order in which they are listed (in the left or right pane
of the TFL Viewer or in the TFL’s Target function library tool tip). Within
each table, if multiple matches are found for a TFL entry object, priority level
determines the match that is returned. A higher-priority (lower-numbered)
entry will be used over a similar entry with a lower priority (higher number).



Configuring Real-Time Workshop® Code Generation Parameters

Using the Target Function Library Viewer

The Target Function Library Viewer allows you to examine the content of
TFL function replacement tables. (For an overview of function replacement
tables and the information they contain, see the preceding section.) To launch

the Viewer with all currently registered TFLs displayed, issue the following
MATLAB command:

>> RTW.viewTfl

| TorgetFunctionUbraryVeewer =1l
Name / Target Function Library Viewer
3 =) C83/C30 (ANSI) Click an ftems on the Isft pane to explore cuniently registered T arget Function Libaries
[-)C83/CI0 [ANSI) = C33(50) (TFLs)

[=5C39(50) =) GNUS3 (GHU)
-5 GNUISS (GNU)

Help Close

Select the name of a TFL in the left pane, and the Viewer displays information
about the TFL in the right pane. For example, the tables that make up the

TFL are listed in priority order. In the following display, the GNU TFL has
been selected.

18]
Al Target Function Libraries Mame / GHUS9 (GNU)
B3040 Target Function Libraries ) ansi_ti_table_tm. - Sumrmar
(089090 (NS @3 anu_tfl_table_tm... Narme: GMUS3 (GHU)
[£)C99150) ) iso_ti_table_tm.. Description: GMLIG3 refers to GNU extensions to £39,
i GiNUI93 (GNL) Ease TFL: C33(1s0)
Mumber of tables:  1/% (Monvinherited/T atal)

Click on + sign in the tree view to see all tables in this target function library(TFL), including
those inherited from its Base TFLs.

Tables in this TFL. listed in pricitized order from high to low, are:
gnu_tfl_table_tmw.mat

iso_tf]_table_tmw.mat
ansi_tf|_table_tmw.mat

Help Close

Click the plus sign (+) next to a TFL name in the left pane to expand its list
of tables, and select a table from the list. The Viewer displays all function
and operator entries in the selected table in the middle pane, along with
abbreviated table entry information for each entry. In the following display,
the ANSI table has been selected.
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Target Function Library Viewer

Al Target Function Libraries

Name Implementation

Mumin | In1Type | In2Type | OutType | Priarity | Usag |

= 30 Al Target Function Libraries abs
[1C89/C90 (4NSI)
=093 0150
B (1 GNUSE (GNU)
-0 gru_t_table_trmw.mat
-G is_t_table_trw.mat

abs
abs
abs
abs
abs
abs

abs
abs
acos
acos
acosh
acosh
asin
asin
asinh
asinh
atan
atan
atan
atan
atanh
atanh
ceil
ceil

ol

=18l
ansi_tfl_table_tmw_mat
- Summar
Description:
Mame: ansi_tf_table_tmw.mat
Wersian:
Murber of Entries: 176

Expand TFL by clicking + sign on the left pane [tres view],
chonse table 10 explore TFL entries defined in that table. Click
on entiies in middle pane (st view] to see more detal

Saveds | Help Close

The following fields appear in the abbreviated table entry information

provided in the middle pane:

Field Description

Name Name of the function or ID of the operator to be
replaced (for example, cos or RTW_OP_ADD).

Implementation Name of the implementation function, which can
match or differ from Name.

NumIn Number of input arguments.

In1Type Data type of the first conceptual input argument.

In2Type Data type of the second conceptual input argument.

OutType Data type of the conceptual output argument.
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Field

Description

Priority

The entry’s search priority, 0-100, relative to other
entries of the same name and conceptual argument
list within this table. Highest priority is 0, and
lowest priority is 100. The default is 100. If the
table provides two implementations for a function
or operator, the implementation with the higher
priority will shadow the one with the lower priority.

UsageCount

Not used.

Select a function or operator entry in the middle pane. The Viewer displays
detailed information from the table entry in the right pane. In the following
display, the second entry for the cos function has been selected.

Target Function Library Viewer

Al Target Function Libraries

Mame

Implementation

Murnln | In1Type | In2Type | OutType | Priority | Usag « |

=] jJ Al Target Function Libraries
[1089/090 (4MSI)
(€99 (150)
- GHUSS [GNU)
(G anu_H_table:_tme mat
-G iso_t_table_tmw.mat
) ansi_tl_table_tmw.mat

]

abs
abs
abs
abs
abs
abs
abs
abs
abs
acos
acos
acosh
acosh
asin
asin
asinh
asinh
atan
atan
atan
atan2
atanh
atanh
ceil
cei
cos

double

100

single:

cos

General |nformation

=1olx|

- Summar

Descriptior:
Key

Implementation:
Implementation type:
Saturation mode:
Rounding mode:
GenCallback file:

cos with 1 inputls]
cos [} with 1 inpulls]
FCM_IMPL_FUNCT
RTW_SATURATE_UNSPECIFIED
RTW_ROUND_UNSFECIFIED

Implementation header. <math.h>
Implementation source:
Friarity: 100
Tatal Usage Count: 1}
Entry argL
Conceputal argument(s): [~
Mame 170 type Data type
] RTw_I0_OUTPUT single
ul RTw_IO_INPUT single
Implementation:
| Name | 170 type | Data type
| ¥ | RTw_I0_OUTPUT | double
| ul | RTW_I0_INFUT | single: _
Help Close
K| I

The following fields appear in the detailed table entry information provided
in the right pane.
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Field Description

Description Text description of the table entry (can be empty).

Key Name of the function or ID of the operator to be replaced
(for example, cos or RTW_OP_ADD), and the number of
conceptual input arguments.

Implementation | Name of the implementation function, and the number
of implementation input arguments.

Implementation | Type of implementation: FCN_IMPL_FUNCT for

type function or FCN_IMPL_MACRO for macro.

Saturation Saturation mode supported by the implementation

mode function for an operator replacement:

RTW_SATURATE_ON_OVERFLOW,
RTW_WRAP_ON_OVERFLOW, or
RTW_SATURATE_UNSPECIFIED.

Rounding mode

Rounding mode supported by the implementation
function for an operator replacement:
RTW_ROUND_FLOOR, RTW_ROUND_CEILING,
RTW_ROUND_ZERO, RTW_ROUND_NEAREST,
RTW_ROUND_NEAREST ML,
RTW_ROUND_SIMPLEST, RTW_ROUND_CONYV, or
RTW_ROUND_UNSPECIFIED.

GenCallback Not used.

file

Implementation | Name of the header file that declares the implementation
header function.

Implementation | Name of the implementation source file.

source

Priority The entry’s search priority, 0-100, relative to other

entries of the same name and conceptual argument

list within this table. Highest priority is 0, and lowest
priority is 100. The default is 100. If the table provides
two implementations for a function or operator, the
implementation with the higher priority will shadow the
one with the lower priority.
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Field

Description

Total Usage
Count

Not used.

Conceptual
argument(s)

Name, I/O type (RTW_IO_OUTPUT or
RTW_IO_INPUT), and data type for each conceptual
argument.

Implementation

Name, /O type (RTW_IO_OUTPUT or
RTW_IO_INPUT), and data type for each
implementation argument.

If you select an operator entry, an additional tab containing fixed-point setting
information is displayed in the right pane. For example:

RTW_OP_ADD
General Information Fired-point Settings |
- Summar
Slopes must be the same:  no
Must have zero net biss. no
Relative sealing factor -~ 1
Relative scaling factor E: 0
- Ertry argument(s)
=
Conceputal argument(s):
‘Name ‘IIIII type |Dalalype
[v1 [ RTW_ID_OUTPUT  [lintl6
[ul | RTw_IO_INFUT [int1E
[u2 | RTw_IO_INFUT B
Implementation:
[Mame 170 ype | Data type
il RTw_O_OUTPUT [ intlE
ul ATw_IO_INPUT in15
uz ATw_IO_INPUT in15 ZI
Help Cloge

The following fields appear in the fixed-point setting information provided
in the right pane:
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Field Description
Slopes must be | Indicates whether TFL replacement request processing
the same must check that the slopes on all arguments (input and

output) are equal. Used with fixed-point addition and
subtraction replacement to disregard specific slope and
bias values and map relative slope and bias values to a
replacement function.

Must have zero
net bias

Indicates whether TFL replacement request processing
must check that the net bias on all arguments is

zero. Used with fixed-point addition and subtraction
replacement to disregard specific slope and bias values
and map relative slope and bias values to a replacement
function.

Relative
scaling factor
F

Slope adjustment factor (F) part of the relative scaling
factor, F2E, for relative scaling TFL entries. Used with
fixed-point multiplication and division replacement to

map a range of slope and bias values to a replacement
function.

Relative
scaling factor
E

Fixed exponent (E) part of the relative scaling factor,
F2E, for relative scaling TFL entries. Used with
fixed-point multiplication and division replacement to
map a range of slope and bias values to a replacement
function.
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Build Process

In this section...

“Build Process Steps” on page 2-87

“Model Compilation” on page 2-88

“Code Generation” on page 2-88

“Customized Makefile Generation” on page 2-89

“Executable Program Generation” on page 2-90

“Files and Directories Created by the Build Process” on page 2-92

Build Process Steps

The Real-Time Workshop software generates C code only or generates the C
code and produces an executable image, depending on the level of processing
you choose. By default, a Build button appears on the Real-Time Workshop
pane of the Configuration Parameters dialog box. This button completes

the entire build process and an executable image results. If you select the
Generate code only check box to the left of the button, the button label
changes to Generate code.

When you click the Build or Generate code button, the Real-Time Workshop
software performs the following build process. If the software detects code
generation constraints for your model, it issues warning or error messages.

1 “Model Compilation” on page 2-88

2 “Code Generation” on page 2-88

3 “Customized Makefile Generation” on page 2-89
4 “Executable Program Generation” on page 2-90

For more information, see “Configuring Report Generation” on page 2-64 in
the Real-Time Workshop documentation. You can also view an HTML report
in Model Explorer.
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Model Compilation

The build process begins with the Simulink software compiling the block
diagram. During this stage, Simulink

¢ Evaluates simulation and block parameters
® Propagates signal widths and sample times

e Determines the execution order of blocks within the model

¢ Computes work vector sizes, such as those used by S-functions. (For more
information about work vectors, see the Simulink Writing S-Functions
documentation).

When Simulink completes this processing, it compiles an intermediate
representation of the model. This intermediate description is stored in a
language-independent format in the ASCII file model.rtw. The model.rtw
file is the input to the next stage of the build process.

model . rtw files are similar in format to Simulink model (.md1) files, but are
used only for automated code generation. For a general description of the
model . rtw file format, see the Target Language Compiler documentation.

Code Generation

The Real-Time Workshop code generator uses the Target Language Compiler
(TLC) and a supporting TLC function library to transform the intermediate
model description stored in model . rtw into target-specific code.

The target language compiled by the TLC is an interpreted programming
language designed to convert a model description to code. The TLC executes a
TLC program comprising several target files (. t1lc scripts). The TLC scripts
specify how to generate code from the model, using the model.rtw file as input.

The TLC

1 Reads the model.rtw file

2 Compiles and executes commands in a system target file
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The system target file is the entry point or main file. You select it from
those available on the MATLAB path with the system target file browser or
you can type the name of any such file on your system prior to building.

3 Compiles and executes commands in block-level target files

For blocks in the Simulink model, there is a corresponding target file that
is either dynamically generated or statically provided.

Note The Real-Time Workshop software executes all user-written
S-function target files, but optionally executes block target files for
Simulink blocks.

4 Writes a source code version of the Simulink block diagram

Customized Makefile Generation

After generating the code, the Real-Time Workshop software generates a
customized makefile, model.mk. The generated makefile instructs the make
system utility to compile and link source code generated from the model, as
well as any required harness program, libraries, or user-provided modules.

The Real-Time Workshop software creates model .mk from a system template
file, system.tmf (where system stands for the selected target name). The
system template makefile is designed for your target environment. You have
the option of modifying the template makefile to specify compilers, compiler
options, and additional information used during the creation of the executable.

The Real-Time Workshop software creates the model.mk file by copying the
contents of system.tmf and expanding lexical tokens (symbolic names) that
describe your model’s configuration.

The Real-Time Workshop software provides many system template makefiles,
configured for specific target environments and development systems.
“Selecting a System Target File” on page 2-3 in the Real-Time Workshop
documentation lists all template makefiles that are bundled with the
Real-Time Workshop software. To see an example template makefile, navigate
to matlabroot/rtw/c/grt, and open with an editor the file grt_msvc. tmf.
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You can fully customize your build process by modifying an existing template
makefile or providing your own template makefile.

Executable Program Generation

The following figure shows how the Real-Time Workshop software controls
automatic program building.

Click Build
Button

Generate
Code

model.c
model.h
model private.h

Custom
Template Generate Makefile
Makefile Makefile model . mk

Create
Executable?

No

During the final stage of processing, the Real-Time Workshop build process
invokes the generated makefile, model.mk, which in turn compiles and links
the generated code. On PC platforms, a batch file is created to invoke the
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generated makefile. The batch file sets up the proper environment for
invoking the make utility and related compiler tools. To avoid unnecessary
recompilation of C files, the make utility performs date checking on the
dependencies between the object and C files; only out-of-date source files are
compiled. Optionally, the makefile can download the resulting executable
image to your target hardware.

This stage is optional, as illustrated by the control logic in the preceding
figure. You might choose to omit this stage, for example, if you are targeting
an embedded microcontroller or a digital signal processing (DSP) board.

To omit this stage of processing, select the Generate code only check
box on the Real-Time Workshop pane of the Configuration Parameters
dialog box. You can then cross-compile your code and download it to your
target hardware. “Interacting with the Build Process” on page 2-104 in
the Real-Time Workshop documentation discusses the options that control
whether or not the build creates an executable image.

If you select Create code generation report on the Real-Time
Workshop > Report pane, a navigable summary of source files is produced
when the model is built. The report files occupy a directory called html within
the build directory. The report contents vary depending on the target, but all
reports feature links to generated source files. The following display shows
an example of an HTML code generation report for a generic real-time (GRT)
target.
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[Z]Real-Time Workshop Report i ] 4]

Back | Fanward

Contents

Surnmary

Eemove highlighting
Subsystems

Code mapping

Code reuse exceptions
Generated Source Files
rt_nonfinte.c

ttwdeme fld.c

1t nonfinite b

rtmodelh

rtwdemo fl14.h
riwdeme f14 private.h
riwdeme fl4 typesh
riwiypes.h

-
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Code Generation Report for
rtwdemo f14

Summary
Beal-Tine Workeshop code generated for Sumulink model "ttwdemo_f14 mdl".

Wodel Version 0133
Eeal-Time Workshop version: 6.5 (B2006b) 13-Tul-2006
C source code generated on : Tue Jul 18 10:33:42 2006

Configuration Settings at the Time of Code Generation - click to open

Ok I Lancel | Help | Spply

Files and Directories Created by the Build Process

The following sections discuss

¢ “Files Created During Build Process” on page 2-92

¢ “Directories Used During the Build Process” on page 2-97

Files Created During Build Process

This section lists model . * files created during the code generation and build

process for the GRT and GRT malloc targets when used with stand-alone

models. Additional directories and files are created to support shared utilities
and model references (see Chapter 4, “Building Subsystems and Working with

Referenced Models” in the Real-Time Workshop documentation).

The build process derives many of the files from the model.mdl file you create

with Simulink. You can think of the model.mdl file as a very high-level
programming language source file.
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Note Files generated by the Real-Time Workshop Embedded Coder build
process are packaged slightly differently. Depending on model architectures
and code generation options, the Real-Time Workshop build process might
generate other files.

Descriptions of the principal generated files follow. Note that these
descriptions use the generic term model for the model name:
® model.rtw

An ASCII file, representing the compiled model, generated by the
Real-Time Workshop build process. This file is analogous to the object
file created from a high-level language source program. By default, the
Real-Time Workshop build process deletes this file when the build process
1s complete. However, you can choose to retain the file for inspection.

® model.c

C source code that corresponds to model.mdl and is generated by the
Target Language Compiler. This file contains

= Include files model.h and model private.h
= All data except data placed in model data.c
= Model-specific scheduler code

= Model-specific solver code

= Model registration code

= Algorithm code

= Optional GRT wrapper functions
® model.h

Defines model data structures and a public interface to the model entry
points and data structures. Also provides an interface to the real-time
model data structure (model rtM) via access macros. model.h is included
by subsystem .c files in the model. It includes

= Exported Simulink data symbols

= Exported Stateflow machine parented data
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= Model data structures, including rtMm

= Model entry point functions

® model_private.h

Contains local define constants and local data required by the model and
subsystems. This file is included by the generated source files in the model.
You might need to include model private.h when interfacing legacy
hand-written code to a model. See “Header Dependencies When Interfacing
Legacy/Custom Code with Generated Code” on page 2-108 in the Real-Time
Workshop documentation for more information. This header file contains

= Imported Simulink data symbols

Imported Stateflow machine parented data
= Stateflow entry points

= Real-Time Workshop details (various macros, enums, and so forth that
are private to the code)

model_types.h

Provides forward declarations for the real-time model data structure
and the parameters data structure. These might be needed by function
declarations of reusable functions. model types.h is included by all the
generated header files in the model.

model_data.c

A conditionally generated C source code file containing declarations for
the parameters data structure and the constant block I/O data structure,
and any zero representations for structure data types that are used in the
model. If these data structures are not used in the model, model data.c is
not generated. Note that these structures are declared extern in model.h.
When present, this file contains

= Constant block I/O parameters
= Include files model.h and model private.h

Definitions for the zero representations for any user-defined structure
data types used by the model

Constant parameters
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model .exe (Microsoft Windows platforms) or model (UNIX platforms),
generated in the current directory, not in the build directory

Executable program file created under control of the make utility by your
development system (unless you have explicitly specified that Real-Time
Workshop generate code only and skip the rest of the build process)

model .mk

Customized makefile generated by the Real-Time Workshop build process.
This file builds an executable program file.

rtmodel.h

Contains #include directives required by static main program modules
such as grt_main.c and grt_malloc_main.c. Since these modules are
not created at code generation time, they include rt_model.h to access
model-specific data structures and entry points. If you create your own
main program module, take care to include rtmodel.h.

rtwtypes.h

For GRT targets, a header file that includes simstruc_types.h, which, in
turn, includes tmwtypes.h. For Real-Time Workshop Embedded Coder
ERT targets, rtwtypes. h itself provides the necessary defines, enums,
and so on, instead of including tmwtypes.h and simstruc_types.h. The
rtwtypes.h file generated for ERT is an optimized (reduced) file based
on the settings provided with the model that is being built. See “Header
Dependencies When Interfacing Legacy/Custom Code with Generated
Code” on page 2-108 in the Real-Time Workshop documentation for more
information.

rt_nonfinite.c

C source file that declares and initializes global nonfinite values for inf,
minus inf, and nan. Nonfinite comparison functions are also provided. This
file is always generated for GRT-based targets and optionally generated
for other targets.

rt_nonfinite.h

C header file that defines extern references to nonfinite variables and
functions. This file is always generated for GRT-based targets and
optionally generated for other targets.

rtw_proj.tmw
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Real-Time Workshop file generated for the make utility to use to determine
when to rebuild objects when the name of the current Real-Time Workshop
project changes

® model.bat

Windows batch file used to set up the appropriate compiler environment
and invoke the make command

® modelsources.txt

List of additional sources that should be included in the compilation.
Optional files:

® model targ_data_map.m
M-file used by external mode to initialize the external mode connection
® model_dt.h

C header file used for supporting external mode. Declares structures that
contain data type and data type transition information for generated model
data structures.

® subsystem.c

C source code for each noninlined nonvirtual subsystem or copy thereof
when the subsystem is configured to place code in a separate file

® subsystem.h

C header file containing exported symbols for noninlined nonvirtual
subsystems. Analogous to model.h.

® model_capi.h

An interface header file between the model source code and the generated
C API. See “C API for Interfacing with Signals and Parameters” on page
17-2 in Real-Time Workshop User’s Guide for more information.

® model_capi.c

C sourece file that contains data structures that describe the model’s signals
and parameters without using external mode. See “C API for Interfacing
with Signals and Parameters” on page 17-2 in Real-Time Workshop User’s
Guide for more information.
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® rt_sfcn_helper.h, rt_sfcn_helper.c

Header and source files providing functions needed by noninlined
S-functions in a model. The functions rt_CallSys, rt_enableSys, and
rt DisableSys are used when noninlined S-functions call downstream
function-call subsystems.

In addition, when you select the Create code generation report check box,
the Real-Time Workshop software generates a set of HTML files (one for each
source file plus a model contents.html index file) in the html subdirectory
within your build directory.

The above source files have dependency relationships, and there are
additional file dependencies that you might need to take into account. These
are described in “Generated Source Files and File Dependencies” on page
2-107 in the Real-Time Workshop documentation.

Directories Used During the Build Process
the Real-Time Workshop build process places output files in three directories:

® The working directory

If you choose to generate an executable program file, the Real-Time
Workshop build process writes the file model.exe (Windows) or model
(UNIX) to your working directory.

® The build directory — model_target_rtw

A subdirectory within your working directory. The build directory name

is model_target_rtw, where model is the name of the source model and
target is the selected target type (for example, grt for the generic real-time
target). The build directory stores generated source code and all other files
created during the build process (except the executable program file).

® Project directory — slprj

A subdirectory within your working directory. When models referenced
via Model blocks are built for simulation or Real-Time Workshop code
generation, files are placed in slprj. The Real-Time Workshop Embedded
Coder configuration has an option that places generated shared code in
slprj without the use of model reference. Subdirectories in slprj provide
separate places for simulation code, some Real-Time Workshop code, utility
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code shared between models, and other files. Of particular importance
to Real-Time Workshop users are:

Header files from models referenced by this model
slprj/target/model/referenced model includes
Model reference Real-Time Workshop target files
slprij/target/model

MAT-files used during code generation of model reference
Real-Time Workshop target and stand-alone code generation

slprij/target/model/tmwinternal
Shared (fixed-point) utilities
slprj/target/_sharedutils

See “Working with Project Directories” for more information on organizing
your files with respect to project directories.

The build directory always contains the generated code modules model.c,
model.h, and the generated makefile model .mk.

Depending on the target, code generation, and build options you select, the
build directory might also include

model.rtw

Object files (.obj or .0)

Code modules generated from subsystems

HTML summary reports of files generated (in the html subdirectory)

TLC profiler report files

Block I/0 and parameter tuning information file (model capi.c)

C API code for parameters and signals

Real-Time Workshop project (model.tmw) files

For additional information about using project directories, see “Project
Directory Structure for Model Reference Targets” on page 4-28 and
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“Supporting Shared Utility Directories in the Build Process” on page 4-57 in
the Real-Time Workshop documentation.
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In this section...

“Introduction” on page 2-100
“Assigning Target Language Compiler Variables” on page 2-100

“Setting Target Language Compiler Options” on page 2-102

Introduction

You can use the Target Language Compiler (TLC) to fine tune your generated
code. TLC supports extended code generation variables and options in
addition to those included in the code generation options categories of the
Real-Time Workshop pane. There are two ways to set TLC variables and
options, as described in this section.

Note You should not customize TLC files in the directory
matlabroot/rtw/c/tlceven though the capability exists to do so. Such TLC
customizations might not be applied during the code generation process and
can lead to unpredictable results.

Assigning Target Language Compiler Variables

The %assign statement lets you assign a value to a TLC variable, as in

%assign MaxStackSize = 4096
This 1s also known as creating a parameter name/parameter value pair.
For a description of the %assign statement see the Target Language Compiler
documentation. You should write your %assign statements in the Configure

RTW code generation settings section of the system target file.

The following table lists the code generation variables you can set with the
%assign statement.
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Target Language Compiler Optional Variables

Variable Description

MaxStackSize=N When the Enable local block outputs check box is
selected, the total allocation size of local variables that
are declared by all block outputs in the model cannot
exceed MaxStackSize (in bytes). MaxStackSize can be
any positive integer. If the total size of local block output
variables exceeds this maximum, the remaining block
output variables are allocated in global, rather than local,
memory. The default value for MaxStackSize is rtInf,
that is, unlimited stack size.

Note: Local variables in the generated code from sources
other than local block outputs, such as from a Stateflow
diagram or Embedded MATLAB Function block, and
stack usage from sources such as function calls and
context switching are not included in the MaxStackSize
calculation. For overall executable stack usage metrics,
do a target-specific measurement by using run-time
(empirical) analysis or static (code path) analysis with
object code.

MaxStackVariableSize=N When the Enable local block outputs check box is
selected, this limits the size of any local block output
variable declared in the code to N bytes, where N>0. A
variable whose size exceeds MaxStackVariableSize
1s allocated in global, rather than local, memory. The
default is 4096.

WarnNonSaturatedBlocks=value Flag to control display of overflow warnings for blocks
that have saturation capability, but have it turned off
(unchecked) in their dialog. These are the options:

® 0 — No warning is displayed.

¢ 1 — Displays one warning for the model during code
generation

e 2 — Displays one warning that contains a list of all
offending blocks
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For more information, see the Target Language Compiler documentation.

Setting Target Language Compiler Options

You can enter TLC options directly into the System target file field in the
Real-Time Workshop pane of the Configuration Parameters dialog box,
by appending the options and arguments to the system target filename.
This is equivalent to invoking the Target Language Compiler with options
on the MATLAB command line. The most common options are shown in the

following table.

Target Language Compiler Options

Option

Description

-Ipath

Adds path to the list of paths in which to search for
target files (. tlc files).

-m[N|a]

Maximum number of errors to report when an error
is encountered (default is 5). For example, -m3
specifies that at most three errors will be reported.
To report all errors, specify -ma.

-d[g|n|o]

Specifies debug mode (generate, normal, or off).
Default 1s off. When -dg is specified, a .1log file is
create for each of your TLC files. When debug mode
is enabled (that is, generate or normal), the Target
Language Compiler displays the number of times
each line in a target file is encountered.

-aRTWCAPI

-aRTWCAPI=1 to generate API for both signals and
parameters

-aRTWCAPISignals

-aRTWCAPISignals=1 to generate API for signals
only

-aRTWCAPIParams

-aRTWCAPIParams=1 to generate API for parameters
only

-aVariable=val

Equivalent to the TLC statement
%assign Variable = val

Note: It is best to use %assign statements in the
TLC files, rather than the -a option.
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You can speed your TLC development cycle by not rebuilding code when your
TLC files have changed, but your model has not. See “Retain .rtw file” in the

Real-Time Workshop reference documentation for information on how to
do this.

For more information on TLC options, see the Target Language Compiler
documentation.
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In this section...

“Introduction” on page 2-104

“Initiating the Build Process” on page 2-104

“Construction of Symbols” on page 2-105

“Generated Source Files and File Dependencies” on page 2-107
“Reloading Code from the Model Explorer” on page 2-126
“Rebuilding Generated Code” on page 2-127

“Profiling Generated Code” on page 2-128

Introduction

The Real-Time Workshop software generates code into a set of source files
that vary little among different targets. Not all possible files are generated for
every model. Some files are created only when the model includes subsystems,
calls external interfaces, or uses particular types of data. The Real-Time
Workshop code generator handles most of the code formatting decisions (such
as 1dentifier construction and code packaging) in consistent ways.

Initiating the Build Process

You can initiate code generation and the build process by using the following

options:

¢ (Clear the Generate code only option on the Real-Time Workshop pane
of the Configuration Parameters dialog box and click Build.

® Press Ctrl+B.

¢ Select Tools > Real-Time Workshop > Build Model.

¢ Invoke the rtwbuild command from the MATLAB command line, using
one of the following syntax options:

rtwbuild src
rtwbuild('src')
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For src, specify the name of a model or subsystem. The command initiates
the build process with the current model configuration settings and creates
an executable. If the model or subsystem is not loaded into the Simulink
environment, rtwbuild loads it before initiating the build process.

For more information on using subsystems, see Chapter 4, “Building
Subsystems and Working with Referenced Models”.

® Invoke the slbuild command from the MATLAB command line, using
one of the following syntax options:

slbuild model

slbuild model 'buildtype'
slbuild( 'model')
slbuild('model' 'buildtype')

For model, specify the name of a model for which you want to build a
stand-alone Real-Time Workshop target executable or a model reference
target. The buildtype can be one of the following:

= ModelReferenceSimTarget builds a model reference simulation target

= ModelReferenceRTWTarget builds a model reference simulation and
Real-Time Workshop targets

= ModelReferenceRTWTargetOnly builds a model reference Real-Time
Workshop target

The command initiates the build process with the current model
configuration settings. If the model has not been loaded by the Simulink
product, slbuild loads it before initiating the build process.

For more information on model referencing, see “Generating Code for
Model Referencing” on page 4-26.

Construction of Symbols

For GRT, GRT-malloc and RSim targets, the Real-Time Workshop code
generator automatically constructs identifiers for variables and functions in
the generated code. These symbols identify

® Signals and parameters that have Auto storage class

® Subsystem function names that are not user defined
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e All Stateflow names
The components of a generated symbol include

® The root model name, followed by

® The name of the generating object (signal, parameter, state, and so on),
followed by

® A unique name mangling string

The name mangling string is conditionally generated only when necessary to
resolve potential conflicts with other generated symbols.

The length of generated symbols is limited by the Maximum identifier
length parameter specified on the Symbols pane of the Configuration
Parameters dialog box. When there is a potential name collision between two
symbols, a name mangling string is generated. The string has the minimum
number of characters required to avoid the collision. The other symbol
components are then inserted. If Maximum identifier length is not large
enough to accommodate full expansions of the other components, they are
truncated. To avoid this outcome, it is good practice to

® Avoid name collisions in general. One way to do this is to avoid using
default block names (for example, Gain1, Gain2...) when there are many
blocks of the same type in the model. Also, whenever possible, make
subsystems atomic and reusable.

® Where possible, increase the Maximum identifier length parameter to
accommodate the length of the symbols you expect to generate.

Maximum identifier length can be longer for top model than referenced
models. Model referencing can involve additional naming constraints. For
information, see “Configuring Generated Identifiers” on page 2-66 and
“Parameterizing Model References”.

Users of the Real-Time Workshop Embedded Coder product have additional
flexibility over how symbols are constructed, by using a Symbol format
field that controls the symbol formatting in much greater detail. See
“Code Generation Options and Optimizations” in the Real-Time Workshop
Embedded Coder documentation for more information.
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Generated Source Files and File Dependencies

The source and make files created during the Real-Time Workshop build
process are generated into your build directory, which is created or reused
in your current directory. Some files are unconditionally generated, while
the existence of others depend on target settings and options (for example,
support files for C API or external mode). See “Files and Directories Created
by the Build Process” on page 2-92 for descriptions of the generated files.

Note The file packaging of Real-Time Workshop Embedded Coder targets
differs slightly from the file packaging described below. See “Code Modules”
in the Real-Time Workshop Embedded Coder documentation for more
information.

Generated source file dependencies are depicted in the next figure. Arrows
coming from a file point to files it includes. Other dependencies exist, for
example on Simulink header files tmwtypes.h and simstruc_types.h, plus C
or C++ library files. The figure maps inclusion relations between only those
files that are generated in the build directory. Utility and model reference
code located in a project directory might also be referenced by these files. See
“Project Directory Structure for Model Reference Targets” on page 4-28 for
details.

The figure shows that parent system header files (model.h) include all child
subsystem header files (subsystem.h). In more layered models, subsystems
similarly include their children’s header files, on down the model hierarchy.
As a consequence, subsystems are able to recursively “see” into all their
descendants’ subsystems, as well as to see into the root system (because every
subsystem.c or subsystem.cpp includes model.h and model private.h).
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model private.h

model.c subsystem.c model data.c
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subsystem.h
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model types.h

rtmodel.hisa

dummy include
file used only ]
for grt and

grt_malloc targets. model.h

/

Real-Time Workshop® Generated File Dependencies

rtmodel.h

Note In the preceding figure, files model.h, model private.h, and
subsystem.h also depend on the Real-Time Workshop header file rtwtypes.h.
Targets that are not based on the ERT target can have additional
dependencies on tmwtypes.h and simstruct_types.h.

Header Dependencies When Interfacing Legacy/Custom Code
with Generated Code

You can incorporate legacy or custom code into a Real-Time Workshop build
in any of several ways. One common approach is by creating S-functions. For
details on this approach, see Chapter 10, “Writing S-Functions for Real-Time
Workshop Code Generation”.

Another approach is to interface code using global variables created
by declaring storage classes for signals and parameters. This requires
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customizing an outer code harness, typically referred to as a main.c or
main.cpp file, to properly execute to the generated code. In addition, the
harness can contain custom code.

These scenarios require you to include header files specific to the Real-Time
Workshop product to make available the needed function declarations, type
definitions, and defines to the legacy or custom code.

rtwtypes.h. The header file rtwtypes.h defines data types, structures,

and macros required by the generated code. Normally, you should include
rtwtypes.h for both GRT and ERT targets instead of including tmwtypes.h or
simstruc_types.h. However, the contents of the header file varies depending
on your target selection.

For... ritwtypes.h

GRT target Provides a complete set of definitions by including
tmwtypes.h and simstruct_types.h, both of which
depend on

® System headers 1imits.h and float.h

e Real-Time Workshop headers: rtw_matlogging.h,
rtw_extmode.h, rtw_continuous.h, and
rtw_solver.h

ERT target and  Is optimized, when possible, to include a minimum set
targets based on of #define statements, enumerations, and so on; does
the ERT target not include tmwtypes.h and simstruct _types.h

The Real-Time Workshop build process generates the optimized version of
rtwtypes.h for the ERT target when both of the following conditions exist:

® The GRT compatible call interface option on the Real-Time
Workshop > Interfacepane of the Configuration Parameters dialog box is
cleared.

® The model contains no noninlined S-functions

You should always include rtwtypes.h. If you include it for GRT targets, for
example, it is easier to use your code with ERT-based targets.
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rtwtypes.h for GRT targets:

#ifndef _ RTWTYPES H
#define _ RTWTYPES H
#include "tmwtypes.h"

/* This ID is used to detect inclusion of an incompatible
* rtwtypes.h

*/

#define RTWTYPES_ID CO08S16I32L32N32F1

#include "simstruc_types.h"
#ifndef POINTER_T

# define POINTER_T
typedef void * pointer_T;
f#fendif

#ifndef TRUE

# define TRUE (1)

f#fendif

#ifndef FALSE

# define FALSE (0)

ffendif

ffendif

Top of rtwtypes.h for ERT targets:

#ifndef _ RTWTYPES H__
#define _ RTWTYPES H__
#ifndef _ TMWTYPES _
#define _ TMWTYPES _

#include <limits.h>

/* ==============
* Target hardware information

* Device type: 32-bit Generic

* Number of bits: char: 8 short: 16 int: 32

* long: 32 native word size: 32

* Byte ordering: Unspecified

* Signed integer division rounds to: Undefined

* Shift right on a signed integer as arithmetic shift: on
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/* This ID is used to detect inclusion of an incompatible rtwtypes.h */
#define RTWTYPES_ID_C08S16I32L32N32F1

/* ==============%
* Fixed width word size data types: *
* int8 T, int16_T, int32_T - signed 8, 16, or 32 bit integers *
* uint8_ T, uint16_T, uint32_T - unsigned 8, 16, or 32 bit integers *
* real32_T, real64_T - 32 and 64 bit floating point numbers *
* ::::::::::::::*/

typedef signed char int8_T;
typedef unsigned char uint8_T;
typedef short int16_T;

typedef unsigned short uint16_T;
typedef int int32_T;

typedef unsigned int uint32_T;
typedef float real32_T;

typedef double real64_T;

For GRT and ERT targets, the location of rtwtypes.h depends on
whether the build uses the shared utilities location. If you use a shared
location, the Real-Time Workshop build process places rtwtypes.h in
slprj/target/_sharedutils; otherwise, it places rtwtypes.h in the
standard build directory (model target rtw). See “Sharing Utility
Functions” on page 4-51 for more information on when and how to use the
shared utilities location.

The header file rtwtypes.h should be included by source files that use
Real-Time Workshop type names or other Real-Time Workshop definitions. A
typical example is for files that declare variables using a Real-Time Workshop
data type, for example, uint32_T myvar;.

A source file that is intended to be used by the Real-Time Workshop
product and by a Simulink S-function can leverage the preprocessor macro
MATLAB_MEX_FILE, which is defined by the mex function:

#ifdef MATLAB_MEX FILE
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#include "tmwtypes.h"
#else
#include "rtwtypes.h"
#endif

A source file meant to be used as the Real-Time Workshop main.c (or .cpp)
file would also include rtwtypes.h without any preprocessor checks.

#include "rtwtypes.h"

Custom source files that are generated using the Target Language Compiler
can also emit these include statements into their generated file.

model.h. The header file model .h declares model data structures and a public
interface to the model entry points and data structures. This header file also
provides an interface to the real-time model data structure (model M) by
using access macros. If your code interfaces to model functions or model data
structures, as illustrated below, you should include model . h:

e Exported global signals

extern int32_T INPUT; /* '<Root>/In' */

* Global structure definitions

/* Block parameters (auto storage) */
extern Parameters_mymodel mymodel P;

e RTM macro definitions

#ifndef rtmGetSampleTime

# define rtmGetSampleTime(rtm, idx)
((rtm)->Timing.sampleTimes[idx])
#endif

® Model entry point functions (ERT example)

extern void mymodel_initialize(void);
extern void mymodel step(void);
extern void mymodel terminate(void);
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A Real-Time Workshop target’s main.c (or .cpp) file should include model.h.
If the main.c (or .cpp) file is generated from a TLC script, the TLC source
can include model.h using:

#include "%<CompiledModel.Name>.h"

If main.c or main.cpp is a static source file, a fixed header filename can be
used, rtmodel.h for GRT or autobuild.h for ERT. These files include the
model.h header file:

#include "model.h" /* If main.c is generated */

or

#include "rtmodel.h" /* If static main.c is used with GRT */

or

#include "autobuild.h" /* If static main.c is used with ERT */

Other custom source files may also need to include model .h if there is a need
to interface to model data, for example exported global parameters or signals.
The model . h file itself can have additional header dependencies, as listed in
the tables System Header Files on page 2-113 and Real-Time Workshop®
Header Files on page 2-115, due to requirements of generated code.

System Header Files

Header File Purpose GRT Targets ERT Targets
<float.h> Defines math Not included Included when generated code
constants honors the Stop time solver

configuration parameter due to
one of the following Real-Time
Workshop interface option
settings:

e MAT-file logging selected

e Interface set to External
mode
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System Header Files (Continued)

Header File Purpose GRT Targets ERT Targets
<math.h> Provides Included when the | Included when the model
floating-point math | model contains contains a floating-point math
functions a floating-point function that is not overridden
math function by an entry in the target function
library (TFL) selected for the
model
For more information about
TFLs, see “Selecting and
Viewing Target Function
Libraries” on page 2-78 in this
chapter, and the TFL chapter
in the Real-Time Workshop
Embedded Coder User’s Guide.
<stddef.h> Defines NULL Included when the | Included when the model
model contains a contains a utility function that
utility function needs it
that needs it
<stdio.h> Provides file I/O Included when the | Included when the model

functions

model includes a
To File block

includes a To File block, or
you select Configuration
Parameters > Real-Time
Workshop > Interface

> MAT-file logging. See
“MAT-file logging”.
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System Header Files (Continued)

Header File

Purpose

GRT Targets

ERT Targets

<stdlib.h>

Provides utility
functions such as
div() and abs()

Included when the

model includes

o A Stateflow
chart

e A Math
Function block
configured for
mod () or rem(),
which generate
calls to div ()

Included when the model

includes

e A Stateflow chart and
you select the Support
floating-point numbers
Real-Time Workshop
interface configuration
parameter

e A Math Function block
configured for mod () or rem(),
which generate calls to div ()

<string.h>

Provides memory
functions such
as memset () and

memcpy ()

Always included
due to use of
memset () in model
initialization code

Included when block or model
initialization code calls memcpy ()
or memset ()

For a list of relevant blocks,
enter showblockdatatypetable
in the MATLAB Command
Window and look for blocks with
the N2 note.

To omit calls to memset ()
from model initialization code,
select theRemove root level
1/0 zero initialization and
Remove internal data zero
initialization optimization
configuration parameters.

Real-Time Workshop Header Files

Header File

Purpose

GRT Targets

ERT Targets

dt_info.h

Defines data
structures for
external mode

Included when you
configure a model
for external mode

Included when you configure a
model for external mode
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Real-Time Workshop Header Files (Continued)

Header File

Purpose

GRT Targets

ERT Targets

ext_work.h

Defines external
mode functions

Included when you
configure a model
for external mode

Included when you configure a
model for external mode

fixedpoint.h

Provides
fixed-point support
for noninlined
S-functions

Always included

Included when either of the

following conditions exists:

¢ The model uses noninlined
S-functions

® You select the Real-Time
Workshop interface
configuration parameter GRT
compatible call interface

model_types.h

Defines
model-specific data
types

Always included

Always included

rt_logging.h

Supports MAT-file
logging

Always included

Included when you select
Configuration Parameters

> Real-Time Workshop >
Interface > MAT-file logging.
See “MAT-file logging”.

rt_nonfinite.h

Provides support
for nonfinite
numbers in the
generated code

Always included

Included when you select

one of the following
Real-Time Workshop interface
configuration parameters:

e MAT-file logging

¢ Support non-finite
numbers (and the generated
code requires nonfinite
numbers)
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Real-Time Workshop Header Files (Continued)

Header File

Purpose

GRT Targets

ERT Targets

rtw_continuous.h

Supports
continuous time

Always
included by
simstruc_types.h

Included when you select the
Real-Time Workshop interface
configuration parameter
Support continuous time
and simstruc.h is not already
included

rtw_extmode.h

Supports external
mode

Always
included by
simstruc_types.h

Included when you configure
the model for external mode
and simstruc.h is not already
included

rtw_matlogging.h

Supports MAT-file
logging

Included by
simstruc_types.h
and
rtw_logging.h

Included by rtw_logging.h

rtw_solver.h

Supports
continuous states

Always
included by
simstruc_types.h

Included when you select the
Real-Time Workshop interface
configuration parameter
Support floating-point

numbers and simstruc.h is not

already included

rtwtypes.h

Defines Real-Time
Workshop data

types; generated
file

Always included;
use the complete
version of the file,
which includes
tmwtypes.h and
simstruc_types.h
(see
simstruc_types.h
for dependencies)

Always included; use the
complete or optimized version
of the file as explained in
“rtwtypes.h” on page 2-109

2-117



2 Code Generation and the Build Process

Real-Time Workshop Header Files (Continued)

Header File

Purpose

GRT Targets

ERT Targets

simstruc.h

Provides support
for calling
noninlined
S-functions that
use the Simstruct
definition; also
includes 1imits.h,
string.h,
tmwtypes.h, and
simstruc_types.h

Always included

Included when either of the

following conditions exists:

¢ The model uses noninlined
S-functions

®* You select the Real-Time
Workshop interface
configuration parameter GRT
compatible call interface

simstruc_types.h

Provides
definitions used by
generated code
and includes

the header files
rtw_matlogging.h,
rtw_extmode.h,
rtw_continuous.h,
rtw_solver.h, and
sysran_types.h

Always included
with rtwtypes.h

Not included; rtwtypes.h
contains needed definitions and
model .h contains needed header
files

sysran_types.h

Supports external
mode

Always
included by
simstruc_types.h

Included when you configure
the model for external mode
and simstruc.h is not already
included

Note Header file dependencies noted in the preceding table apply to the
system target files grt.tlc and ert.tlc. Targets derived from these base
targets may have additional header dependencies. Also, code generation
for blocks from blocksets, embedded targets, and custom S-functions may
introduce additional header dependencies.
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Dependencies of the Model’s Generated code

The Real-Time Workshop software can directly build standalone executables
for the host system such as when using the GRT target. Several processor-
and operating system-specific targets also provide automated builds using a
cross-compiler. All of these targets are typically makefile-based interfaces for
which the Real-Time Workshop software provides a “T'emplate MakeFile
(TMF) to makefile” conversion capability. Part of this conversion process is to
include in the generated makefile all of the source file, header file, and library
file information needed (the dependencies) for a successful compilation.

In other instances, the generated model code needs to be integrated into a
specific application. Or, it may be desired to enter the generated files and
any file dependencies into a configuration management system. This section
discusses the various aspects of the generated code dependencies and how to
determine them.

Typically, the generated code for a model consists of a small set of files:

® model.c or model.cpp

® model.h

® model_data.c or model_data.cpp

®* model_private.h

* rtwtypes.h

These are generated in the build directory for a standalone model or a
subdirectory under the slprj directory for a model reference target. There is
also a top-level main.c (or .cpp) file that calls the top-level model functions
to execute the model. main.c (or .cpp) is a static (not generated) file (such
as grt_main.c or grt_main.cpp for GRT-based targets), and is either a

static file (ert_main.c or ert_main.cpp) or is dynamically generated for
ERT-based targets.

The preceding files also have dependencies on other files, which occur due to:

¢ Including other header files
¢ Using macros declared in other header files

¢ (Calling functions declared in other source files
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® Accessing variables declared in other source files

These dependencies are introduced for a number of reasons such as:

® Blocks in a model generate code that makes function calls. This can occur
in several forms:

The called functions are declared in other source files. In some cases
such as a blockset, these source file dependencies are typically managed
by compiling them into a library file.

In other cases, the called functions are provided by the compilers own
run-time library, such as for functions in the ANSI'® C header, math.h.

Some function dependencies are themselves generated files. Some
examples are for fixed-point utilities and nonfinite support. These
dependencies are referred to as shared utilities. The generated functions
can appear in files in the build directory for standalone models or in
the sharedutils directory under the slprj directory for builds that
involve model reference.

e Models with continuous time require solver source code files.

¢ Real-Time Workshop options such as external mode, C API, and MAT-file
logging are examples that trigger additional dependencies.

® Specifying custom code can introduce dependencies.

Providing the Dependencies. The Real-Time Workshop product provides
several mechanisms for feeding file dependency information into the
Real-Time Workshop build process. The mechanisms available to you depend
on whether your dependencies are block based or are model or target based.

For block dependencies, consider using

e S-functions and blocksets

= Directories that contain S-function MEX-files used by a model are added

to the header include path.

= Makefile rules are created for these directories to allow source code to

be found.

16. ANSI® is a registered trademark of the American National Standards Institute, Inc.
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= For S-functions that are not inlined with a TLC file, the S-function
source filename is added to the list of sources to compile.

= The S-Function block parameter SFunctionModules provides the ability
to specify additional source filenames.

= The rtwmakecfg.m mechanism provides further capability in specifying
dependencies. See “Using the rtwmakecfg.m API to Customize
Generated Makefiles” on page 10-95 for more information.

For more information on applying these approaches to legacy or custom
code integration, see Chapter 10, “Writing S-Functions for Real-Time
Workshop Code Generation”.

¢ S-Function Builder block, which provides its own GUI for specifying
dependency information

For model- or target-based dependencies, such as custom header files,
consider using

®* The Real-Time Workshop/Custom Code pane of the Configuration
Parameters dialog box, which provides the ability to specify additional
libraries, source files, and include directories.

e TLC functions LibAddToCommonIncludes () and LibAddToModelSources(),
which allow you to specify dependencies during the TLC
phase. See “LibAddToCommonlIncludes(incFileName)” and
“LibAddSourceFileCustomSection
(file, builtInSection, newSection)” in the Target Language Compiler
documentation for details. The Real-Time Workshop Embedded Coder
product also provides a TLC-based customization template capability for
generating additional source files.

Makefile Considerations. As previously mentioned, Real-Time Workshop
targets are typically makefile based and the Real-Time Workshop product
provides a “Template MakeFile (TMF) to makefile” conversion capability. The
template makefile contains a token expansion mechanism in which the build
process expands different tokens in the makefile to include the additional
dependency information. The resulting makefile contains the complete
dependency information. See Developing Embedded Targets in the Real-Time
Workshop Embedded Coder documentation for more information on working
with template makefiles.
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The generated makefile contains the following information:

e Names of the source file dependencies (by using various SRC variables)
® Directories where source files are located (by using unique rules)

® Location of the header files (by using the INCLUDE variables)

® Precompiled library dependencies (by using the LIB variables)

e Libraries which need to be compiled and created (by using rules and the
LIB variables)

A property of make utilities is that the specific location for a given source C or
C++ file does not need to be specified. If there is a rule for that directory and
the source filename is a prerequisite in the makefile, the make utility can find
the source file and compile it. Similarly, the C or C++ compiler (preprocessor)
does not require absolute paths to the headers. Given the name of header
file by using an #include directive and an include path, it is able to find

the header. The generated C or C++ source code depends on this standard
compiler capability.

Also, libraries are typically created and linked against, but occlude the specific
functions that are being used.

Although the build process is successful and can create a minimum-size
executable, these properties can make it difficult to manually determine the
minimum list of file dependencies along with their fully qualified paths. The
makefile can be used as a starting point to determining the dependencies
that the generated model code has.

An additional approach to determining the dependencies is by using linker
information, such as a linker map file, to determine the symbol dependencies.
The location of Real-Time Workshop and blockset source and header files 1s
provided below to assist in locating the dependencies.

Real-Time Workshop Static File Dependencies. Several locations in
the MATLAB directory tree contain static file dependencies specific to the
Real-Time Workshop product:

® matlabroot/rtw/c/src/
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This directory has subdirectories and contains additional files that may
need to be compiled. Examples include solver functions (for continuous
time support), external mode support files, C API support files, and
S-function support files. Source files in this directory are included into the
build process using in the SRC variables of the makefile.

® matlabroot/rtw/extern/include/*.h

® matlabroot/simulink/include/*.h

These directories contain additional header file dependencies such as
tmwtypes.h, simstruc_types.h, and simstruc.h

Note For ERT-based targets, several header dependencies from the above
locations can be avoided. ERT-based targets generate the minimum
necessary set of type definitions, macros, and so on, in the file rtwtypes.h.

Blockset Static File Dependencies. Blockset products leverage the
rtwmakecfg.m mechanism to provide the Real-Time Workshop software with
dependency information. As such, the rtwmakecfg.m file provided by the
blockset contains the listing of include path and source path dependencies
for the blockset. Typically, blocksets create a library from the source files
which the generated model code can then link against. The libraries are
created and identified using the rtwmakecfg.m mechanism. The locations of
thertwmakecfg.m files for the blocksets are

matlabroot/commblks/commblksdemos/rtwmakecfg.m
matlabroot/commblks/commmex/rtwmakecfg.m
matlabroot/dspblks/dspmex/rtwmakecfg.m
matlabroot/fuzzy/fuzzy/rtwmakecfg.m
matlabroot/physmod/drive/drive/rtwmakecfg.m
matlabroot/physmod/mech/mech/rtwmakecfg.m

matlabroot/physmod/powersys/powersys/rtwmakecfg.m
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If the model being compiled uses one or more of these blocksets, you can
determine directory and file dependency information from the respective
rtwmakecfg.m file.

Specifying Include Paths in Real-Time Workshop Generated
Source Files

You can add #include statements to generated code. Such references can
come from several sources, including TLC scripts for inlining S-functions,
custom storage classes, bus objects, and data type objects. The included
files typically consist of header files for legacy code or other customizations.
Additionally, you can specify compiler include paths with the -I compiler
option. The Real-Time Workshop build process uses the specified paths to
search for included header files.

Usage scenarios for the generated code include, but are not limited to, the
following:

® Real-Time Workshop generated code is compiled with a custom build
process that requires an environment-specific set of #include statements.

In this scenario, the Real-Time Workshop code generator is likely invoked
with the Generate code only check box selected. It may be appropriate to
use fully qualified paths, relative paths, or just the header filenames in the
#include statements, and additionally leverage include paths.

® The generated code is compiled using the Real-Time Workshop build
process.

In this case, compiler include paths (-I) can be provided to the Real-Time
Workshop build process in several ways:

= The Real-Time Workshop > Custom Code pane of the Configuration
Parameters dialog box allows you to specify additional include paths.
The include paths are propagated into the generated makefile when the
template makefile (TMF) is converted to the actual makefile.

= The rtwmakecfg.m mechanism allows S-functions to introduce additional
include paths into the Real-Time Workshop build process. The include
paths are propagated when the template makefile (TMF) is converted to
the actual makefile.
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= When building a custom Real-Time Workshop target that is
makefile-based, the desired include paths can be directly added into the
targets template makefile.

= A USER_INCLUDES make variable that specifies a directory in which the
Real-Time Workshop build process should search for included files can
be specified on the Real-Time Workshop make command. For example,

make_rtw USER_INCLUDES=-Id:\work\feature1

The user includes are passed to the command-line invocation of the make
utility, which will add them to the overall flags passed to the compiler.

Recommended Approaches. The following are recommended approaches
for using #include statements and include paths in conjunction with the
Real-Time Workshop build process to help ensure that the generated code
remains portable and that compatibility problems with future versions are
minimized.

Assume that additional header files are located at

c:\work\featureti\foo.h
c:\work\feature2\bar.h

® A simple approach is to ensure all #include statements contain only the
filename such as

#include "foo.h"
#include "bar.h"

Then, the include path passed to the compiler should contain all directories
where the headers files exist:

cc -Ic:\work\featurel -Ic:\work\feature2

® A second recommended approach is to use relative paths in #include
statements and provide an anchor directory for these relative paths using
an include path, for example,

#include "featurei\foo.h"
#include "feature2\bar.h"
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Then specify the anchor directory (for example \work) to the compiler:

cc -Ic:\work

Directory Dependencies to Avoid. When using the Real-Time Workshop
build process, avoid dependencies on its build and project directory structure,
such as the model ert_rtw build directory or the slprj project directory.
Thus, the #include statements should not just be relative to where the
generated source file exists. For example, if your MATLAB current working
directory is c¢:\work, a generated model.c source file would be generated
into a subdirectory such as

c:\work\model_ert_rtw\model.c

The model . c file would have #include statements of the form

#include "..\featurei\foo.h"
#include "..\feature2\bar.h"

However, as this creates a dependency on the Real-Time Workshop directory
structure, you should instead use one of the approaches described above.

Reloading Code from the Model Explorer

You can reload the code generated for a model from the Model Explorer.

1 Click the Code for model node in the Model Hierarchy pane.

2 In the Code pane, click the Refresh link.
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The Real-Time Workshop software reloads the code for the model from the
build directory.

Rebuilding Generated Code

If you update generated source code or makefiles manually to add
customizations, you can rebuild the files with the rtwrebuild command. This
command recompiles the modified files by invoking the generated makefile.
To use this command from the Model Explorer,

1 In the Model Hierarchy pane, expand the node for the model of interest.

2 Click the Code for model node.

3 In the Code pane, click run rtwrebuild, listed to the right of the label
Code Recompile Command.

Alternatively, you can use the command as follows:
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If...

Issue the Command...

Your current working directory is the
model’s build directory

rtwrebuild()

Your current working directory is one
level above the model’s build directory
(pwd when the Real-Time Workshop
build was initiated)

rtwrebuild (model)

You want to specify the path to the rtwrebuild(path)
model’s build directory

If your model includes submodels, the Real-Time Workshop software builds
the submodels recursively before rebuilding the top model.

Profiling Generated Code

If you have a need to profile the generated code for a model, you can do so
with the TLC hook function interface demonstrated in rtwdemo_profile.
To use the profile hook interface, you

1 Set up a TLC file that defines the following TLC hook functions:

Function Input Arguments Description

ProfilerHeaders void Return an array of the header filenames
to be included in the generated code.

ProfilerTypedefs void Generate code statements for profiler
type definitions.

ProfilerGlobalData system Generate code statements that declare
global data.

ProfilerExternDataDecls system Generate code statements that create

global extern declarations.

ProfilerSysDecl

system, functionType

Generate code for variable declarations
that needed within the scope of an
atomic subsystem’s Output, Update,
OutputUpdate, or Derivatives
function.
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Function

Input Arguments

Description

ProfilerSysStart

system, functionType | Generate code that starts the

profiler within the scope of an
atomic subsystem’s Output, Update,
OutputUpdate, or Derivatives
function.

ProfilerSysEnd

system, functionType | Generate code that stops the profiler

within the scope of an atomic
subsystem’s Output, Update,
OQutputUpdate, or Derivatives
function.

ProfilerSysTerminate system

Generate code that terminates profiling
(and possibly reports results) for an
atomic subsystem.

For an example of a .tlc file that applies these functions, see
matlabroot/toolbox/rtw/rtwdemos/rtwdemo_profile_hook.tlc.

2 In your target.tlc file, define the following global variables:

Define...
ProfilerTLC

ProfileGenCode

To Be...

The name of the TLC file you created in
step 1

TLC_TRUE

3 Build the model. The build process embeds the profiling code in appropriate

locations in the generated code for your model.

For details on the hook function interface, see the instructions and sample
.tlc file provided with rtwdemo_profile. For details on programming a

.tlc file and defining TLC configuration variables, see the Target Language

Compiler documentation.
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In this section...

“Controlling the Compiling and Linking Phases of the Build Process” on
page 2-130

“Cross-Compiling Code Generated on a Microsoft Windows System” on
page 2-131

“Controlling the Location and Naming of Libraries During the Build
Process” on page 2-134

“Recompiling Precompiled Libraries” on page 2-139

“Customizing Post Code Generation Build Processing” on page 2-139

Controlling the Compiling and Linking Phases of the
Build Process

After generating code for a model, the Real-Time Workshop build process
determines whether or not to compile and link an executable program. This
decision is governed by the following:

¢ Generate code only option

When you select this option, the Real-Time Workshop software generates
code for the model, including a makefile.

¢ Generate makefile option

When you clear this option, the Real-Time Workshop software does

not generate a makefile for the model. You must specify any post code
generation processing, including compilation and linking, as a user-defined
command, as explained in “Customizing Post Code Generation Build
Processing” on page 2-139.

® Makefile-only target

The Microsoft Visual C++ Project Makefile versions of the grt, grt_malloc,
and Real-Time Workshop Embedded Coder target configurations generate
a Visual C++ project makefile (model.mak). To build an executable, you
must open model.mak in the Visual C++ IDE and compile and link the
model code.
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® HOST template makefile variable

The template makefile variable HOST identifies the type of system upon
which your executable is intended to run. The variable can be set to one of
three possible values: PC, UNIX, or ANY.

By default, HOST is set to UNIX in template makefiles designed for use with
The Open Group UNIX platforms (such as grt_unix.tmf), and to PC in the
template makefiles designed for use with development systems for the

PC (such as grt_vc.tmf).

If the Simulink software i1s running on the same type of system as that
specified by the HOST variable, then the executable is built. Otherwise,

= If HOST = ANY, an executable is still built. This option is useful when
you want to cross-compile a program for a system other than the one the
Simulink software is running on.

Otherwise, processing stops after generating the model code and the
makefile; the following message 1s displayed on the MATLAB command
line.

### Make will not be invoked - template makefile is for a different host

® TGT_FCN_LIB template makefile variable

The template makefile variable TGT_FCN_LIB specifies compiler
command line options. The line in the makefile is TGT_FCN_LIB =
|>TGT_FCN_LIB<|. By default, the Real-Time Workshop software expands
the |>TGT_FCN_LIB<| token to match the setting of the Target function
library option on the Real-Time Workshop/Interface pane of the
Configuration Parameters dialog box. Possible values for this option
include ANSI C, C99 (IS0), and GNU99 (GNU). You can use this token in a
makefile conditional statement to specify compiler options to be used. For
example, if you set the token to C99 (IS0), the compiler might need an
additional option set to support C99 library functions.

Cross-Compiling Code Generated on a Microsoft
Windows System

If you need to generate code with the Real-Time Workshop software on a
Microsoft Windows system but compile the generated code on a different
supported platform, you can do so by modifying your TMF and model

configuration parameters. For example, you would need to do this if you
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develop applications with the MATLAB and Simulink products on a Windows
system, but you run your generated code on a Linux system.

To set up a cross-compilation development environment, do the following
(here a Linux system is the destination platform):

1 On your Windows system, copy the UNIX TMF for your target to a local
directory. This will be your working directory for initiating code generation.
For example, you might copy matlabroot/rtw/c/grt/grt_unix.tmf to
D:/work/my_grt_unix.tmf.

2 Make the following changes to your copy of the TMF:
¢ Add the following line near the SYS_TARGET_FILE = line:

MAKEFILE_FILESEP = /

e Search for the line 'ifeq ($(OPT_OPTS),$(DEFAULT_OPT_OPTS))' and,
for each occurrence, remove the conditional logic and retain only the
'else' code. That is, remove everything from the 'if' to the 'else’,
inclusive, as well as the closing 'endif'. Only the lines from the 'else’
portion should remain. This forces the run-time libraries to build for
a Linux system.

3 Open your model and make the following changes in the Real-Time
Workshop pane of the Configuration Parameters dialog:

¢ Specify the name of your new TMF in the Template makefile text box
(for example, my_grt_unix.tmf).

® Select Generate code only and click Apply.
4 Generate the code.

5 If the build directory (directory from which the model was built)
1s not already Linux accessible, copy it to a Linux accessible path.
For example, if your build directory for the generated code was
D:\work\mymodel grt_ rtw, copy that entire directory tree to a path such
as /home/user/mymodel_grt_rtw.

6 If the MATLAB directory tree on the Windows system is Linux
accessible, skip this step. Otherwise, you must copy all the include and
source directories to a Linux accessible drive partition, for example,
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/home/user/myinstall. These directories appear in the makefile after
MATLAB_INCLUDES = and ADD_INCLUDES = and can be found by searching
for $ (MATLAB_ROOT). Any path that contains $ (MATLAB_ROOT) must be
copied. Here is an example list (your list will vary depending on your
model):

$ (MATLAB_ROOT) /rtw/c/grt

$ (MATLAB_ROOT) /extern/include

$ (MATLAB_ROOT) /simulink/include
$ (MATLAB_ROOT) /rtw/c/src

$ (MATLAB_ROOT) /rtw/c/tools

Additionally, paths containing $ (MATLAB_ROOT) in the build rules (lines
with %.0 :) must be copied. For example, based on the build rule

%.0 : $(MATLAB_ROOT)/rtw/c/src/ext_mode/tcpip/%.c
the following directory should be copied:

$(MATLAB_ROOT) /rtw/c/src/ext_mode/tcpip

Note The path hierarchy relative to the MATLAB root must be
maintained. For example, c: \MATLAB\rtw\c\tools\* would be copied to
/home/user/mlroot/rtw/c/tools/*.

For some blocksets, it is easiest to copy a higher-level directory that
includes the subdirectories listed in the makefile. For example, the Signal
Processing Blockset product requires the following directories to be copied:

$ (MATLAB_ROOT) /toolbox/dspblks
$ (MATLAB_ROOT) /toolbox/rtw/dspblks

Make the following changes to the generated makefile:

® Set both MATLAB_ROOT and ALT_MATLAB_ROOT equal to the Linux
accessible path to matlabroot (for example, home/user/myinstall).

® Set COMPUTER to the appropriate computer value, such as GLNX86.
Enter help computer in the MATLAB Command Window for a list of
computer values.
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® In the ADD_INCLUDES list, change the build directory (designating the
location of the generated code on the Windows system) and parent
directories to Linux accessible include directories. For example, change
D:\work\mymodel grt_rtw\ to /home/user/mymodel grt_ rtw.

Additionally, if matlabroot is a UNC path, such as
\\my-server\myapps\matlab, replace the hard-coded MATLAB root
with $ (MATLAB_ROOT).

8 From a Linux shell, compile the code you generated on the Windows
system. You can do this by running the generated model.bat file or by
typing the make command line as it appears in the .bat file.

Note If errors occur during makefile execution, you may need to run the
dos2unix utility on the makefile (for example, dos2unix mymodel.mk).

Controlling the Location and Naming of Libraries
During the Build Process

Two configuration parameters, TargetPreCompLiblLocation and
TargetLibSuffix, are available for you to use to control values placed in
Real-Time Workshop generated makefiles during the token expansion from
template makefiles (TMFs). You can use these parameters to

¢ Specify the location of precompiled libraries, such as blockset libraries or
the Real-Time Workshop library. Typically, a target has cross-compiled
versions of these libraries and places them in a target-specific directory.

¢ Control the suffix applied to library file names (for example, target.a
or _target.lib).

Targets can set the parameters inside the system target file (STF) select
callback. For example:

function mytarget_select_callback_handler(varargin)
hDig=varargin{1};
hSrc=varargin{2};
slConfigUISetval(hDig, hSrc,...
'TargetPreCompLibLocation', 'c:\mytarget\precomplibs');
slConfigUISetVal(hDig, hSrc, 'TargetLibSuffix',...
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' _diab.library');

The TMF has corresponding expansion tokens:

| >EXPAND_LIBRARY_LOCATION<|
| >EXPAND_LIBRARY_SUFFIX<|

Alternatively, you can use a call to the set_param function. For example:

set_param(model, 'TargetPreCompLibLocation',...
‘c:\mytarget\precomplibs');

Note If your model contains referenced models, you can use the make option
USE_MDLREF_LIBPATHS to control whether libraries used by the referenced
models are copied to the parent model’s build directory. For more information,
see “Controlling the Location of Model Reference Libraries” on page 2-136.

Specifying the Location of Precompiled Libraries
Use the TargetPreCompLibLocation configuration parameter to:

¢ QOverride the precompiled library location specified in the rtwmakecfg.m
file (see “Using the rtwmakecfg.m API to Customize Generated Makefiles”
on page 10-95 for details)

® Precompile and distribute target-specific versions of product libraries (for
example, the Signal Processing Blockset product)

For a precompiled library, such as a blockset library or the Real-Time
Workshop library, the location specified in rtwmakecfg.m is typically a
location specific to the blockset or the Real-Time Workshop product. It is
expected that the library will exist in this location and it is linked against
during Real-Time Workshop builds.

However, for some applications, such as custom targets, it is preferable to
locate the precompiled libraries in a target-specific or other alternate location
rather than in the location specified in rtwmakecfg.m. For a custom target,
the library is expected to be created using the target-specific cross-compiler
and placed in the target-specific location for use during the Real-Time
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Workshop build process. All libraries intended to be supported by the target
should be compiled and placed in the target-specific location.

You can set up the TargetPreCompLibLocation parameter in its select
callback. The path that you specify for the parameter must be a fully qualified
absolute path to the library location. Relative paths are not supported. For
example:

slConfigUISetVal(hDlg, hSrc, 'TargetPreCompLibLocation',...
‘c:\mytarget\precomplibs');

Alternatively, you set the parameter with a call to the set_param function.
For example:

set_param(model, 'TargetPreCompLibLocation',...
‘c:\mytarget\precomplibs');

During the TMF-to-makefile conversion, the Real-Time Workshop build
process replaces the token |>EXPAND_LIBRARY_LOCATION<| with the specified
location in the rtwmakecfg.m file. For example, if the library name specified
in the rtwmakecfg.m file is 'rtwlib', the TMF expands from:

LIBS += |>EXPAND_LIBRARY_ LOCATION<|\|>EXPAND_LIBRARY_ NAME<|\
| >EXPAND_LIBRARY_ SUFFIX<|

to:

LIBS += c:\mytarget\precomplibs\rtwlib_diab.library

By default, TargetPreCompLibLocation is an empty string and the Real-Time
Workshop build process uses the location specified in rtwmakecfg.m for the
token replacement.

Controlling the Location of Model Reference Libraries

On platforms other than the Apple® Macintosh® platform, when building a
model that uses referenced models, the Real-Time Workshop build process by
default:

® (Copies libraries used by the referenced models to the parent model’s build
directory
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® Assigns the filenames of the libraries to MODELREF_LINK_LIBS in the
generated makefile

For example, if a model includes a referenced model sub, the Real-Time
Workshop build process assigns the library name sub_rtwlib.1lib to
MODELREF_LINK LIBS and copies the library file to the parent model’s build
directory. This definition is then used in the final link line, which links
the library into the final product (usually an executable). This technique
minimizes the length of the link line.

On the Macintosh platform, and optionally on other platforms, the Real-Time
Workshop build process:

® Does not copy libraries used by the referenced models to the parent model’s
build directory

® Assigns the relative paths and filenames of the libraries to
MODELREF_LINK_ LIBS in the generated makefile

When using this technique, the Real-Time Workshop build process
assigns a relative path such as ../slprj/grt/sub/sub_rtwlib.lib to
MODELREF_LINK LIBS and uses the path to gain access to the library file at
link time.

To change to the non-default behavior on platforms other than the Macintosh
platform, enter the following command in the Make command field of the
Real-Time Workshop pane of the Configuration Parameters dialog box:

make_rtw USE_MDLREF_LIBPATHS=1

If you specify other Make command arguments, such as OPTS="-g", you can
specify the multiple arguments in any order.

To return to the default behavior, set USE_MDLREF_LIBPATHS to 0, or remove it.

Controlling the Suffix Applied to Library File Names

Use the TargetLibSuffix configuration parameter to control the suffix
applied to library names (for example, target.lib or _target.a).
The specified suffix string must include a period (). You can apply
TargetLibSuffix to the following libraries:
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e Libraries on which a target depends, as specified in the rtwmakecfg.m API.

You can use TargetLibSuffix to affect the suffix of both precompiled and
non-precompiled libraries configured from the rtwmakecfg API. For details,
see “Using the rtwmakecfg.m API to Customize Generated Makefiles” on
page 10-95.

In this case, a target can set the parameter in its select callback. For
example:

slConfigUISetval(hDlg, hSrc, 'TargetLibSuffix',...
' _diab.library');

Alternatively, you can use a call to the set_param function. For example:

set_param(model, 'TargetLibSuffix','_diab.library');

During the TMF-to-makefile conversion, the Real-Time Workshop build
process replaces the token | >EXPAND_LIBRARY_SUFFIX<| with the specified
suffix. For example, if the library name specified in the rtwmakecfg.m file
is 'rtwlib', the TMF expands from:

LIBS += |>EXPAND_LIBRARY_ LOCATION<|\|>EXPAND_LIBRARY_ NAME<|\
| >EXPAND_LIBRARY_ SUFFIX<|

to:

LIBS += c:\mytarget\precomplibs\rtwlib_diab.library

By default, TargetLibSuffix is set to an empty string. In this
case, the Real-Time Workshop build process replaces the token
| >EXPAND_LIBRARY_SUFFIX<| with an empty string.

Shared utility library and the model libraries created with model
reference. For these cases, associated makefile variables do not require the
| >EXPAND_LIBRARY_SUFFIX<| token. Instead, the Real-Time Workshop
build process includes TargetLibSuffix implicitly. For example, for a top
model named topmodel with submodels named submodeli and submodel2,
the top model’s TMF is expanded from:

SHARED_L1IB
MODELLIB
MODELREF_LINK_LIBS

| >SHARED_LIB<|
| >MODELLIB< |
| >MODELREF_LINK_LIBS<|
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to:
SHARED_L1IB =\
..\slprj\ert\_sharedutils\rtwshared_diab.library
MODELLIB = topmodellib_diab.library

MODELREF_LINK LIBS = \
submodeli_rtwlib_diab.library submodel2_ rtwlib_diab.library

By default, the TargetLibSuffix parameter is an empty string. In this
case, the Real-Time Workshop build process chooses a default suffix
for these three tokens using a file extension of .1ib on Windows hosts
and .a on UNIX hosts. (For model reference libraries, the default suffix
additionally includes rtwlib.) For example, on a Windows host, the
expanded makefile values would be:

SHARED_L1IB = ..\slprj\ert\_sharedutils\rtwshared.lib
MODELLIB = topmodellib.1lib
MODELREF_LINK LIBS = submodeli_rtwlib.lib submodel2_rtwlib.1lib

Recompiling Precompiled Libraries

You can recompile precompiled libraries included as part of the Real-Time
Workshop product, such as rtwlib or dsplib, by using a supplied M-file
function, rtw_precompile libs. You might consider doing this if you need
to customize compiler settings for various platforms or environments. For
details on using rtw_precompile libs, see “Precompiling S-Function
Libraries” on page 10-101.

Customizing Post Code Generation Build Processing

The Real-Time Workshop product provides a set of tools, including a build
information object, you can use to customize build processing that occurs after
code generation. You might use such customizations for target development
or the integration of third-party tools into your application development
environment. The next figure and the steps that follow show the general
workflow for setting up such customizations.
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Program post code
generation command

v

Define post code
generation command

Suppress makefile

Generate ]
generation

a makefile?

Modify post code

A

Build model

generation command

A 4

A

No Results

OK?

1 Program the post code generation command.

2 Define the post code generation command.

3 Suppress makefile generation, if appropriate for your application.

4 Build the model.

5 Modify the command, if necessary, and rebuild the model. Repeat this step
until the build results are acceptable.

Build Information

Object

At the start of a model build, the Real-Time Workshop build process logs
the following build option and dependency information to a temporary build

information object:
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Compiler options

® Preprocessor identifier definitions

Linker options

Source files and paths

Include files and paths

® Precompiled external libraries

You can retrieve information from and add information to this object by
using an extensive set of functions. For a list of available functions and
detailed function descriptions, see “Functions — Alphabetical List” in the
Real-Time Workshop documentation. “Programming a Post Code Generation
Command” on page 2-141 explains how to use the functions to control post
code generation build processing.

Programming a Post Code Generation Command

For certain applications, it might be necessary to control aspects of the build
process after the code generation. For example, this is necessary when

you develop your own target, or you want to apply an analysis tool to the
generated code before continuing with the build process. You can apply this
level of control to the build process by programming and then defining a post
code generation command.

A post code generation command is an M-file that typically calls functions
that get data from or add data to the model’s build information object. You
can program the command as a script or function.

If You Program the Then the...
Command as a...

Script Script can gain access to the model name and
the build information directly

Function Function can pass the model name and the
build information as arguments

If your post code generation command calls user-defined functions, make sure
the functions are on the MATLAB path. If the Real-Time Workshop build
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process cannot find a function you use in your command, the build process
errors out.

You can then call any combination of build information functions to customize
the model’s post code generation build processing.

The following example shows a fragment of a post code generation command
that gets the filenames and paths of the source and include files generated for
a model for analysis.

function analyzegencode(buildInfo)
Get the names and paths of all source and include files
generated for the model and then analyze them.

o°

o°

o

s buildInfo - build information for my model.

% Define cell array to hold data.
MyBuildInfo={};

% Get source file information.
MyBuildInfo.srcfiles=getSourceFiles(buildInfo, true, true);
MyBuildInfo.srcpaths=getSourcePaths(buildInfo, true);

% Get include (header) file information.
MyBuildInfo.incfiles=getIncludeFiles(buildInfo, true, true);
MyBuildInfo.incpaths=getIncludePaths(buildInfo, true);

% Analyze generated code.

For a list of available functions and detailed function descriptions, see
“Functions — Alphabetical List” in the Real-Time Workshop documentation.

Defining a Post Code Generation Command

After you program a post code generation command, you need to inform the
Real-Time Workshop build process that the command exists and to add it to
the model’s build processing. You do this by defining the command with the
PostCodeGenCommand model configuration parameter. When you define a post
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code generation command, the Real-Time Workshop build process evaluates
the command after generating and writing the model’s code to disk and before
generating a makefile.

As the following syntax lines show, the arguments that you specify when
setting the configuration parameter varies depending on whether you program
the command as a script, function, or set of functions.

Note When defining the command as a function, you can specify an arbitrary
number of input arguments. To pass the model’s name and build information
to the function, specify identifiers modelName and buildInfo as arguments.

Script

set_param(model, 'PostCodeGenCommand',...
'pcgScriptName') ;

Function

set_param(model, 'PostCodeGenCommand',...
'pcgFunctionName (modelName) ') ;

Multiple Functions

pcgFunctions=...

'pcgFunctioniName (modelName) ;. ..

pcgFunction2Name (buildInfo) ';

set_param(model, 'PostCodeGenCommand',...
pcgFunctions);

The following call to set_param defines PostCodGenCommand to evaluate the
function analyzegencode.

set_param(model, 'PostCodeGenCommand’,...
‘analyzegencode (buildInfo)');
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Suppressing Makefile Generation

The Real-Time Workshop product provides the ability to suppress makefile
generation during the build process. For example, you might do this to
integrate tools into the build process that are not driven by makefiles.

To instruct the Real-Time Workshop build process to not generate a makefile,
do one of the following:

® (Clear the Generate makefile option on the Real-Time Workshop pane
of the Configuration Parameters dialog box.

¢ Set the value of the configuration parameter GenerateMakefile to off.
When you suppress makefile generation,

® You no longer can explicitly specify a make command or template makefile.

® You must specify your own instructions for any post code generation
processing, including compilation and linking, in a post code generation
command as explained in “Programming a Post Code Generation
Command” on page 2-141 and “Defining a Post Code Generation Command”
on page 2-142.
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Validating Generated Code

In this section...

“Viewing Generated Code” on page 2-145

“Tracing Generated Code Back to Your Simulink Model” on page 2-147

Viewing Generated Code

You can view generated code in HTML reports or in the Model Explorer.

Viewing Generated Code in Generated HTML Reports

One way to view the generated code is to set the Create code generation
report option on the Real-Time Workshop > Report pane of the
Configuration Parameters dialog box. When set, this option generates a
report that contains the following code generation details:

® A Summary section that lists version and date information, and a link to
open configuration settings used for generating the code, including TLC
options and Simulink model settings.

® A Generated Source Files section that contains a table of source code files
generated from your model. You can view the source code in the MATLAB
Help browser. When the Real-Time Workshop Embedded Coder product
is installed, hyperlinks are placed within the source code that let you
trace lines of code back to the blocks or subsystems from which the code
was generated. Click the hyperlinks to highlight the relevant blocks or
subsystems in a Simulink model window.

Note The report generated for various targets may vary slightly.

Viewing Generated Code in Model Explorer

Another way to view the HTML source code report is to use the Code Viewer

that is built into Model Explorer. You can browse generated files directly in
the Model Explorer.
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When you generate code, or open a model that has generated code for its
current target configuration in your working directory, the Hierarchy (left)
pane of Model Explorer contains a node named Code for model. Under that
node are other nodes, typically called This Model and Shared Code. Clicking
This Model displays in the Contents (middle) pane a list of source code files
in the build directory of each model that is currently open. The next figure
shows code for the vdp model.
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In this example, the file D: /work/test/vdp_grt rtw/vdp.c is being viewed.
To view any file in the Contents pane, click it once.

The views in the Document (right) pane are read only. The code listings
there contain hyperlinks to functions and macros in the generated code. A
hyperlink for the source file (not the HTML version you are looking at) being
viewed sits above it. Clicking it opens that file in a text editing window where
you can modify its contents. This is not something you typically do with
generated source code, but in the event you have placed custom code files in
the build directory, you can edit them as well in this fashion. You can also
take advantage of your editor’s features such as multipane display or custom
syntax coloring.
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If an open model contains Model blocks, and if generated code for any of these
models exists in the current slprj directory, nodes for the referenced models
appear in the Hierarchy pane one level below the node for the top model.
Such referenced models do not need to be open for you to browse and read
their generated source files.

If the Real-Time Workshop software generates shared utility code for
a model, a node named Shared Code appears directly under the This
Model node. It collects any source files that exist in the appropriate
./slprj/target/_sharedutils subdirectory.

Note Currently, you cannot use the Search tool built into Model Explorer’s
toolbar to search generated code displayed in the Code Viewer. On PCs, typing
Ctrl+F when focused on the Document pane opens a Find dialog box you can
use to search for strings in the currently displayed file. You can also search for
text in the HTML report window, and can open any of the files in the editor.

Tracing Generated Code Back to Your Simulink Model

The Real-Time Workshop code generator writes system/block identification
tags in the generated code. The tags are designed to help you identify the block
in your source model that generated a given line of code. Tags are located

in comment lines above each line of generated code, and are provided with
hyperlinks in HTML code generation reports that you can optionally generate.

The tag format is <system>/block_name, where

® system is either

= The string 'root', or

= A unique system number assigned by the Simulink engine
® block _name is the name of the block.

The following code shows a tag comment adjacent to a line of code generated
by a Gain block at the root level of the source model:

/* Gain: '<Root>/UnDeadGaini' */
rtb_UnDeadGaini_h = dead_gain_U.In1 *
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dead_gain_P.UnDeadGain1_Gain;

The following code shows a tag comment adjacent to a line of code generated
by a Gain block within a subsystem one level below the root level of the
source model:

/* Gain Block: <S1>/Gain */
dead_gain_B.tempO *= (dead_gain_P.s1_Gain_Gain);

In addition to the tags, the Real-Time Workshop code generator documents
the tags for each model in comments in the generated header file model .h.
The following code illustrates such a comment, generated from a source
model, foo, that has a subsystem Outer with a nested subsystem Inner:

/* Here is the system hierarchy for this model.

*

* <Root> : foo

* <S§1> : foo/OQuter
* <§2> : foo/Outer/Inner
*/

There are two ways to trace code back to subsystems, blocks, and parameters
in your model:

® Through HTML code generation reports by using the Help browser
* By typing the appropriate hilite system commands

When you are licensed for the Real-Time Workshop Embedded Coder product,
the HTML report for your model.c or model.cpp file displays hyperlinks

in “Regarding,” “Outport,” and other comment lines. Clicking such links in
comments causes the associated block or subsystem to be highlighted in

the model. For more information, see “HTML Code Generation Reports” in
Getting Started.

Using HTML reports is generally the fastest way to trace code back to the
model, but when you know what you are looking for you might achieve
the same result at the command line. To manually trace a tag back to the

generating block using the hilite system command,

1 Open the source model.
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2 Close any other model windows that are open.

3 Use the hilite system command to view the desired system and block.

As an example, consider the model foo mentioned above. If foo is open,

hilite_system('<S1>")

opens the subsystem Outer and

hilite_system('<S2>/Gain1')

opens the subsystem Outer and selects and highlights the Gain block Gain1
within that subsystem.
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Integrating Legacy and Custom Code
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In this section...

“Introduction” on page 2-150
“Block-Based Integration” on page 2-150

“Model or Target-Based Integration” on page 2-152

Introduction

The Real-Time Workshop product includes mechanisms for integrating
generated code with legacy or custom code. Legacy code is existing C or C++
hand code or code for environments that needs to be integrated with code
generated by the Real-Time Workshop software. Custom code can be legacy
code or any other user-specified lines of code that need to be included in the
Real-Time Workshop build process.

You can achieve code integration from either of two contexts. You can
integrate

® Code generated by the Real-Time Workshop software into an existing code
base for a larger system. For example, you might want to use generated
code as a plug-in function. For this type of integration, you should use the
Real-Time Workshop Embedded Coder product. The Real-Time Workshop
Embedded Coder documentation explains how to use entry points and
header files to interface your existing code with generated code.

* Existing code into code generated by the Real-Time Workshop software.
This type of integration can be either block based or model based.
“Block-Based Integration” on page 2-150 and “Model or Target-Based
Integration” on page 2-152 list available code integration mechanisms
based on various application requirements.

Block-Based Integration

The following table lists available block-based integration mechanisms based
on application requirements. The table also provides information on where
to find details on how to apply each mechanism.
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If You Need or Prefer to...

Consider Using...

For Details, See...

® Simulate and generate code
such that block behavior is the
same or unique for the two
environments.

¢ Develop a complete interface to
all Simulink block functions,
block memory, and block
capabilities.

® Use input and output ports
for interaction between and
placement with respect to other
blocks.

¢ Use Simulink parameters (for
example, run-time parameters).

® Apply code generation
optimizations, such as
expression folding and the
use of local block output ports.

¢ Add file and path information for
existing code into the Real-Time
Workshop build process.
An extensive, block-based
rtwmakecfg API is available.

¢ Control the location of generated
code through block placement.

e Use TLC library functions for
the block or overall model code.

e Maximize ease-of-use for model
designers.

User written
S-Function blocks

® “Integrating Existing C
Functions into Simulink
Models with the Legacy Code
Tool”

® “Automating the Generation
of Files for Fully Inlined
S-Functions Using Legacy
Code Tool” on page 10-25

e Chapter 10, “Writing
S-Functions for Real-Time
Workshop Code Generation”

¢ “Build Support for
S-Functions” on page 10-92
— information on specifying
additional dependencies for
the Real-Time Workshop build
process

¢ Target Language Compiler
documentation — information
on inlining S-functions

® Writing S-Functions
documentation
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If You Need or Prefer to...

Consider Using...

For Details, See...

Use a graphical user interface to
create S-Function blocks.

Specify build information
through a graphical user
interface.

S-Function Builder
block

Information on the S-Function
Builder block in the Simulink
documentation

Not affect simulation or
simulation-based targets,

such as S-function targets,
accelerated simulation targets,
and model reference simulation
targets.

Insert lines of code into functions
at the atomic system or model
level.

Minimize development effort by
just typing in lines of custom
code.

Real-Time Workshop
Custom Code blocks

Chapter 14, “Inserting Custom
Code Into Generated Code”
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S-Function blocks offer the most capable and flexible means of integrating
code and specifying additional build information. Their use in a model carries
the build information as well.

Model or Target-Based Integration

The following table lists available model or target-based integration
mechanisms based on application requirements. The table also provides
information on where to find details on how to apply each mechanism.
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If You Need or Prefer to...

Consider Using...

For Details, See...

Not affect simulation or
simulation-based targets, such
as S-function targets, accelerated
simulation targets, and model
reference simulation targets.

Add lines of custom code in the

generated model header or source
file.

Add lines of custom code to
generated initialization and
termination functions.

Specify the files and path to be
used for the Real-Time Workshop
build process.

Minimize development effort by
just typing in lines of custom code,
paths, or filenames.

Use a modeling approach;
include model information as
configuration parameters.

Custom Code pane of the
Configuration Parameters
dialog box

Chapter 2, “Code
Generation and the Build
Process”

Use a mechanism that affects all
model builds for a given target —
model and block independent.

Include paths, source file rules,
and libraries in the makefile.

Control the build process by
selecting a custom Real-Time
Workshop system target file.

Custom target template
makefile

Real-Time Workshop
Embedded Coder
documentation — details
on makefiles
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Note It is also possible to affect the Real-Time Workshop build process by
specifying libraries or sources in the Make command field on the Real-Time
Workshop pane of the Configuration Parameters dialog box. This approach
requires knowledge of the make variables used in a target template makefile
and is not generally recommended.

2-154



Relocating Code to Another Development Environment

Relocating Code to Another Development Environment

In this section...

“Introduction” on page 2-155

“Deciding on a Structure for the Zip File” on page 2-155
“Deciding on a Name for the Zip File” on page 2-156
“Packaging Model Code Files in a Zip File” on page 2-157
“Inspecting the Generated Zip File” on page 2-158
“Relocating and Unpacking the Zip File” on page 2-158
“Code Packaging Example” on page 2-158

“packNGo Function Limitations” on page 2-159

Introduction

If you need to relocate the static and generated code files for a model to
another development environment, such as a secure system or an integrated
development environment (IDE) that does not include MATLAB and Simulink
products, use the Real-Time Workshop pack-and-go utility. This utility

uses the tools for customizing the build process after code generation and a
packNGo function to find and package all files needed to build an executable
image. The files are packaged in a compressed file that you can relocate and
unpack using a standard zip utility.

To relocate a model’s code files,

1 Decide on a structure of the zip file.

2 Decide on a name for the zip file.

3 Package the model code files in the zip file.

4 Relocate and unpack the zip file.
Deciding on a Structure for the Zip File

Before you generate and package the files for a model build, decide whether
you want the files to be packaged in a flat or hierarchical directory structure.
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By default, the packNGo function packages all the necessary files in single,
flat directory structure. This is the simplest approach and might be the
optimal choice.

If... Then Use a...

You are relocating files to an IDE Single, flat directory structure
that does not use the generated

makefile or the code is not dependent

on the relative location of required

static files

The target development environment Hierarchical structure
must maintain the directory

structure of the source environment

because it uses the generated

makefile or the code is dependent on

the relative location of files

If you use a hierarchical structure, the packNGo function creates two levels of
zip files, a primary zip file, which in turn contains the following secondary
zip files:

® mlrFiles.zip — files in your matlabroot directory tree

® sDirFiles.zip — files in and under your build directory where you
initiated the model’s code generation

® otherFiles.zip — required files not in the matlabroot or start directory
trees

Paths for the secondary zip files are relative to the root directory of the
primary zip file, maintaining the source development directory structure.

Deciding on a Name for the Zip File

By default, the packNGo function names the primary zip file model.zip. You
have the option of specifying a different name. If you specify a file name
and omit the file type extension, the function appends .zip to the name you
specify.
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Packaging Model Code Files in a Zip File

You package model code files by using the PostCodeGenCommand configuration
parameter, packNGo function, and the model’s build information object. You
can set up the packaging operation to use

® A system generated build information object.

In this case, use set_param to set the configuration parameter
PostCodeGenCommand to an explicit call to the packNGo function before
generating the model code. For example:

set_param(bdroot, 'PostCodeGenCommand', 'packNGo(buildInfo);"');

This command instructs the Real-Time Workshop build process to evaluate
the call to packNGo, using the system generated build information object for
the currently selected model, after generating and writing the model’s code
to disk and before generating a makefile.

¢ A build information object that you construct programmatically, as
explained in “Customizing Post Code Generation Build Processing” on
page 2-139.

In this case, you might use other build information functions to selectively
include paths and files in the build information object that you then specify
with the packNGo function. For example:

myModelBuildInfo = RTW.BuildInfo;
addSourceFiles(myModelBuildInfo, {'testil.c' 'test2.c' 'driver.c'});

packNGo (myModelBuildInfo);

To change the default behavior of packNGo, see the following examples:

To... Specify...

Change the structure of the  packNGo(buildInfo, {'packType'
file packaging to hierarchical 'hierarchical'});
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To... Specify...

Rename the primary zip file packNGo (buildInfo, {'fileName'
'zippedsrcs'});

Change the structure of the  packNGo(buildInfo, {'packType'
file packaging to hierarchical 'hierarchical'...

and rename the primary zip 'fileName' 'zippedsrcs'});

file

Inspecting the Generated Zip File

Inspect the resulting zip file in your working directory on the source system
to verify that it is ready for relocation to the destination system. Depending
on the zip tool you use you might be able to open and inspect the file without
unpacking it. If you need to unpack the file and you packaged the model code
files as a hierarchical structure, you will need to unpack the primary and
secondary zip files. When you unpack the secondary zip files, relative paths of
all files are preserved.

Relocating and Unpacking the Zip File

Relocate the resulting zip file to the destination development environment
and unpack the file.

Code Packaging Example

The following example guides you through the steps for packaging code files
generated for the demo model rtwdemo_f14.

1 Set your working directory to a writable directory.
2 Open the model rtwdemo_f14 and save a copy to your working directory.
3 Enter the following command in the MATLAB Command Window:

set_param('rtwdemo_f14', 'PostCodeGenCommand',...
"packNGo(buildInfo, {''packType'' ''hierarchical''})');
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Note that it is necessary to double the single-quotes due to the nesting of
character arrays 'packType' and 'hierarchical' within the character
array that specifies the call to packNGo.

4 Generate code for the model.

5 Inspect the generated zip file, rtwdemo_f14.zip. The zip file contains the
two secondary zip files, mlrFiles.zip and sDirFiles.zip.

6 Inspect the zip files mlrFiles.zip and sDirFiles.zip.

7 Relocate the zip file to a destination environment and unpack it.

packNGo Function Limitations
The following limitations apply to use of the packNGo function:

¢ The function operates on source files, such as *.c, *.cpp, *.h files, only.
The function does not support compile flags, defines, or makefiles.

¢ Unnecessary files may be included. For example, the function includes all
S-function libraries in an all-or-nothing manner and all header files from
every include directory, even if they are not used.
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Generated Code Formats

¢ “Introduction” on page 3-2

® “Targets and Code Formats” on page 3-3

® “Choosing a Code Format for Your Application” on page 3-10
¢ “Real-Time Code Format” on page 3-14

¢ “Real-Time malloc Code Format” on page 3-16

¢ “S-Function Code Format” on page 3-18

¢ “Embedded Code Format” on page 3-18
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Introduction

The Real-Time Workshop product provides five different code formaits. Each
code format specifies a framework for code generation suited for specific
applications. The five code formats and corresponding application areas are

¢ Real-time — Rapid prototyping

¢ Real-time malloc — Rapid prototyping

¢ S-function — Creating proprietary S-function MEX-file objects, code
reuse, and speeding up your simulation

¢ Model reference — Creating MEX-file objects from entire models that
other models can use, sometimes in place of S-functions

¢ Embedded C — Deeply embedded systems

This chapter discusses the relationship of code formats to the available target
configurations, and factors you should consider when choosing a code format
and target. This chapter also summarizes the real-time, real-time malloc,
S-function, model referencing, and embedded C/C++ code formats.
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Targets and Code Formats

In this section...

“Introduction” on page 3-3

“Backwards Compatibility of Code Formats” on page 3-4

“How Symbols Are Formatted in Generated Code” on page 3-7

Introduction

A target (such as the GRT target) is an environment for generating and
building code intended for execution on a certain hardware or operating
system platform. A target is defined at the top level by a system target file,
which in turn invokes other target-specific files.

A code format (such as embedded or real-time) is one property of a target.
The code format controls decisions made at several points in the code
generation process. These include whether and how certain data structures
are generated (for example, SimStruct or rtModel), whether or not static

or dynamic memory allocation code is generated, and the calling interface
used for generated model functions. In general, the Embedded-C code format
is more efficient than the RealTime code format. Embedded-C code format
provides more compact data structures, a simpler calling interface, and static
memory allocation. These characteristics make the Embedded-C code format
the preferred choice for production code generation.

In prior releases, only the ERT target and targets derived from the ERT
target used the Embedded-C code format. Non-ERT targets used other code
formats (for example, RealTime or RealTimeMalloc).

In Release 14, the GRT target uses the Embedded-C code format for back end
code generation. This includes generation of both algorithmic model code
and supervisory timing and task scheduling code. The GRT target (and
derived targets) generates a RealTime code format wrapper around the
Embedded-C code. This wrapper provides a calling interface that is backward
compatible with existing GRT-based custom targets. The wrapper calls are
compatible with the main program module of the GRT target (grt_main.c

or grt_main.cpp). This use of wrapper calls incurs some calling overhead,;
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the pure Embedded-C calling interface generated by the ERT target is more
highly optimized.

For a description of the calling interface generated by the ERT target, see
“Data Structures, Code Modules, and Program Execution” in the Real-Time
Workshop Embedded Coder documentation. The calling interface generated
by the GRT target is described in Chapter 7, “Program Architecture”.

Code format unification simplifies the conversion of GRT-based custom targets
to ERT-based targets. See “Making GRT-Based Targets ERT-Compatible” on
page 3-21 for a discussion of target conversion issues.

Backwards Compatibility of Code Formats

Because GRT targets now use Embedded-C code format, existing applications
that depend on the RealTime code format’s calling interface could have
compatibility issues. To address this, a set of macros is generated (in model . h)
that maps Embedded-C data structures to the identifiers that RealTime code
format used. The following, which can be found in any model .h file created for
a GRT target, describes these identifier mappings:

/* Backward compatible GRT Identifiers */

#define rtB model_ B

#define BlockIO BlockIO_model

#define rtXdot model_ Xdot

#define StateDerivatives StateDerivatives_model
#define tXdis model Xdis

#define StateDisabled StateDisabled_model
#define rtY model_Y

#define ExternalOutputs ExternalOutputs_model
#define rtP model_ P

#define Parameters Parameters_model

Since the GRT target now uses the Embedded-C code format for back end code
generation, many Embedded-C optimizations are available to all Real-Time
Workshop users. In general, the GRT and ERT targets now have many
more common features, but the ERT target offers additional controls for
common features. The availability of features is now determined by licensing,
rather than being tied to code format. The following table compares features
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available with a Real-Time Workshop license with those available under a
Real-Time Workshop Embedded Coder license:

Comparison of Features Licensed with the Real-Time Workshop Product Versus the
Real-Time Workshop Embedded Coder Product

Real-Time Workshop

Feature Real-Time Workshop License Embedded Coder License
rtModel data Full rtModel structure generated. | rtModel is optimized for the
structure GRT variable declaration: model. Suppression of error status

rtModel_model model M_;

field, data logging fields, and in the
structure is optional. ERT variable
declaration:

RT_MODEL_model model M_;

Custom storage
classes (CSCs)

Code generation ignores CSCs;
objects are assigned a CSC default
to Auto storage class.

Code generation with CSCs is
supported.

HTML code
generation report

Basic HTML code generation
report

Enhanced report with additional
detail and hyperlinks to the model.

Symbol formatting

Symbols (for signals, parameters
and so on) are generated in
accordance with hard-coded
default.

Detailed control over generated
symbols.

User-defined
maximum identifier
length for generated
symbols

Supported

Supported

Generation of
terminate function

Always generated

Option to suppress terminate
function

Combined
output/update
function

Separate output/update functions
are generated.

Option to generate combined
output/update function

Optimized data
Initialization

Not available

Options to suppress generation of

unnecessary initialization code for
zero-valued memory, I/O ports, and
S0 on
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Comparison of Features Licensed with the Real-Time Workshop Product Versus the
Real-Time Workshop Embedded Coder Product (Continued)

Feature

Real-Time Workshop License

Real-Time Workshop
Embedded Coder License

Comments generation

Basic options to include or suppress
comment generation

Options to include Simulink block
descriptions, Stateflow object
descriptions, and Simulink data
object descriptions in comments

Module Packaging
Features (MPF)

Not supported

Extensive code customization
features. See the Real-Time
Workshop Embedded Coder
documentation.

Target-optimized
data types header file

Requires full tmwtypes.h header
file.

Generates optimized rtwtypes.h
header file, including only the
necessary definitions required by
the target.

User-defined types

User-defined types default to base
types in code generation

User defined data type aliases are
supported in code generation.

Simplified call
interface

Non-ERT targets default to GRT
interface.

ERT and ERT-based targets
generate simplified interface.

Rate grouping

Not supported

Supported

Auto-generation of
main program module

Not supported; static main
program module is provided.

Automated and customizable
generation of main program
module is supported. Static main
program also available.

MAT-file logging

No option to suppress MAT-file
logging data structures

Option to suppress MAT-file
logging data structures

Reusable
(multi-instance) code
generation with static
memory allocation

Not supported

Option to generate reusable code

Software constraint
options

Support for floating point, complex,
and nonfinite numbers is always
enabled.

Options to enable or disable
support for floating-point, complex,
and nonfinite number
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Comparison of Features Licensed with the Real-Time Workshop Product Versus the
Real-Time Workshop Embedded Coder Product (Continued)

Real-Time Workshop

Feature Real-Time Workshop License Embedded Coder License

Application life span | Defaults to inf User-specified; determines most
efficient word size for integer
timers.

Software-in-the-loop | Model reference simulation target | Additional SIL testing support

(SIL) testing can be used for SIL testing. by using auto-generation of
S-Function block

ANSI'-C/C++ code Supported Supported

generation

ISO8-C/C++ code Supported Supported

generation

GNUY-C/C++ code Supported Supported

generation

Generate scalar Not supported Supported

inlined parameters as
#DEFINE statements

MAT-file variable Supported Supported
name modifier

Data exchange: C Supported Supported
API, external mode,
ASAP2

How Symbols Are Formatted in Generated Code

The Real-Time Workshop code generator constructs identifiers automatically
for GRT targets. The symbols that are so constructed include those for

17. ANSI® is a registered trademark of the American National Standards Institute, Inc.
18. ISO%is a registered trademark of the International Organization for Standardization.

19. GNU%is a registered trademark of the Free Software Foundation.
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® Signals and parameters that have Auto storage class
® Subsystem function names that are not user defined

e All Stateflow names

Prior to Release 14, you could exercise these options (on the Configuration
Parameters dialog box Code appearance pane) to format identifiers:

* Prefix model name to global identifiers
¢ Include System Hierarchy Number in Identifiers

¢ Include data type acronym in identifier

These options have been removed from the Real-Time Workshop GUI and
replaced by a default symbol formatting specification. The components of a
generated symbol are

® The root model name, followed by

® The name of the generating object (signal, parameter, state, and so on),
followed by

® A unique name mangling string (if required)

The number of characters that any generated symbol can have is limited by
the Maximum identifier length parameter specified on the Symbols pane
of the Configuration Parameters dialog box. When there is a potential name
collision between two symbols, a name mangling string is generated. The
string has the minimum number of characters required to avoid the collision.
The other symbol components are then inserted. If the Maximum identifier
length parameter is not large enough to accommodate full expansions of
the other components, they are truncated. To avoid this outcome, it is good
practice to

® Avoid name collisions in general. One way to do this is to avoid using
default block names (for example, Gain1, Gain2...) when there are many
blocks of the same type in the model. Also, whenever possible, make
subsystems atomic and reusable.
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® Where possible, increase the Maximum identifier length to accommodate
the length of the symbols you expect to generate. The maximum length
you can specify is 256 characters.

Model Referencing Considerations

Within a model that uses model referencing, there can be no collisions
between the names of the constituent models. When you generate code from
a model that uses model referencing, the Maximum identifier length
parameter must be large enough to accommodate the root model name and
the name mangling string (if needed). A code generation error occurs if
Maximum identifier length is not large enough.

When a name conflict occurs between a symbol within the scope of a
higher-level model and a symbol within the scope of a referenced model, the
symbol from the referenced model is preserved. Name mangling is performed
on the symbol from the higher-level model.

The Real-Time Workshop Embedded Coder product provides a Symbol
format field that lets you control the formatting of generated symbols in
much greater detail. See “Code Generation Options and Optimizations” in the
Real-Time Workshop Embedded Coder documentation for more information.
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Choosing a Code Format for Your Application

Your choice of code format is the most important code generation option.
The code format specifies the overall framework of the generated code and
determines its style.

When you choose a target, you implicitly choose a code format. Typically, the
system target file will specify the code format by assigning the TLC variable
CodeFormat. The following example is from ert.tlc.

%sassign CodeFormat = "Embedded-C"

If the system target file does not assign CodeFormat, the default is RealTime
(as in grt.tlc).

If you are developing a custom target, you must consider which code format is
best for your application and assign CodeFormat accordingly.

Choose the RealTime or RealTime malloc code format for rapid prototyping.
If your application does not have significant restrictions in code size, memory
usage, or stack usage, you might want to continue using the generic real-time
(GRT) target throughout development.

For production deployment, and when your application demands that you
limit source code size, memory usage, or maintain a simple call structure,
the Embedded-C code format is appropriate. Consider using the Real-Time
Workshop Embedded Coder product, if you need added flexibility to configure
and optimize code.

Finally, you should choose the Model Reference or the S-function formats if
you are not concerned about RAM and ROM usage and want to

¢ Use a model as a component, for scalability

¢ (Create a proprietary S-function MEX-file object

¢ Interface the generated code using the S-function C API

® Speed up your simulation

The following table summarizes how different targets support applications:
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Application

Targets

Fixed- or variable-step

acceleration

RSIM, S-Function, Model Reference

Fixed-step real-time

deployment

GRT, GRT-Malloc, ERT, xPC Target,
Wind River Systems Tornado, Real-Time
Windows Target, Texas Instruments™

DSP, Freescale™ MPCbxx, ...

The following table summarizes the various options available for each
Real-Time Workshop code format/target, with the exceptions noted.

Features Supported by Real-Time Workshop Targets and Code Formats

Wind
River

Real- ERT Systems Other

time Shared| VxWorks | S- RT Supported
Feature GRT malloc| ERT| Library| /Tornado | Func | RSIM | Win| xPC | Targets'
Static X X X X X X
memory
allocation
Dynamic X X X X
memory
allocation
Continuous | X X X X X X X X
time
C/C++ MEX | X X X X X X X X
S-functions
(noninlined)
S-function X X X X X X X X X
(inlined)
Minimize X X2 X2 X
RAM/ROM
usage

3-11



3 Generated Code Formats

Features Supported by Real-Time Workshop Targets and Code Formats (Continued)

Feature

GRT|

Real-
time
malloc

ERT

ERT
Shared
Library

Wind
River
Systems
VxWorks
/Tornado

Func

RSIM

RT
Win

xPC

Other
Supported
Targets!

Supports
external
mode

X

X

Rapid
prototyping

Production
code

XZ

XZ

X3

Batch
parameter
tuning
and Monte
Carlo
methods

System-level
Simulator

Executes in
hard real
time

X4

X4

X4

X5

Non
real-time
executable
included

Multiple
instances
of model

XG

XG

X2, 6,7
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Features Supported by Real-Time Workshop Targets and Code Formats (Continued)

Wind
River
Real- ERT Systems Other
time Shared| VxWorks | S- RT Supported
Feature GRT malloc| ERT| Library| /Tornado | Func | RSIM | Win| xPC | Targets'
Supports X X
variable-step
solvers
Supports X X
SIL/PIL

IThe products that support other targets are: Embedded IDE Link CC, Target

Support Package TC2, Target Support Package TC6, Embedded IDE Link TS,

Target Support Package IC1, and Target Support Package FM5.

2Does not apply to GRT based targets. Applies only to an ERT based target.

3Except MPC5xx (algorithm export) targets

4The default GRT, GRT malloc, and ERT rt_main files emulate execution of
hard real time, and when explicitly connected to a real-time clock execute
in hard real time.

5Except MPCbxx (processor-in-the-loop) and MPC5xx (algorithm export)

targets

5You can generate code for multiple instances of a Stateflow chart or
subsystem containing a chart, except when the chart contains exported
graphical functions or the Stateflow model contains machine parented events.

You must enable Generate reusable code in the Configuration Parameters
Real-Time Workshop - Interface pane.

3-13



3 Generated Code Formats

3-14

Real-Time Code Format

In this section...

“Introduction” on page 3-14
“Unsupported Blocks” on page 3-14
“System Target Files” on page 3-15

“Template Makefiles” on page 3-15

Introduction

The real-time code format (corresponding to the generic real-time target) is
useful for rapid prototyping applications. If you want to generate real-time
code while iterating model parameters rapidly, you should begin the design
process with the generic real-time target. The real-time code format supports:

¢ Continuous time

¢ Continuous states

e C/C++ MEX S-functions (inlined and noninlined)

For more information on inlining S-functions, see Chapter 10, “Writing

S-Functions for Real-Time Workshop Code Generation”, and the Target
Language Compiler documentation.

The real-time code format declares memory statically, that is, at compile time.

Unsupported Blocks

The real-time format does not support the following built-in user-defined
blocks:

e MATLAB Fcn block (note that Fen blocks are supported)

e S-Function block — M-file S-functions, Fortran S-functions, or C/C++ MEX
S-functions that call into the MATLAB environment (Fen block calls are
supported)
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System Target Files

® grt.tlc - Generic Real-Time Target
® rsim.tlc - Rapid Simulation Target

® tornado.tlc - Tornado (VxWorks) Real-Time Target

Template Makefiles

® grt
= grt_lcc.tmf — Lcc compiler
= grt_unix.tmf — The Open Group UNIX host
= grt_vc.tmf — Microsoft Visual C++
= grt watc.tmf — Watcom C
® rsim
= rsim_lcc.tmf — Lcc compiler
= rsim_unix.tmf — UNIX host
= rsim_vc.tmf — Visual C++
= rsim watc.tmf — Watcom C
® tornado.tmf

® win_watc.tmf
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Real-Time malloc Code Format

In this section...

“Introduction” on page 3-16
“Unsupported Blocks” on page 3-16
“System Target Files” on page 3-17

“Template Makefiles” on page 3-17

Introduction

The real-time malloc code format (corresponding to the generic real-time
malloc target) is very similar to the real-time code format. The differences are

® Real-time malloc declares memory dynamically.

For blocks provided by The MathWorks, malloc calls are limited to the
model initialization code. Generated code is designed to be free from
memory leaks, provided that the model termination function is called.

® Real-time malloc allows you to deploy multiple instances of the same
model with each instance maintaining its own unique data.

® Real-time malloc allows you to combine multiple models together in
one executable. For example, to integrate two models into one larger
executable, real-time malloc maintains a unique instance of each of the
two models. If you do not use the real-time malloc format, the Real-Time
Workshop code generator will not necessarily create uniquely named data
structures for each model, potentially resulting in name clashes.

grt_malloc_main.c (or .cpp), the main routine for the generic

real-time malloc (grt_malloc) target, supports one model by default.

See “Combining Multiple Models” on page 17-49 for information on
modifying grt_malloc_main.c (or .cpp) to support multiple models.
grt_malloc_main.c and grt_malloc_main.cpp are located in the directory
matlabroot/rtw/c/grt_malloc.

Unsupported Blocks

The real-time malloc format does not support the following built-in blocks,
as shown:
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® Functions & Tables
= MATLAB Fcn block (note that Fen blocks are supported)

= S-Function block — M-file S-functions, Fortran S-functions, or C/C++
MEX S-functions that call into the MATLAB environment (Fen block
calls are supported)

System Target Files
e grt_malloc.tlc - Generic Real-Time Target with dynamic memory
allocation

® tornado.tlc - Tornado (VxWorks) Real-Time Target

Template Makefiles

® grt_malloc
= grt malloc_lcc.tmf — Lcc compiler
= grt malloc_unix.tmf — The Open Group UNIX host
= grt _malloc_vc.tmf — Microsoft Visual C++
= grt malloc_watc.tmf — Watcom C

® tornado.tmf
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S-Function Code Format

The S-function code format (corresponding to the S-function target) generates
code that conforms to the Simulink MEX S-function API. Using the S-function
target, you can build an S-function component and use it as an S-Function
block in another model.

The S-function code format is also used by the accelerated simulation target
to create the Accelerator MEX-file.

In general, you should not use the S-function code format in a system target
file. However, you might need to do special handling in your inlined TLC
files to account for this format. You can check the TLC variable CodeFormat
to see if the current target is a MEX-file. If CodeFormat = "S-Function"
and the TLC variable Accelerator is set to 1, the target is an accelerated
simulation MEX-file.

See Chapter 11, “S-Function Target”, for more information.

Embedded Code Format

In this section...

“Introduction” on page 3-18
“Using the Real-Time Model Data Structure” on page 3-19
“Making GRT-Based Targets ERT-Compatible” on page 3-21

Introduction
The Embedded-C code format corresponds to the Real-Time Workshop
Embedded Coder target (ERT), and targets derived from ERT. This code

format includes a number of memory-saving and performance optimizations.
See the Real-Time Workshop Embedded Coder documentation for details.
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Using the Real-Time Model Data Structure

The Embedded-C format uses the real-time model (RT_MODEL) data
structure. This structure is also referred to as the rtModel data structure.
You can access rtModel data by using a set of macros analogous to the
ssSetxxx and ssGetxxx macros that S-functions use to access SimStruct data,
including noninlined S-functions compiled by the Real-Time Workshop code
generator, and are documented in the Writing S-Functions documentation.

You need to use the set of macros rtmGetxxx and rtmSetxxx to access the
real-time model data structure, which is specific to the Real-Time Workshop
product. The rtModel is an optimized data structure that replaces SimStruct
as the top level data structure for a model. The rtmGetxxx and rtmSetxxx
macros are used in the generated code as well as from the main.c or main.cpp
module. If you are customizing main.c or main.cpp (either a static file or a
generated file), you need to use rtmGetxxx and rtmSetxxx instead of the
ssSetxxx and ssGetxxx macros.

Usage of rtmGetxxx and rtmSetxxx macros is the same as for the ssSetxxx
and ssGetxxx versions, except that you replace SimStruct S by real-time
model data structure rtM. The following table lists rtmGetxxx and rtmSetxxx
macros that are used in grt_main.c, grt_main.cpp, grt_malloc_main.c,

and grt_malloc_main.cpp.

Macros for Accessing the Real-Time Model Data Structure

rtm Macro Syntax

Description

rtmGetdX(rtm)

Get the derivatives of a block’s continuous
states

rtmGetOffsetTimePtr (RT_MDL rtM)

Return the pointer of vector that store all
sample time offset of the model associated
with rtM

rtmGetNumSampleTimes (RT_MDL rtM)

Get the number of sample times that a block
has

rtmGetPerTaskSampleHitsPtr (RT_MDL)

Return a pointer of NumSampleTime X
NumSampleTime matrix
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Macros for Accessing the Real-Time Model Data Structure (Continued)

rtm Macro Syntax

Description

rtmGetRTWExtModeInfo(RT_MDL rtM)

Return an external mode information data
structure of the model. This data structure is
used internally for external mode.

rtmGetRTWLogInfo (RT_MDL)

Return a data structure used by Real-Time
Workshop logging. Internal use.

rtmGetRTWRTModelMethodsInfo (RT_MDL)

Return a data structure of Real-Time
Workshop real-time model methods
information. Internal use.

rtmGetRTWSolverInfo (RT_MDL)

Return data structure containing solver
information of the model. Internal use.

rtmGetSampleHitPtr (RT_MDL)

Return a pointer of Sample Hit flag vector

rtmGetSampleTime (RT_MDL rtM, int TID)

Get a task’s sample time

rtmGetSampleTimePtr (RT_MDL rtM)

Get pointer to a task’s sample time

rtmGetSampleTimeTaskIDPtr (RT_MDL rtM)

Get pointer to a task’s ID

rtmGetSimTimeStep (RT_MDL)

Return simulation step type ID
(MINOR_TIME_STEP, MAJOR_TIME_STEP)

rtmGetStepSize (RT_MDL)

Return the fundamental step size of the model

rtmGetT (RT_MDL,t)

Get the current simulation time

rtmSetT (RT_MDL,t)

Set the time of the next sample hit

rtmGetTaskTime (RT_MDL,tid)

Get the current time for the current task

rtmGetTFinal (RT_MDL)

Get the simulation stop time

rtmSetTFinal (RT_MDL,finalT)

Set the simulation stop time

rtmGetTimingData (RT_MDL)

Return a data structure used by timing engine
of the model. Internal use.

rtmGetTPtr (RT_MDL)

Return a pointer of the current time

rtmGetTStart (RT_MDL)

Get the simulation start time

rtmIsContinuousTask (rtm)

Determine whether a task is continuous
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Macros for Accessing the Real-Time Model Data Structure (Continued)

rtm Macro Syntax Description

rtmIsMajorTimeStep(rtm) Determine whether the simulation is in a
major step

rtmIsSampleHit (RT_MDL,tid) Determine whether the sample time is hit

For additional details on usage, see “SimStruct Functions — Alphabetical
List” in the Writing S-Functions documentation.

Making GRT-Based Targets ERT-Compatible

If you have developed a GRT-based custom target, it is simple to make
your target ERT compatible. By doing so, you can take advantage of many
efficiencies.

There are several approaches to ERT compatibility:

If your installation does not include a Real-Time Workshop Embedded
Coder license, you can convert a GRT-based target as described in
“Converting Your Target to Use rtModel” on page 3-22. This enables your
custom target to support all current GRT features, including back end
Embedded-C code generation.

You can create an ERT-based target, but continue to use your customized
version of the grt_main.c or grt_main.cpp module. To do this, you can
configure the ERT target to generate a GRT-compatible calling interface,
as described in “Generating GRT Wrapper Code from the ERT target” on
page 3-23. This lets your target support the full ERT feature set, without
changing your GRT-based run-time interface. This approach requires that
your installation has a Real-Time Workshop Embedded Coder license.

If your installation includes a Real-Time Workshop Embedded Coder
license, you can reimplement your custom target as a completely ERT-based
target, including use of an ERT generated main program. This approach
lets your target support the full ERT feature set, without the overhead
caused by wrapper calls.
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Note If you intend to use custom storage classes (CSCs) with a custom
target, you must use an ERT-based target. See “Custom Storage Classes”
in the Real-Time Workshop Embedded Coder documentation for detailed
information on CSCs.

For details on how GRT targets are made call-compatible with previous
Real-Time Workshop product versions, see “The Real-Time Model Data
Structure” on page 7-31.

Converting Your Target to Use rtModel
The real-time model data structure (rtModel) encapsulates model-specific

information in a much more compact form than the SimStruct. Many
ERT-related efficiencies depend on generation of rtModel rather than
SimStruct, including

® Integer absolute and elapsed timing services

¢ Independent timers for asynchronous tasks

® Generation of improved C API code for signal and parameter monitoring

® Pruning the data structure to minimize its size (ERT-derived targets only)
To take advantage of such efficiencies, you must update your GRT-based
target to use the rtModel (unless you already did so for Release 13). The

conversion requires changes to your system target file, template makefile,
and main program module.

The following changes to the system target file and template makefile are
required to use rtModel instead of SimStruct:

¢ In the system target file, add the following global variable assignment:

%assign GenRTModel = TLC_TRUE

¢ In the template makefile, define the symbol USE_RTMODEL. See one of the
GRT template makefiles for an example.
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The following changes to your main program module (that is, your customized
version of grt_main.c or grt_main.cpp) are required to use rtModel instead
of SimStruct:

Include rtmodel.h instead of simstruc.h.

Since the rtModel data structure has a type that includes the model name,
define the following macros at the top of the main program file:

#define EXPAND_CONCAT (namel1,name2) namel ## name2
#define CONCAT (name1,name2) EXPAND_CONCAT (namel,name2)
#define RT_MODEL CONCAT (MODEL,_rtModel)

Change the extern declaration for the function that creates and initializes
the SimStruct to

extern RT_MODEL *MODEL (void);

Change the definitions of rt_CreateIntegrationData and
rt_UpdateContinuousStates to be as shown in the Release 14 version
of grt_main.c.

Change all function prototypes to have the argument 'RT_MODEL' instead
of the argument 'SimStruct'.

The prototypes for the functions rt_GetNextSampleHit,
rt_UpdateDiscreteTaskSampleHits, rt_UpdateContinuousStates,
rt_UpdateDiscreteEvents, rt_UpdateDiscreteTaskTime, and
rt_InitTimingEngine have changed. Change their names to use the prefix
rt_Siminstead of rt_ and then change the arguments you pass in to them.

See the Release 14 version of grt_main.c for the list of arguments passed
in to each function.

Modify all macros that refer to the SimStruct to now refer to the rtModel.
SimStruct macros begin with the prefix ss, whereas rtModel macros
begin with the prefix rtm. For example, change ssGetErrorStatus to
rtmGetErrorStatus.

Generating GRT Wrapper Code from the ERT target

The Real-Time Workshop Embedded Coder product supports the GRT
compatible call interface option. When this option is selected, the
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Real-Time Workshop Embedded Coder product generates model function
calls that are compatible with the main program module of the GRT target
(grt_main.c or grt_main.cpp). These calls act as wrappers that interface to
ERT (Embedded-C format) generated code.

This option provides a quick way to use ERT target features with a GRT-based
custom target that has a main program module based on grt_main.c or
grt_main.cpp.

See the “Code Generation Options and Optimizations” in the Real-Time
Workshop Embedded Coder documentation for detailed information on the
GRT compatible call interface option.
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Working with Referenced
Models

¢ “Nonvirtual Subsystem Code Generation” on page 4-2

® “Generating Code and Executables from Subsystems” on page 4-23

® “Generating Code for Model Referencing” on page 4-26

e “Sharing Utility Functions” on page 4-51

e “Supporting Shared Utility Directories in the Build Process” on page 4-57
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Nonvirtual Subsystem Code Generation

In this section...

“Introduction” on page 4-2
“Nonvirtual Subsystem Code Generation Options” on page 4-3
“Modularity of Subsystem Code” on page 4-14

“Code Reuse Limitations” on page 4-15

“Determining Why Subsystem Code Is Not Reused” on page 4-16

Introduction

The Real-Time Workshop product allows you to control how code is generated
for any nonvirtual subsystem. The categories of nonvirtual subsystems are:

e Conditionally executed subsystems: execution depends upon a control signal
or control block. These include triggered subsystems, enabled subsystems,
action and iterator subsystems, subsystems that are both triggered
and enabled, and function call subsystems. See “Creating Conditional
Subsystems” in the Simulink documentation for more information.

e Atomic subsystems: Any virtual subsystem can be declared atomic (and
therefore nonvirtual) by using the Treat as atomic unit option in the
Block Parameters dialog box.

Note You should declare virtual subsystems as atomic subsystems to ensure
consistent simulation and execution behavior for your model. If you generate
code for a virtual subsystem, the Real-Time Workshop software treats the
subsystem as atomic and generates the code accordingly. The resulting code
can change the execution behavior of your model, for example, by applying
algebraic loops, and introduce inconsistencies with the simulation behavior.

See “Systems and Subsystems” in the Simulink documentation, and run the
sl _subsys_semantics demo for more information on nonvirtual subsystems
and atomic subsystems.
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You can control the code generated from nonvirtual subsystems as follows:

® You can instruct the Real-Time Workshop code generator to generate
separate functions, within separate code files if desired, for selected
nonvirtual systems. You can control both the names of the functions and of
the code files generated from nonvirtual subsystems.

® You can cause multiple instances of a subsystem to generate reusable code,
that is, as a single reentrant function, instead of replicating the code for
each instance of a subsystem or each time it is called.

® You can generate inlined code from selected nonvirtual subsystems within
your model. When you inline a nonvirtual subsystem, a separate function
call is not generated for the subsystem.

Nonvirtual Subsystem Code Generation Options

For any nonvirtual subsystem, you can choose the following code generation
options from the Real-Time Workshop system code menu in the subsystem
Block parameters dialog box:

¢ Auto: This is the default option, and provides the greatest flexibility in
most situations. See “Auto Option” on page 4-4 below.

® Inline: This option explicitly directs the Real-Time Workshop code
generator to inline the subsystem unconditionally.

e Function: This option explicitly directs the Real-Time Workshop code
generator to generate a separate function with no arguments, and
(optionally), place the subsystem in a separate file. You can name the
generated function and file. As functions created with this option rely on
global data, they are not reentrant.

® Reusable function: Generates a function with arguments that allows
the subsystem’s code to be shared by other instances of it in the model.
To enable sharing, the Real-Time Workshop software must be able to
determine (by using checksums) that subsystems are identical. The
generated function will have arguments for block inputs and outputs
(rtB_*), continuous states (rtDW_*), parameters (rtP_*), and so on.
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Note You should not directly call reusable functions generated by the
Real-Time Workshop product. The call interface is subject to change.

The following sections discuss these options further.

Auto Option

The Auto option is the default, and is generally appropriate. Auto causes the
Real-Time Workshop code generator to inline the subsystem when there is
only one instance of it in the model. When multiple instances of a subsystem
exist, the Auto option results in a single copy of the function whenever
possible (as a reusable function). Otherwise, the result is as though you
selected Inline (except for function call subsystems with multiple callers,
which is handled as if you specified Function). Choose Inline to always
inline subsystem code, or Function when you specifically want to generate
a separate function without arguments for each instance, optionally in a
separate file.

Note When you want multiple instances of a subsystem to be represented
as one reusable function, you can designate each one of them as Auto or as
Reusable function. It is best to use one or the other, as using both creates
two reusable functions, one for each designation. The outcomes of these
choices differ only when reuse is not possible.

To use the Auto option,

1 Select the subsystem block. Then select Subsystem Parameters from
the Simulink model editor Edit menu. The Block Parameters dialog box
opens, as shown in the next figure.

Alternatively, you can open the Block Parameters dialog box by

e Shift-double-clicking the subsystem block

¢ Right-clicking the subsystem block and selecting Block parameters
from the menu
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2 If the subsystem is virtual, select Treat as atomic unit as shown in the
next figure. This makes the subsystem nonvirtual, and the Real-Time
Workshop system code option becomes enabled.

If the system is already nonvirtual, the Real-Time Workshop system

code option is already enabled.

3 Select Auto from the Real-Time Workshop system code menu as shown

in the figure below.

E! Function Block Parameters: AtomicSubsysl

—Subsyztem

|

Select the zettings for the subsystern block.

—Parameter

Readwrite permizsions: | Readwrite

MName of error callback function:

Permrit hierarchical resolution:l Al
¥ Treat as atomic unit
[~ Minimize algebraic loop occunences

S ample time (-1 for inherited]:

|1

Rieal-Time ‘Workshop system code:l Auta

ak LCancel |

Lpply

4 Click Apply and close the dialog box.

The border of the subsystem thickens, indicating that it is nonvirtual.
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Avuto Optimization for Special Cases. Rather than reverting to Inline,
the Auto option can optimize code in special situations in which identical
subsystems contain other identical subsystems, by both reusing and inlining
generated code. Suppose a model, such as the one shown in Reuse of
Identical Nested Subsystems with the Auto Option on page 4-6, contains
identical subsystems Al and A2. Al contains subsystem B1, and A2 contains
subsystem B2, which are themselves identical. In such cases, the Auto option
causes one function to be generated which is called for both Al and A2, and
this function contains one piece of inlined code to execute B1 and B2, ensuring
that the resulting code will run as efficiently as possible.

Speciol Cose Optimizotion:
When B1=B2 und A1=A2, selecting the Auto
option inlines cod e for B within cotle for function A

Al

O—h—b B1 |—~
O—»

—— ] B2 |—D

Az

Reuse of Identical Nested Subsystems with the Auto Option

Inline Option
As noted above, you can choose to inline subsystem code when the subsystem
1s nonvirtual (virtual subsystems are always inlined).

Exceptions to Inlining. There are certain cases in which the Real-Time
Workshop code generator does not inline a nonvirtual subsystem, even though
the Inline option is selected. These cases are

e [If the subsystem is a function-call subsystem that is called by a noninlined
S-function, the Inline option is ignored. Noninlined S-functions make such
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calls by using function pointers; therefore the function-call subsystem must
generate a function with all arguments present.

¢ In a feedback loop involving function-call subsystems, the Real-Time
Workshop code generator forces one of the subsystems to be generated as
a function instead of inlining it. The product selects the subsystem to be
generated as a function based on the order in which the subsystems are
sorted internally.

e [f a subsystem is called from an S-Function block that sets the option
SS_OPTION_FORCE_NONINLINED FCNCALL to TRUE, it is not inlined. This
might be the case when user-defined Asynchronous Interrupt blocks or Task
Synchronization blocks are required. Such blocks must be generated as
functions. The Asynchronous Interrupt and Task Synchronization blocks,
located in the VxWorks block library shipped with the Real-Time Workshop
product, use the SS_OPTION_FORCE_NONINLINED FCNCALL option.?°

To generate inlined subsystem code,

1 Select the subsystem block. Then select Subsystem Parameters from the
Simulink model editor Edit menu. The Block Parameters dialog box opens.
Alternatively, you can open the Block Parameters dialog box by
¢ Shift-double-clicking the subsystem block
® Right-clicking the subsystem block and selecting Block parameters

from the menu

2 If the subsystem is virtual, select Treat as atomic unit as shown in
the next figure. This makes the subsystem atomic, and the Real-Time
Workshop system code menu becomes enabled.

If the system is already nonvirtual, the Real-Time Workshop system
code menu is already enabled.

3 Select Inline from the Real-Time Workshop system code menu as
shown in the figure below.

20. VxWorks® is a registered trademark of Wind River® Systems, Inc.

4-7



4 Building Subsystems and Working with Referenced Models

4-8

[=]Function Block Parameters: AtomicSubsysi

—Subzyztem

Select the settings for the subsystem block.

Fiead/wirite permlssmns:l Feadwrite LI

Mame of eror callback function:

Permit hierarchical resolution:l All ;I

¥ Treat as atomic unit
[~ Minimize algebraic lnop occunences

Sample time [-1 for inherited):

|

Rieal-Time Workshop system code:l Inline ;I

ak LCancel | Help | Apply

4 Click Apply and close the dialog box.

/* Atomic SubSystem Block: <Root>/AtomicSubsysi */

Function Option
Choosing the Function or Reusable function option lets you direct the
Real-Time Workshop code generator to generate a separate function and
optionally a separate file for the subsystem. When you select the Function
option, two additional options are enabled:

control the naming of the generated function.

When you generate code from your model, the Real-Time Workshop code
generator writes inline code within model.c or model.cpp (or in its parent
system’s source file) to perform subsystem computations. You can identify
this code by system/block identification tags, such as the following.

See “Tracing Generated Code Back to Your Simulink Model” on page 2-147 for
more information on system/block identification tags.

¢ The Real-Time Workshop function name options menu lets you




Nonvirtual Subsystem Code Generation

¢ The Real-Time Workshop file name options menu lets you control the
naming of the generated file (if a separate file is generated and you select
the User specified option).

The figure below shows the Block Parameters dialog box with the Function
option selected, with Real-Time Workshop file name options set to User
specified, and with a name specified for the generated file.

=] Function Block Parameters: AtomicSubsysi x|

—Subzyztem

Select the zettings for the subsystem block.

—Parameters

¥ Show port labels

I Readwrite ;I

Mame of error callback function:

Permit hierarchical resolution:l All LI

[ Treat as atomic unit
[~ Minimize algebraic loop occunences

S ample time (-1 for inherited]:

|1

Rieal-Time Workshop system code:l Function ;I
Fieal-Time Workshop function name options:| Auta ;I
Rieal-Time Workshop file name options:l User specified LI
Rieal-Time Workshop file name [ho extengion):
I.&-Separate_FiIe

g I Cancel | Lpply |

Subsystem Function Code Generation Option with User-Specified File Name

Real-Time Workshop Function Name Options Menu. This menu offers
the following choices, but the resulting identifiers are also affected by which
General code appearance options are in effect for the model:

® Auto: By default, the Real-Time Workshop code generator assigns a unique
function name using the default naming convention: model subsystem(),
where subsystem is the name of the subsystem (or that of an identical one
when code is being reused).
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® Use subsystem name: the Real-Time Workshop code generator uses the
subsystem name as the function name.

Note When a subsystem is a library block, the Use subsystem name option
causes its function identifier (and file name, see below) to be that of the
library block, regardless of the names used for that subsystem in the model.

® User specified: When this option is selected, the Real-Time Workshop
function name field is enabled. Enter any legal C or C++ function name
(which must be unique).

Real-Time Workshop File Name Options Menu. This menu offers the
following choices:

® Use subsystem name: the Real-Time Workshop software generates a
separate file, using the subsystem (or library block) name as the file name.

Note When a subsystem’s Real-Time Workshop file name options is set
to Use subsystem name, the subsystem file name is mangled if the model
contains Model blocks, or if a model reference target is being generated for
the model. In these situations, the file name for the subsystem consists of
the subsystem name prefixed by the model name.

e Use function name: the Real-Time Workshop software generates a
separate file, using the function name (as specified by the Real-Time
Workshop function name options) as the file name.

® User specified: When this option is selected, the Real-Time Workshop
file name (no extension) text entry field is enabled. The Real-Time
Workshop software generates a separate file, using the name you enter as
the file name. Enter any file name, but do not include the .c or .cpp (or
any other) extension. This file name need not be unique.
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Note While a subsystem source file name need not be unique, you must
avoid giving nonunique names that result in cyclic dependencies (for
example, sys_a.h includes sys_b.h, sys b.h includes sys_c.h, and
sys_c.h includes sys_a.h).

e Auto: The Real-Time Workshop software does not generate a separate file
for the subsystem. Code generated from the subsystem is generated within
the code module generated from the subsystem’s parent system. If the
subsystem’s parent is the model itself, code generated from the subsystem
1s generated within model.c or model.cpp.

To generate both a separate subsystem function and a separate file,

1 Select the subsystem block. Then select Subsystem Parameters from the
Simulink model editor Edit menu, to open the Block Parameters dialog box.

Alternatively, you can open the Block Parameters dialog box by
¢ Shift-double-clicking the subsystem block
® Right-clicking the subsystem block and selecting Block parameters

from the menu.

2 If the subsystem is virtual, select Treat as atomic unit. The Real-Time
Workshop system code menu becomes enabled.

If the system is already nonvirtual, the Real-Time Workshop system
code menu is already enabled.

3 Select Function from the Real-Time Workshop system code menu as
shown in Subsystem Function Code Generation Option with User-Specified
File Name on page 4-9.

4 Set the function name, using the Real-Time Workshop function name
options described in “Real-Time Workshop Function Name Options Menu”
on page 4-9.

5 Set the file name, using any Real-Time Workshop file name option

other than Auto (options are described in “Real-Time Workshop File Name
Options Menu” on page 4-10).
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Subsystem Function Code Generation Option with User-Specified File
Name on page 4-9 shows the use of the User Specified file name option.

6 Click Apply and close the dialog box.

Reusable Function Option

The difference between functions and reusable functions is that the latter
have data passed to them as arguments (enabling them to be reentrant),
while the former communicate by using global data. Choosing the Reusable
function option directs the Real-Time Workshop code generator to generate
a single function (optionally in a separate file) for the subsystem, and to call
that code for each identical subsystem in the model, if possible.

Note The Reusable function option yields code that is called from multiple
sites (hence reused) only when the Auto option would also do so. The
difference between these options’ behavior is that when reuse is not possible,
selecting Auto yields inlined code (or if circumstances prohibit inlining,
creates a function without arguments), while choosing Reusable function
yields a separate function (with arguments) that is called from only one site.

For a summary of code reuse limitations, see “Code Reuse Limitations” on
page 4-15.

Generating Reusable Code from Stateflow Charts. You can generate
reusable code from a Stateflow chart, or from a subsystem containing a chart,
except in the following cases:

¢ The Stateflow chart contains exported graphical functions.

e The Stateflow model contains machine parented events.

Generating Reusable Code for Subsystems Containing S-Function
Blocks. Regarding S-Function blocks, there are several requirements that
need to be met in order for subsystems containing them to be reused. See
“Writing S-Functions That Support Code Reuse” on page 10-81 for the list
of requirements.
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When you select the Reusable function option, two additional options are
enabled, Real-Time Workshop function name options and Real-Time
Workshop file name options. See the explanation of “Function Option” on
page 4-8 for descriptions of these options and fields. If you use these fields to
enter a function name and/or a file name, you must specify exactly the same
function name and file name for each instance of identical subsystems for the
Real-Time Workshop software to be able to reuse the subsystem code.

=] Function Block Parameters: AtomicSubsysi x|

—Subzyztem

Select the zettings for the subsystem block.

—Parameter
wis
ReadMwiite permissions:l Feadwrite ;I

Mame of error callback function:

Pt hierarchical resolution:l Al |

v Treat as atomic unit
[~ Minimize algebraic loop occunences

S ample time (-1 for inherited]:

|1

Rieal-Time ‘Workshop system code:l Feusable function ;I
Fieal-Time Workshop function name options:l Use subsystem name ;I
Rieal-Time Workshop file name options:l Auta ;I

ok I LCancel | Help | Apply |

Subsystem Reusable Function Code Generation Option

To request that the Real-Time Workshop software generate reusable
subsystem code,

1 Select the subsystem block. Then select Subsystem Parameters from the
Simulink model editor Edit menu. The Block Parameters dialog box opens.

Alternatively, you can open the Block Parameters dialog box by:
e Shift-double-clicking the subsystem block

¢ Right-clicking the subsystem block and selecting Block parameters
from the menu.
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2 If the subsystem is virtual, select Treat as atomic unit. The Real-Time
Workshop system code menu becomes enabled.

If the system is already nonvirtual, the Real-Time Workshop system
code menu is already enabled.

3 Select Reusable function from the Real-Time Workshop system code
menu as shown in Subsystem Reusable Function Code Generation Option
on page 4-13.

4 If you want to give the function a specific name, set the function name,
using the Real-Time Workshop function name options described in
“Real-Time Workshop Function Name Options Menu” on page 4-9.

If you do not choose the Real-Time Workshop function name Auto
option, and want code to be reused, you must assign exactly the same
function name to all other subsystem blocks that you want to share this
code.

5 If you want to direct the generated code to a specific file, set the file name
using any Real-Time Workshop file name option other than Auto
(options are described in “Real-Time Workshop File Name Options Menu”
on page 4-10).

In order for code to be reused, you must repeat this step for all other
subsystem blocks that you want to share this code, using the same file
name.

6 Click Apply and close the dialog box.

Modularity of Subsystem Code

Code generated from nonvirtual subsystems, when written to separate

files, is not completely independent of the generating model. For example,
subsystem code may reference global data structures of the model. Each
subsystem code file contains appropriate include directives and comments
explaining the dependencies. the Real-Time Workshop software checks for
cyclic file dependencies and warns about them at build time. For descriptions
of how generated code is packaged, see “Generated Source Files and File
Dependencies” on page 2-107.
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Code Reuse Limitations

The Real-Time Workshop software uses a checksum to determine whether
subsystems are identical. You cannot reuse subsystem code if:

e Multiple ports of a subsystem share the same source.

¢ A port used by multiple instances of a subsystem has different sample
times, data types, complexity, frame status, or dimensions across the
instances.

® The output of a subsystem is marked as a global signal.

e Subsystems contain identical blocks with different names or parameter
settings.

¢ The output of a subsystem is connected to a Merge block, and the output of
the Merge block is a custom storage class that is implemented in the C code
as memory that is nonaddressable (for example, BitField).

® The input of a subsystem is nonscalar and has a custom storage class that
is implemented in the C code as memory that is nonaddressable.

* A masked subsystem has a parameter that is nonscalar and has a custom
storage class that is implemented in the C code as memory that is
nonaddressable.

Some of these situations can arise even when you copy and paste subsystems
within or between models or you construct them manually such that they are
identical. If you select Reusable function and the Real-Time Workshop
software determines that code for a subsystem cannot be reused, it generates
a separate function that is not reused. The code generation report can show
that the separate function is reusable, even if it is used by only one subsystem.
If you prefer that subsystem code be inlined in such circumstances rather
than deployed as functions, you choose Auto for the Real-Time Workshop
system code option.

Use of the following blocks in a subsystem can also prevent its code from
being reused:

® Scope blocks (with data logging enabled)
e S-Function blocks that fail to meet certain criteria

® To File blocks (with data logging enabled)
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® To Workspace blocks (with data logging enabled)

Determining Why Subsystem Code Is Not Reused

Due to the limitations noted in “Code Reuse Limitations” on page 4-15, the
Real-Time Workshop software might not reuse generated code as you expect.
To determine why code generated for a subsystem is not reused,

1 Review the Subsystems section of the HTML code generation report

2 If you cannot determine why based on the report, compare subsystem
checksum data

Reviewing the Subsystems Section of the HTML Code
Generation Report

If you determine that the Real-Time Workshop code generator does not
generate code for a subsystem as reusable code and you specified the
subsystem as reusable, examine the Subsystems section of the HTML code
generation report (see “Configuring Report Generation” on page 2-64). The
Subsystems section contains

e A table that summarizes how nonvirtual subsystems were converted to
generated code

¢ Diagnostic information that explains why the contents of some subsystems
were not generated as reusable code

In addition to diagnosing exceptions, the Subsections section also indicates
the mapping of each noninlined subsystem in the model to functions or
reused functions in the generated code. For an example, open and build the
rtwdemo_atomic demo model.

Comparing Subsystem Checksum Data

If the HTML code generation report indicates that no code reuse exceptions
occurred and code for a subsystem you expect to be reused is not reused,
you can determine why by accessing and comparing subsystem checksum
data. The Real-Time Workshop software determines whether subsystems
are identical by comparing subsystem checksums, as noted in “Code Reuse
Limitations” on page 4-15.
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Consider the demo model, rtwdemo_ssreuse.

in outt | ——»{ 1
(2 In2 Out1
In2 551
In1
out1
In2 out2
552

SS1 and SS2 are instances of the same subsystem, and in both instances
the subsystem parameter Real-Time Workshop system code is set to
Reusable function.

The following example demonstrates how to use the method
Simulink.SubSystem.getChecksum to get the checksum for a subsystem and
compare the results to determine why code is not reused.

1 Open the model rtwdemo_ssreuse and save a copy of the demo in a
directory where you have write access.

2 Select subsystem SS1 in the model window and in the command window
enter

SS1 = gcb;

3 Select subsystem SS2 in the model window and in the command window
enter

SS2 = gcb;

4 Use the method Simulink.SubSystem.getChecksum to get the checksum
for each subsystem. This method returns two output values: the checksum
value and details on the input used to compute the checksum.

[chksum1, chksum1_details] =
Simulink.SubSystem.getChecksum(SS1);
[chksum2, chksum2_details] = ...
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Simulink.SubSystem.getChecksum(SS2);

5 Compare the two checksum values. They should be equal based on the
subsystem configurations.

isequal(chksumi1, chksum2)
ans =
1

6 To see how you can use Simulink.SubSystem.getChecksum to determine
why the checksums of two subsystems differ, change the data type mode of
the output port of SS1 such that it differs from that of SS2.

a Look under the mask of SS1 by right-clicking the subsystem and
selecting Look Under Mask in the context menu. A block diagram of the
subsystem appears.

b Double click the Lookup Table block to open the Block Parameters dialog
box.

¢ Click Signal Data Types.
d Select int8 for Qutput data type mode and click OK.

7 Get the checksum for SS1 again and compare the checksums for the two
subsystems again. This time, the checksums should not be equal.

[chksum1, chksumi_details] = ...
Simulink.SubSystem.getChecksum(SS1);
isequal(chksum1, chksum2)
ans =

0

8 After you determine that the checksums are different, find out why. The
Simulink engine uses information, such as signal data types, some block
parameter values, and block connectivity information, to compute the
checksums. To determine why checksums are different, you compare the
data used to compute the checksum values. You can get this information
from the second value returned by Simulink.SubSystem.getChecksum,
which 1s a structure array with four fields.

Look at the structure chksumi1_details.
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chksum1_details

chksum1_details =
ContentsChecksum: [1x1 struct]
InterfaceChecksum: [1x1 struct]
ContentsChecksumItems: [221x1 struct]
InterfaceChecksumItems: [91x1 struct]

ContentsChecksum and InterfaceChecksum are component
checksums of the subsystem checksum. The remaining two fields
ContentsChecksumItems and InterfaceChecksumItems contain the
checksum details.

9 Determine whether a difference exists in the subsystem contents, interface,
or both. For example:

isequal(chksumi1_details.ContentsChecksum.Value,...
chksum2_details.ContentsChecksum.Value)
ans =
0
isequal(chksumi1_details.InterfaceChecksum.Value,...
chksum2_details.InterfaceChecksum.Value)
ans =
0

In this case, differences exist in both the contents and interface.
10 Write a script like the following to find the differences.

idxForCDiffs=[];
for idx = 1:length(chksumi_details.ContentsChecksumItems)
if (~strcmp(chksumi_details.ContentsChecksumItems(idx).Identifier,
chksum2_details.ContentsChecksumItems(idx).Identifier))
disp(['Identifiers different for contents item ', num2str(idx)]);
idxForCDiffs=[idxForCDiffs, idx];
end
if (ischar(chksumi_details.ContentsChecksumItems(idx).Value))
if (~strcmp(chksumi_details.ContentsChecksumItems(idx).Value, ...
chksum2_details.ContentsChecksumItems(idx).Value))
disp(['String values different for contents item ', num2str(idx)]);

idxForCDiffs=[idxForCDiffs, idx];
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end

end

if (isnumeric(chksumi_details.ContentsChecksumItems(idx).Value))
if (chksumi_details.ContentsChecksumItems(idx).Value ~= ...

chksum2_details.ContentsChecksumItems(idx).Value)

disp(['Numeric values different for contents item ', num2str(idx)]);
idxForCDiffs=[idxForCDiffs, idx];
end

end

end

idxForIDiffs=[];
for idx = 1:length(chksumi1_details.InterfaceChecksumItems)
if (~strcmp(chksumi_details.InterfaceChecksumItems(idx).Identifier,
chksum2_details.InterfaceChecksumItems(idx).Identifier))

disp(['Identifiers different for interface item ', num2str(idx)]);
idxForIDiffs=[idxForIDiffs, idx];

end

if (ischar(chksumi_details.InterfaceChecksumItems(idx).Value))
if (~strcmp(chksumi_details.InterfaceChecksumItems(idx).Value,

chksum2_details.InterfaceChecksumItems(idx).Value))

disp(['String values different for interface item ', num2str(idx)]);
idxForIDiffs=[idxForIDiffs, idx];
end

end

if (isnumeric(chksumi_details.InterfaceChecksumItems(idx).Value))
if (chksumi_details.InterfaceChecksumItems(idx).Value ~= ...

chksum2_details.InterfaceChecksumItems(idx).Value)

disp(['Numeric values different for interface item ', num2str(idx)]);
idxForIDiffs=[idxForIDiffs, idx];
end

end

end

11 Run the script. The following example assumes you named the script
check_details.

check_details
String values different for contents item 64
String values different for contents item 75



Nonvirtual Subsystem Code Generation

String values different for contents item 81
String values different for interface item 46

The results indicate that differences exist for index items 64, 75, and 81 in
the subsystem contents and for item 46 in the subsystem interfaces.

12 Use the returned index values to get the handle , identifier, and value
details for each difference found.

chksumi1_details.ContentsChecksumItems (64)
ans =
Handle: 'my_ssreuse/SS1/Lookup Table Outputi'
Identifier: 'CompiledPortAliasedThruDataType'
Value: 'int8'
chksum2_details.ContentsChecksumItems (64)
ans =
Handle: 'my_ssreuse/SS2/Lookup Table Outputi'
Identifier: 'CompiledPortAliasedThruDataType'
Value: 'double'
chksumi1_details.ContentsChecksumItems(75)
ans =
Handle: 'my_ssreuse/SS1/Lookup Table'
Identifier: 'RunTimeParameter{'OutputValues'}.DataType'
Value: 'int8'
chksum2_details.ContentsChecksumItems(75)
ans =
Handle: 'my_ssreuse/SS2/Lookup Table'
Identifier: 'RunTimeParameter{'OutputValues'}.DataType'
Value: 'double'
chksumi1_details.ContentsChecksumItems(81)
ans =
Handle: 'my_ssreuse/SS1/Lookup Table'
Identifier: 'OutDataTypeMode'
Value: 'int8'
chksum2_details.ContentsChecksumItems(81)
ans =
Handle: 'my_ssreuse/SS2/Lookup Table'
Identifier: 'OutDataTypeMode'
Value: 'Same as input'
chksum1_details.InterfaceChecksumItems(46)
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ans =
Handle: 'my ssreuse/SS1'
Identifier: 'CanonicalParameter(1).DataType'
Value: 'int8'
chksum2_details.InterfaceChecksumItems(46)
ans =
Handle: 'my ssreuse/SS2'
Identifier: 'CanonicalParameter(1).DataType'
Value: 'double'

As expected, the details identify the Lookup Table block and data type
parameters as areas on which to focus for debugging a subsystem reuse
issue.

13 Correct the problem by changing the output data type mode for the
subsystems such that they match.
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Generating Code and Executables from Subsystems

The Real-Time Workshop software can generate code and build an executable
from any subsystem within a model. The code generation and build process
uses the code generation and build parameters of the root model.

To generate code and build an executable from a subsystem,

1 Set up the desired code generation and build parameters in the
Configuration Parameters dialog box, just as you would for code generation
from a model.

2 Select the desired subsystem block.

3 Right-click the subsystem block and select Build Subsystem from the
Real-Time Workshop submenu of the subsystem block’s context menu.

Note When you right-click build a subsystem that includes an Outport
block for which the signal specification Specify properties via bus
object is selected, Real Time Workshop requires that you set the Signal
label mismatch option on the Diagnostics > Connectivity pane of the
Configuration Parameters dialog box for the parent model to error. You
need to address any errors that occur by properly setting signal labels.

Alternatively, you can select Build Subsystem from the Real-Time
Workshop submenu of the Tools menu. This menu item is enabled when
a subsystem is selected in the current model.

Note If the model is operating in external mode when you select Build
Subsystem, the Real-Time Workshop build process automatically turns off
external mode for the duration of the build, then restores external mode
upon its completion.
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4 The Build Subsystem window opens. This window displays a list of the
subsystem parameters. The upper pane displays the name, class, and
storage class of each variable (or data object) that is referenced as a block
parameter in the subsystem. When you select a parameter in the upper
pane, the lower pane shows all the blocks that reference the parameter and
the parent system of each such block.

The StorageClass column contains a popup menu for each row. The menu
lets you set the storage class of any parameter or inline the parameter. To
inline a parameter, select the Inline option from the menu. To declare
a parameter to be tunable, set the storage class to any value other than

Inline.

<) Build code for Subsystem: Gain (O] x]
~Picktunahble parameters
Variahle Name Clags StorageClass
@ K ABAP2 Parameter || SimulinkGlakal (1
@ K2 Simulink.Parameter || INlined I
SimulinkGlohal w | |
mwmmm o
| [ =l
rBlocks using selected variable: 'K3*
Block Parent
& Gain2 gainiGain
Build Cancel Help
Status
’7 Selecttunahle parameters and click Build

In the previous figure, the parameter K2 is inlined, while the other
parameters are tunable and have various storage classes.

See “Parameter Storage, Interfacing, and Tuning” on page 5-2 and
“Simulink Data Objects and Code Generation” on page 5-46 for more
information on tunable and inlined parameters and storage classes.

5 After selecting tunable parameters, click the Build button. This initiates
the code generation and build process.
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6 The build process displays status messages in the MATLAB Command
Window. When the build completes, the generated executable is in your
working directory. The name of the generated executable is subsystem.exe
(on PC platforms) or subsystem (on The Open Group UNIX platforms),
where subsystem is the name of the source subsystem block.

The generated code is in a build subdirectory, named
subsystem_target_rtw, where subsystem is the name of the
source subsystem block and target is the name of the target configuration.

When you generate code for a subsystem, you can generate an S-function by

selecting Tools > Real-Time Workshop > Generate S-function, or you can
use a right-click subsystem build. See “Automated S-Function Generation” on
page 11-14 and “Automatic S-Function Wrapper Generation” for more details.
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Generating Code for Model Referencing

In this section...

“Introduction” on page 4-26

“Overview of Referenced Model Code Generation” on page 4-26
“Project Directory Structure for Model Reference Targets” on page 4-28
“Building Model Reference Targets” on page 4-29

“Real-Time Workshop Model Referencing Requirements” on page 4-30
“Storage Classes for Signals Used with Model Blocks” on page 4-37
“Inherited Sample Time for Referenced Models” on page 4-41
“Reusable Code and Referenced Models” on page 4-42

“Customizing the Library File Suffix, Including the File Type Extension”
on page 4-46

“Real-Time Workshop Model Referencing Limitations” on page 4-46

Introduction

This section describes model referencing considerations that apply specifically
to code generation by the Real-Time Workshop software with GRT and ERT
system targets. This section assumes that you understand referenced models
and their terminology and requirements, as described in “Referencing a
Model”. This section does not repeat information that appears in that chapter.

Overview of Referenced Model Code Generation

When generating code for a referenced model hierarchy, the Real-Time
Workshop software generates a stand-alone executable for the top model, and
a library module called a model reference target for each referenced model.
When the code executes, the top executable invokes the model reference
targets as needed to compute the referenced model outputs. Model reference
targets are sometimes called Real-Time Workshop targets.

Be careful not to confuse a model reference target (Real-Time Workshop
target) with any of these other types of targets:
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e Hardware target — A platform for which the Real-Time Workshop software
generates code

e System target — A file that tells the Real-Time Workshop software how to
generate code for particular purpose

e Rapid Simulation target (RSim) — A system target file supplied with the
Real-Time Workshop product

® Simulation target — A MEX-file that implements a referenced model that
executes with Simulink® Accelerator™ software

The Real-Time Workshop code generator places the code for the top model of a
hierarchy in the current working directory, and the code for submodels in a
directory named slprj within the current working directory. Subdirectories
in slprj provide separate places for different types of files. See “Project
Directory Structure for Model Reference Targets” on page 4-28 for details.

By default, the product uses incremental code generation. When generating
code, it compares the date, and optionally, the structure of referenced
model files with the generated code files to determine whether it is
necessary to regenerate model reference targets. You can also force or
prevent code generation by using a diagnostic setting Configuration
Parameters > Model Referencing > Rebuild options.

In addition to incremental code generation, the Real-Time Workshop software
uses incremental loading. The code for a referenced model is not loaded into
memory until the code for its parent model executes and needs the outputs
of the referenced model. The product then loads the referenced model target
and executes. Once loaded, the target remains in memory until it is no longer
needed.

Most code generation considerations are the same whether or not a model
includes any referenced models: the Real-Time Workshop code generator
handles the details automatically insofar as possible. This chapter describes
topics that you may need to consider when generating code for a model
reference hierarchy.

Custom targets must declare themselves to be model reference compliant if

they need to support Model blocks. See “Supporting Optional Features” for
details.
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Referenced Model Code Generation Tutorial

You can get hands-on experience with creating referenced models and
generating code for them by working through the model reference tutorial.
See “Generating Code for a Referenced Model”.

Project Directory Structure for Model Reference
Targets

Code for models referenced by using Model blocks is generated in project
directories within the current working directory. The top-level project
directory is always named /slprj. The next level within slprj contains
parallel build area subdirectories.

The following table lists principal project directories and files. In the paths
listed, model is the name of the model being used as a referenced model,
and target is the system target file acronym (for example, grt, ert, rsim,
and so on).

Directories and Files Description

slprj/sim/model/

slprj/sim/model /tmwinternal

Simulation target files for referenced
models

MAT-files used during code generation

slprj/target/model/referenced_model_includes Header files from models referenced by this

mndal

slprj/target/model Model reference target files

slprj/target/model/tmwinternal

MAT-files used during code generation

slprj/sl proj.tmw Marker file

slprj/target/_sharedutils

slprj/sim/_sharedutils

Utility functions for model reference
targets, shared across models

Utility functions for simulation targets,
shared across models

If you are building code for more than one referenced model within the same
working directory, model reference files for all such models are added to the
existing slprj directory.
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Building Model Reference Targets

By default, the Simulink engine rebuilds simulation targets as needed before

the Real-Time Workshop software generates model reference targets. You can
change the rebuild criteria or specify that the engine always or never rebuilds
targets. See “Rebuild options” for details.

The Real-Time Workshop software generates a model reference target directly
from the Simulink model. The product automatically generates or regenerates
model reference targets as needed.

You can command the Simulink and Real-Time Workshop products to
generate a simulation target for an Accelerator mode referenced model, and a
model reference target for any referenced model, by executing the slbuild
command with appropriate arguments in the MATLAB Command Window.

The Real-Time Workshop software generates only one model reference target
for all instances of a referenced model. See “Reusable Code and Referenced
Models” on page 4-42 for details.

Reducing Change Checking Time

You can reduce the time that the Simulink and Real-Time Workshop products
spend checking whether any or all simulation targets and model reference
targets need to be rebuilt by setting configuration parameter values as follows:

¢ In the top model, set Configuration Parameters > Model
Referencing > Rebuild options to If any changes in known
dependencies detected. (See “Rebuild options”.)

¢ In all referenced models throughout the hierarchy, set Configuration
Parameters > Diagnostics > Data Validity > Signal resolution to
Explicit only. (See “Signal resolution”.)

These parameter values exist in a referenced model’s configuration set, not
in the individual Model block, so setting either value for any instance of a
referenced model sets it for all instances of that model.
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Real-Time Workshop Model Referencing
Requirements

A model reference hierarchy must satisfy various Real-Time Workshop
requirements, as described in this section. In addition to these requirements,
a model referencing hierarchy to be processed by the Real-Time Workshop
software must satisfy:

¢ The Simulink requirements listed in:
= “Configuration Requirements for All Referenced Model Simulation”
= “Model Structure Requirements”
® The Simulink limitations listed in “Limitations on All Model Referencing”

® The Real-Time Workshop limitations listed in “Real-Time Workshop Model
Referencing Limitations” on page 4-46

Configuration Parameter Requirements

A referenced model uses a configuration set in the same way that any other
model does, as described in “Configuration Sets”. By default, every model in a
hierarchy has its own configuration set, which it uses in the same way that it
would if the model executed independently.

Because each model can have its own configuration set, configuration
parameter values can be different in different models. Furthermore, some
parameter values are intrinsically incompatible with model referencing. The
response of the Real-Time Workshop software to an inconsistent or unusable
configuration parameter depends on the parameter:

® Where an inconsistency has no significance, or a trivial resolution exists
that carries no risk, the product ignores or resolves the inconsistency
without posting a warning.

® Where a nontrivial and possibly acceptable solution exists, the product
resolves the conflict silently; resolves it with a warning; or generates an
error. See “Model configuration mismatch” for details.

® Where no acceptable resolution is possible, the product generates an
error. You must then change some or all parameter values to eliminate
the problem.
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When a model reference hierarchy contains many submodels that have
incompatible parameter values, or a changed parameter value must propagate
to many submodels, manually eliminating all configuration parameter
incompatibilities can be tedious. You can control or eliminate such overhead
by using configuration references to assign an externally-stored configuration
set to multiple models. See “Referencing Configuration Sets” for details.

The following tables list configuration parameters that can cause problems if
set in certain ways, or if set differently in a referenced model than in a parent
model. Where possible, the Real-Time Workshop software resolves violations
of these requirements automatically, but most cases require changes to the
parameters in some or all models.

For general information about setting configuration parameters for code
generation, see “Adjusting Simulation Configuration Parameters for Code
Generation” on page 2-27.

Configuration Requirements for Model Referencing with All System
Targets

Dialog Box Option Requirement
Pane
Solver Start time Some system

targets require
the start time of
all models to be

Zero.
Hardware Emulation hardware options All values
Implementation must be the

same for top
and referenced
models.
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Configuration Requirements for Model Referencing with All System
Targets (Continued)

Dialog Box
Pane

Option

Requirement

Real-Time
Workshop

System target file

Must be the
same for top
and referenced
models.

Language

Must be the
same for top
and referenced
models.

Generate code only

Must be the
same for top
and referenced
models.

Symbols

Maximum identifier length

Cannot be longer
for a referenced
model than for
its parent model.
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Configuration Requirements for Model Referencing with All System
Targets (Continued)

Dialog Box
Pane

Option

Requirement

Interface

Target
function
library

Must be the
same for top
and referenced
models.

Data exchange
Interface

C API

The C API
Signals and
Parameters
check boxes
must be the
same for top
and referenced
models.

ASAP2

Can be on or off
in a top model,
but must be off
in a referenced
model. Ifit is not,
the Real-Time
Workshop
software
temporarily sets
it to off during
code generation.
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Configuration Requirements for Model Referencing with ERT System

Targets
Dialog Box Option Requirement
Pane
Real-Time Ignore custom storage classes Must be the

Workshop same for top
and referenced
models.

Symbols Global variables $R token must

Global types

Subsystem methods

Local temporary variables
Constant macros

appear.

Signal naming

Must be the
same for top
and referenced
models.

M-function

If specified,
must be the
same for top
and referenced
models.

Parameter naming

Must be the
same for top
and referenced
models.

#define naming

Must be the
same for top
and referenced
models.
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Configuration Requirements for Model Referencing with ERT System
Targets (Continued)

Dialog Box Option Requirement
Pane

Interface Support floating- point numbers | If off for top
model, must
be off for
referenced
models.

Support non-finite numbers If off for top
model, must
be off for
referenced
models.

Support complex numbers If off for top
model, must
be off for
referenced
models.

Terminate function required Must be the
same for top
and referenced
models.

Suppress error status in If on for top
real-time model model, must be
on for referenced
models.

Templates Target operating system Must be the
same for top
and referenced
models.
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Configuration Requirements for Model Referencing with ERT System
Targets (Continued)

Dialog Box Option Requirement
Pane
Data Module Naming Must be the
Placement same for top
and referenced
models.
Module Name (if specified) If set, must be

the same for top
and referenced
models.

Signal display level Must be the
same for top
and referenced
models.

Parameter tune level Must be the

same for top
and referenced

models.

Naming Requirements

Within a model that uses model referencing, there can be no collisions
between the names of the constituent models. When you generate code from
a model that uses model referencing, the Maximum identifier length
parameter must be large enough to accommodate the root model name and
the name mangling string (if needed). A code generation error occurs if
Maximum identifier length is not large enough.

When a name conflict occurs between a symbol within the scope of a
higher-level model and a symbol within the scope of a referenced model, the
symbol from the referenced model is preserved. Name mangling is performed
on the symbol from the higher-level model.

4-36



Generating Code for Model Referencing

Real-Time Workshop Embedded Coder Naming Requirements. The
Real-Time Workshop Embedded Coder product provides a Symbol format
field that lets you control the formatting of generated symbols in much
greater detail. When generating code with an ERT target from a model that
uses model referencing:

® The $R token must be included in the Identifier format control
parameter specifications (in addition to the $M token).
® The Maximum identifier length must be large enough to accommodate

full expansions of the $R and $M tokens.

See “Real-Time Workshop Pane: Symbols” and “Code Generation Options and
Optimizations” for more information.

Custom Target Requirements

A custom target must meet various requirements in order to support model
referencing. See “Supporting Optional Features” for details.

Storage Classes for Signals Used with Model Blocks

Models containing Model blocks can use signals of storage class Auto without
restriction. However, when you declare signals to be global, you must be
aware of how the signal data will be handled.

A global signal is a signal with a storage class other than Auto:

® ExportedGlobal

® ImportedExtern

®* ImportedExternPointer
® Custom

The above are distinct from SimulinkGlobal signals, which are treated as
test points with Auto storage class.

Global signals are declared, defined, and used as follows:
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® An extern declaration is generated by all models that use any given global
signal.

As a result, if a signal crosses a Model block boundary, the top model and
the referenced model both generate extern declarations for the signal.

® For any exported signal, the top mode is responsible for defining (allocating
memory for) the signal, whether or not the top model itself uses the signal.

e All global signals used by a referenced model are accessed directly (as
global memory). They are not passed as arguments to the functions that
are generated for the referenced models.

Custom storage classes also follow the above rules. However, certain custom
storage classes are not currently supported for use with model reference. See
“Custom Storage Class Limitations” for details.

Storage Classes for Parameters Used with Model Blocks
All storage classes are supported for both simulation and code generation, and

all except Auto are tunable. The supported storage classes thus include
e SimulinkGlobal

® ExportedGlobal

® ImportedExtern

®* ImportedExternPointer

® Custom
Note the following restrictions on parameters in referenced models:

¢ Tunable parameters are not supported for noninlined S-functions.
¢ Tunable parameters set using the Model Parameter Configuration dialog
box are ignored.

Note the following considerations concerning how global tunable parameters
are declared, defined, and used in code generated for targets:

¢ A global tunable parameter is a parameter in the base workspace with a
storage class other than Auto.



Generating Code for Model Referencing

® An extern declaration is generated by all models that use any given
parameter.

e If a parameter is exported, the top model is responsible for defining
(allocating memory for) the parameter (whether it uses the parameter
or not).

e All global parameters are accessed directly (as global memory). They are
not passed as arguments to any of the functions that are generated for
any of the referenced models.

® Symbols for SimulinkGlobal parameters in referenced models are
generated using unstructured variables (rtP_xxx) instead of being written
into the model_ P structure. This is so that each referenced model can be
compiled independently.

Certain custom storage classes for parameters are not currently supported for
model reference. See “Custom Storage Class Limitations” for details.

Parameters used as Model block arguments must be defined in the referenced
model’s workspace. See “Parameterizing Model References” in the Simulink
documentation for specific details.

Effects of Signal Name Mismatches

Within a parent model, the name and storage class for a signal entering or
leaving a Model block might not match those of the signal attached to the root
inport or outport within that referenced model. Because referenced models
are compiled independently without regard to any parent model, they cannot
adapt to all possible variations in how parent models label and store signals.

The Real-Time Workshop software accepts all cases where input and output

signals in a referenced model have Auto storage class. When such signals are
test pointed or are global, as described above, certain restrictions apply. The
following table describes how mismatches in signal labels and storage classes
between parent and referenced models are handled:
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Relationships of Signals and Storage Classes Between Parent and
Referenced Models

Signal
Referenced Signal Passing | Mismatch
Model Parent Model | Method Checking
Auto Any Function None

argument
SimulinkGlobal | Any Function Label Mismatch
or resolved to argument Diagnostic (none
Signal Object / warning / error)
Global Auto or Global variable Label Mismatch
SimulinkGlobal Diagnostic (none

/ warning / error)

Global Global Global variable Labels and

storage classes
must be identical
(else error)

To summarize, the following signal resolution rules apply to code generation:

e [f the storage class of a root input or output signal in a referenced model is
Auto (or 1s SimulinkGlobal), the signal is passed as a function argument.

= When such a signal is SimulinkGlobal or resolves to a Simulink.Signal
object, the Signal Mismatch diagnostic is applied.

e If a root input or output signal in a referenced model is global, it 1s
communicated by using direct memory access (global variable). In addition,

= If the corresponding signal in the parent model is also global, the names
and storage classes must match exactly.

= If the corresponding signal in the parent model is not global, the Signal

Mismatch diagnostic is applied.

You can set the Signal Mismatch diagnostic to error, warning, or none in
the Configuration Parameters > Diagnostics > Connectivity dialog.
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Inherited Sample Time for Referenced Models

See “Inheriting Sample Times” in the Simulink documentation

for information about Model block sample time inheritance. In
generated code, you can control inheriting sample time by using
ssSetModelReferenceSampleTimeInheritanceRule in different ways:

e An S-function that precludes inheritance: If the sample time is used
in the S-function’s run-time algorithm, then the S-function precludes a
model from inheriting a sample time. For example, consider the following
md1lOutputs code:

static void mdlOutputs(SimStruct *S, int T tid)

{
const real T *u = (const real T*)
ssGetInputPortSignal(S,0);
real T *y = ssGetOutputPortSignal(S,0);
y[0] = ssGetSampleTime(S,tid) * u[O0];

}

This md10utputs code uses the sample time in its algorithm, and the
S-function therefore should specify

ssSetModelReferenceSampleTimeInheritanceRule
(S, DISALLOW_SAMPLE_TIME_INHERITANCE) ;

® An S-function that does not preclude Inheritance: If the sample time is
only used for determining whether the S-function has a sample hit, then it
does not preclude the model from inheriting a sample time. For example,
consider the md10utputs code from the S-function demo sfun_multirate.c:

static void mdlOutputs(SimStruct *S, int_T tid)
{

InputRealPtrsType enablePtrs;

int *enabled = ssGetIWork(S);

if (ssGetInputPortSampleTime

(S,ENABLE_IPORT)==CONTINUOUS_ SAMPLE_TIME &&

ssGetInputPortOffsetTime(S,ENABLE_IPORT)==0.0) {
if (ssIsMajorTimeStep(S) &&
ssIsContinuousTask(S,tid)) {
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enablePtrs =
ssGetInputPortRealSignalPtrs(S,ENABLE_IPORT);
*enabled = (*enablePtrs[0] > 0.0);

}

} else {

int enableTid =

ssGetInputPortSampleTimeIndex(S,ENABLE_IPORT);

if (ssIsSampleHit(S, enableTid, tid)) {
enablePtrs =
ssGetInputPortRealSignalPtrs(S,ENABLE_IPORT);
*enabled = (*enablePtrs[0] > 0.0);

}

if (*enabled) {
InputRealPtrsType uPtrs =
ssGetInputPortRealSignalPtrs(S,SIGNAL_IPORT) ;
real T signal = *uPtrs[0];
int ij

for (i = 0; i < NOUTPUTS; i++) {
if (ssIsSampleHit(S,
ssGetOutputPortSampleTimeIndex(S,i), tid)) {
real T *y = ssGetOutputPortRealSignal(S,i);
*y = signal;

}

}
} /* end mdlOutputs */

The above code uses the sample times of the block, but only for determining
whether there is a hit. Therefore, this S-function should set

ssSetModelReferenceSampleTimeInheritanceRule
(S, USE_DEFAULT_FOR_DISCRETE_INHERITANCE) ;

Reusable Code and Referenced Models

Models that employ model referencing might require special treatment when
generating and using reusable code. The following sections identify general
restrictions and discuss how reusable functions with inputs or outputs
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connected to a referenced model’s root Inport or Outport blocks can affect
code reuse.

General Considerations

You can generate code for subsystems that contain referenced models using
the same procedures and options described in “Nonvirtual Subsystem Code

Generation” on page 4-2. However, the following restrictions apply to such
builds:

e ERT S-functions do not support subsystems that contain a continuous
sample time.
¢ The Real-Time Workshop S-function target is not supported.

® The Tunable parameters table (set by using the Model Parameter
Configuration dialog box) is ignored; to make parameters tunable, you must
define them as Simulink parameter objects in the base workspace.

e All other parameters are inlined into the generated code and S-function.

Note You can generate subsystem code using any target configuration
available in the System Target File Browser. However, if the S-function
target is selected, Build Subsystem behaves identically to Generate
S-function. (See “Automated S-Function Generation” on page 11-14.)

Code Reuse and Model Blocks with Root Inport or Outport
Blocks

Reusable functions with inputs or outputs connected to a referenced model’s
root Inport or Outport block can affect code reuse. This means that code for

certain atomic subsystems cannot be reused in a model reference context the
same way it is reused in a standalone model.

For example, suppose you create the following subsystem and make the
following changes to the subsystem’s block parameters:

e Select Treat as an atomic unit

¢ Set Real-Time Workshop system code to Reusable function
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>
In4 COutd
Zain

Suppose you then create the following model, which includes three instances
of the preceding subsystem.

mt 0wl —meint owt —pe] 01 ot

In1 Cut

Subsystermn 1 Subsystem 2 Subsystem 32

With the Inline parameters option enabled in this stand-alone model, the
Real-Time Workshop code generator can optimize the code by generating a
single copy of the function for the reused subsystem, as shown below.

void reuse_subsysi_Subsystemi (
real T rtu_O,
rtB_reuse_subsys1_Subsystem1 *1localB)

/* Gain: '<S81>/Gain' */
localB->Gain_k = rtu_0 * 3.0;
}

When generated as code for a Model block (into an slprj project directory),
the subsystems have three different function signatures:

/* Output and update for atomic system: '<Root>/Subsystemi' */
void reuse_subsys1_Subsystemi(const real T *rtu_0,
rtB_reuse_subsys1_Subsystem1

*]localB)

{

/* Gain: '<S1>/Gain' */
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localB->Gain_w = (*rtu_0) * 3.0;

}

/* Output and update for atomic system: '<Root>/Subsystem2' */
void reuse_subsysi_Subsystem2(real T rtu_Int,
rtB_reuse_subsysi_Subsystem2

*localB)

{

/* Gain: '<82>/Gain' */
localB->Gain_y = rtu_In1 * 3.0;
}

/* Output and update for atomic system: '<Root>/Subsystem3' */
void reuse_subsysi_Subsystem3(real T rtu_In1, real T *rty_0)
{
/* Gain: '<S83>/Gain' */
(*rty_0) = rtu_Int * 3.0;
}

One way to make all the function signatures the same — and therefore assure
code reuse — is to insert Signal Conversion blocks. Place one between the
Inport and Subsystem1 and another between Subsystem3 and the Outport of

the referenced model.

ﬂ Ini  Outl —fwe] Int Outl ] In1 Outd ﬂ

Cutl

Signal Signal
Conversion Subsystemt Subsystemz Subsystems3 Conversiond

The result is a single reusable function:

void reuse_subsys2_Subsystemi(real T rtu_Int,
rtB_reuse_subsys2 Subsystemi1 *1localB)

{

/* Gain: '<S81>/Gain' */
localB->Gain_g = rtu_In1 * 3.0;
}
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You can achieve the same result (reusable code) with only one Signal
Conversion block. You can omit the Signal Conversion block connected to the
Inport block if you select the Pass scalar root inputs by value check box at
the bottom of the Model Referencing pane of the Configuration Parameters
dialog box. When you do this, you still need to insert a Signal Conversion
block before the Outport block.

Customizing the Library File Suffix, Including the File

Type Extension

You can control the library file suffix, including the file type extension, that
the Real-Time Workshop code generator uses to name generated model
reference libraries by specifying the string for the suffix with the model
configuration parameter TargetLibSuffix. The string must include a period
(.). If you do not set this parameter,

On a...

The Real-Time Workshop Software Names the
Libraries...

Microsoft Windows
system

model rtwlib.1lib

The Open Group
UNIX system

model_rtwlib.a

Real-Time Workshop Model Referencing Limitations

The following Real-Time Workshop limitations apply to model referencing.
In addition to these limitations, a model reference hierarchy used for code

generation must satisfy:

¢ The Simulink requirements listed in:

= “Configuration Requirements for All Referenced Model Simulation”

= “Model Structure Requirements”

¢ The Simulink limitations listed in “Simulink Model Referencing

Limitations”.

¢ The Real-Time Workshop requirements applicable to the code generation
target, as listed in “Configuration Parameter Requirements